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Abstract
In December 2019, a cluster of cases with 2019 Novel Coronavirus pneumonia from Wuhan, China, aroused worldwide 
concern due to an escalating outbreak in all the countries in the world. Coronavirus belongs to a family of single-stranded 
RNA viruses, which includes severe acute respiratory syndrome (SARS-CoV) and Middle East respiratory syndrome (MERS-
CoV), that have caused human epidemics with high fatality. The spectrum of the novel coronavirus disease (SARS-Co-2 
or COVID-19) ranges from asymptomatic infections to fatal pneumonia, and differs from other viral pulmonary infections. 
MERS-CoV is known to be potentially neuroinvasive. Extensive reports from China documented central and peripheral 
nervous system involvement in patients with COVID-19, and identified in angiotensin converting enzyme2 (ACE2), which 
is present in multiple human organs, the functional receptor for this virus. Guillain–Barré syndrome (GBS) has recently 
been associated to COVID-19 rising concern among physicians. This review summarizes the current state of knowledge on 
GBS during or after COVID-19 infection, attempting to clarify the pathophysiology of the associated respiratory dysfunc-
tion and failure.

Keywords Guillain–Barré syndrome · COVID-19 · MERS-CoV  · SARS-CoV · Acute respiratory distress (ARDS) · Acute 
axonal · Demyelinating neuropathy

Abbreviations
ACE2  Angiotensin converting enzyme 2
ARDS  Acute respiratory distress syndrome
AIDP  Acute inflammatory demyelinating 

neuropathy
AMAN  Acute motor axonal neuropathy
AMSADN  Acute motor and sensory axonal demyeli-

nating neuropathy
CIP  Critical illness polyneuropathy
CIM  Critical illness myopathy
MERS-CoV  Middle East respiratory syndrome 

coronavirus
RT-PCR  Real-time reverse-transcriptase–polymer-

ase-chain-reaction

SARS-CoV  Severe acute respiratory syndrome 
coronavirus

TMPRSS2  Transmembrane protein serine protease 2

Introduction

In December 2019, a cluster of cases with a novel Corona-
virus pneumonia (SARS-CoV-2, i.e., 2019-nCov) rapidly 
spread from Wuhan, Hubei, China, becoming a global health 
threat [1–7]. While several human coronaviruses are asso-
ciated with mild respiratory symptoms, the recently expe-
rienced types of coronavirus, including Severe Acute Res-
piratory Syndrome (SARS-CoV) in 2003 and Middle East 
Respiratory Syndrome (MERS-CoV) in 2012, have caused 
human epidemics and high fatality [10, 15, 16]. Although 
the current SARS-CoV-2 shares 79% of its genome with 
SARS-CoV, it appears to be much more transmissible [1–3, 
6, 7, 11–14]. SARS-CoV-2 infections have been associated 
with acute neurological syndromes which need special atten-
tion as they could be overshadowed by the severity of pul-
monary and cardiological manifestations [12, 13, 17–25].
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Several authors highlighted the key role of monitoring 
the occurrence of neuromuscular disorders (NMD) such as 
Guillain–Barré syndrome (GBS), myositis, critically ill-
ness myopathy and neuropathy (CIP/CIM) during SARS-
CoV-2 infection [27–30]. Guidon et al. [26] highlighted 
the need for neurologists to be vigilant during the pan-
demic for the risk of infection exacerbating known condi-
tions due to immunosuppressive and immunomodulatory 
therapies. The purpose of this paper is to review the cur-
rent knowledge about a potential life-threatening neuro-
muscular complication of SARS-CoV-2 such as GBS and 
to summarize the lung pathophysiological changes result-
ing from the overlap of respiratory muscle dysfunction due 
to GBS in the course of severe acute respiratory syndrome 
(ARDS) from coronavirus.

History of the novel COVID‑19 virus

Coronaviruses are enveloped non-segmented positive-
sense RNA viruses belonging to the Coronaviridae family 
and the Nidoviridales order broadly distributed in humans 
and other mammals [1–7, 11–13]. Although most human 
coronavirus infections are mild, the epidemics of the two 
recent beta coronaviruses, i.e., SARS-CoV and MERS-
CoV, caused more than 10,000 cases with mortality rates 
of 10% for SARS-CoV and 37% for MERS-CoV [1–7]. 
Genomic analysis shows that SARS-CoV-2 is in the same 
betacoronavirus clade as MERS-CoV and SARS-CoV, and 
shares with SARS-CoV highly homological sequence and 
similar pathogenesis with pneumonia induced by SARS-
CoV or MERS-CoV [15]. Huang et al. [2] first described 
pneumonia associated in 29% of cases with ARDS requir-
ing ICU admission for mechanical ventilation (MV) and 
oxygen therapy. ARDS could develop within 2 days with 
mortality rate rising quickly up to 15% [1–3, 11–13]. 
Huang et al. [2] detected by next-generation sequencing or 
real-time reverse-transcriptase–polymerase-chain-reaction 
(RT-PCR) methods the presence of 2019-nCoV (or SARS-
CoV-2) in respiratory specimens of 41 subjects with pneu-
monia. The complete genome of the 2019-nCoV virus was 
identified in January 2020 as a 29,903 bp single-stranded 
RNA (ss-RNA) coronavirus previously reported in bats in 
China. Huang et al. [2] showed that patients infected with 
2019-nCoV during the acute phase of their illness develop 
a “cytokine storm” with high amounts of proinflammatory 
cytokines (i.e., IL1B, IL6, IL12, IFNγ) in serum associated 
with pulmonary inflammation and extensive lung damage 
[2, 4, 14, 19, 20]. Moreover, the severity of the “cytokine 
storm” was related with disease severity, as plasma levels 
of proinflammatory cytokines and TNFα were higher in 
ICU patients than in non-ICU patients [2–5].

General survey on host virus interaction 
and neurotropic evidence of SARS‑CoV‑2

The novel CoV-19, similar to SARS–CoV1 and MERS-
CoV, causes multiple systemic symptoms [2–5, 7, 8, 
19, 31–35]. Like SARS-CoV1, SARS-CoV-2 cell entry 
depends on the binding to the metallopeptidase named 
angiotensin converting enzyme2 (ACE2). The trans-
membrane protein serine protease 2 (TMPRSS2) is also 
required for viral entry into cells [9, 15, 19–25, 32–35]. 
ACE is richly expressed not only in lung pneumocytes 
type II, but also in vascular endothelium, cardiomyocytes, 
smooth muscle cells and enterocytes. COVID-19 might 
use a spike protein S1 that enables the attachment of the 
virion to the cell membrane by interacting with the recep-
tor [8, 9]. The presence of the virus in the blood may facil-
itate the interaction of the virus spike protein with ACE2 
receptors expressed in the vascular endothelium, leading 
to vascular ruptures and bleeding.

The exact routes by which SARS-CoV and MERS-
CoV enter central nervous system (CNS) throughout the 
blood–brain barrier (BBB) is still unknown. It has been 
speculated that following the viremia, SARS-CoV-2 can 
infect monocytes, macrophages and endothelial cells 
to migrate through the BBB [8, 14, 20–23]. Plausible 
pathways for dissemination could be hematogenous and 
lymphatic circulation, or via the cribriform plate of the 
ethmoid bone, close to the olfactory bulb [14, 15, 17, 19]. 
Experimental studies using transgenic mice revealed that 
coronaviruses, when given intranasally, enter the brain via 
the olfactory nerves and thereafter spread to the thala-
mus and brainstem [14]. Indeed, hypogeusia, hyposmia, 
hypopsia are clinical markers of COVID-19 infection [2–6, 
19–21, 23]. Researchers detected SARS-CoV nucleic acid 
in the spinal fluid of patients with generalized seizures 
and viral antigens in the brainstem, in which the infected 
regions included the nucleus of the solitary tract and the 
nucleus ambiguus [14, 19, 20]. The nucleus of the soli-
tary tract receives sensory information from mechano- 
and chemoreceptors in the lung, while the efferent fibers 
from the nucleus ambiguus and of the solitary tract pro-
vide innervation to airway smooth muscle, glands, and 
blood vessels. The damage in these connections could 
result in a dysfunction of the cardiorespiratory center in 
the brainstem.

General survey on GBS triggers and phenotypes

The potential involvement of the peripheral nervous sys-
tem by COVID-19 has attracted considerable attention. 
Several authors at the time of this writing have described 
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cases of neuromuscular disorders focusing on a possible 
relationship with SARS-CoV-2 infection. GBS is an acute, 
post-infectious humorally mediated disorder with rapidly 
progressive, usually monophasic course. Almost two-
thirds of adult patients develop neurological symptoms 
2–4 weeks after infection [36–44]. The incidence of GBS 
is approximately 1–2 cases per 100,000 people per year, 
increased in people aged 80 years and over, slightly more 
frequent in males than in females [38, 41–43]. There are 
two major subtypes, based on electrophysiological and 
pathological features, i.e., acute inflammatory demyelinat-
ing polyneuropathy (AIDP), and acute motor/sensorimo-
tor axonal or demyelinating neuropathy (AMAN/AMSAN/
AMSAD) [36, 37, 41–43]. At present, a wide range of 
anti-nerve autoantibodies directed at proteins and glycolip-
ids, including GM1, GM1b, GD1a, GalNAc-GD1a, and 
GQ1b, are considered responsible for immunopathology of 
AIDP, AMAN and Miller Fisher (MFS) syndrome [36, 37, 
41, 44–47]. Albuminocytologic dissociation is reported 
in 2/3 cases in the first week after onset of symptoms, 
and the frequency of anti-ganglioside antibodies is highly 
dependent on GBS subtype [38, 41]. In typical cases, GBS 
exhibits bilateral ascending weakness which starts in distal 
lower extremities, but the onset can happen proximally in 
legs or arms with a combination of cranial nerve involve-
ment resulting in several clinically distinctive variants, 
formes frustes, and atypical cases with facial, oculomotor, 
or bulbar weakness, which might then extend to involve 
the limbs [36–38, 41, 42]. The frequency of these variant 
forms in part relates to the geographical area in which the 
disease is reported [36–38, 41, 42]. In addition to weak-
ness, patients might initially have sensory signs, ataxia, 
and features of autonomic dysfunction [36–38, 41–43]. 
Respiratory insufficiency is a life-threatening manifesta-
tion that occurs in 20–30% of patients [48, 49]. Many dif-
ferent antecedent infections have been identified as triggers 
of GBS, but only for a few microorganisms an association 
has been shown in case–control studies [46–48]. Campy-
lobacter jejuni (C. jejuni) is the predominant antecedent 
infection, found in 25–50% of adult patients [38, 41]. The 
original rationale rising from animal models was that a 
molecular mimicry exists between specific microbial pro-
teins and peripheral nerve glycolipids leading to an inno-
cent bystander attack against the myelin or the axon [41, 
46, 47]. Lipo-oligosaccharides on the C. jejuni outer mem-
brane may elicit the production of antibodies that cross 
react with gangliosides on peripheral nerves [36, 37, 41]. 
Other pathogens associated with GBS are cytomegalovi-
rus (CMV), Epstein-Barr, influenza A virus, Mycoplasma 
pneumoniae, Haemophilus influenzae [41, 46]. However, 
molecular mimicry has not been shown or proven in any 
pathogen besides C. jejuni [41].

Recently, epidemiological, virological and serological 
evidence has supported the causal relationship between 
Zika virus (ZIKV) infection and GBS in the Pacific Islands 
and the Americas [50–52]. In ZIKV, some authors observed 
neurologic onset immediately after the viral syndrome and 
speculated that a hyperacute immune response or direct viral 
neuropathic mechanism on Schwann cell and axonal struc-
tures might be effective. Pathogenesis of GBS in the course 
of ZIKV disease is currently unknown, but also an aberrant 
immune response through antigen-presenting cell activation 
of T-lymphocytes could be involved. Recent works by Luc-
chese et al. [52] found that there is a high peptide overlap 
between the ZIKV polyprotein and human proteins related 
to myelin and axon.

Acute neuromuscular syndromes during coronavirus 
infections

Tsai et al. [53] described four patients with neuromuscular 
disorders during SARS outbreak in Taiwan. The neurologi-
cal onset in these patients was evident 3 weeks after the 
respiratory symptoms; two cases developed an acute motor 
predominant neuropathy, one case both myopathy and neu-
ropathy, and the fourth developed a mild myopathy. As three 
patients received ICU care for multiple organ failure, these 
authors [53] cautiously considered the differential diagnosis 
with CIP and CIM.

Kim et  al. [15] reported four patients infected with 
MERS-CoV who presented with neurological symptoms 
delayed by 2–3 weeks from respiratory symptoms. The most 
interesting case of this series was a 55-year-old male who 
developed ARDS, septic shock and multiorgan dysfunction. 
When this patient was discharged from ICU, he exhibited 
external ophthalmoplegia, extremity weakness, ataxia and 
hyporeflexia diagnosed as Bickerstaff’s brain stem encepha-
litis (BBE) overlapping GBS; the remaining three cases had 
either normal neurological examination or sensory symp-
toms and lower limb weakness with loss of deep reflexes.

Mao et al. [19] reported detailed neurologic manifesta-
tions in 214 hospitalized patients with the COVID-19 infec-
tion; among those, 24% had CNS signs, whereas 8.9% had 
peripheral nervous system signs, and 10% skeletal muscle 
involvement. Increased CK and LDH levels were especially 
high in cases with severe infection and with muscle symp-
toms [19]. Neurologic manifestations occurred early in the 
illness with median time to hospital admission of 1–2 days; 
moreover, patients with severe infections were older as 
compared to non-severe patients [19]. Beydon et al. [54] 
described a male with an autoimmune myositis as manifes-
tation of SARS-CoV-2 infection who experienced sudden 
difficulty on waking, myalgias, proximal lower limb muscle 
weakness, lymphocytopenia, CK elevation at 25,384 IU/L 
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and increased C reactive protein. Muscle MRI showed 
edema and focal enhancing lesions.

GBS during SARS‑CoV‑2 infection

At the time of this writing, at least 14 patients presenting 
GBS related to SARS-CoV-2 have been described [55–65]. 
Among those, the two cases reported by Gutiérrez-Ortiz 
et al. [59] exhibited a MFS variant and an isolated cranial 
polyneuritis, which might be considered an entity located at 
the interface between MFS and GBS. Other authors [66, 67] 
reported a rare “regional form” of GBS with bifacial sym-
metric weakness, limb paresthesias and sensory ataxia, simi-
lar to one of the patients described by Toscano et al. [56]. 
Dinkin et al. [60] reported a cranial neuropathy with abnor-
mal MRI findings in two patients, one of whose showed 
optic nerve sheath enhancement suggestive of a viral lep-
tomeningeal invasion.

Patients commonly experience prior viral illness either 
with fever or respiratory symptoms from 2 to 10 days before 
the onset of neurological signs. However, Zhao et al. [55] 
described a case of AIDP antedating by 7 days fever and res-
piratory symptoms, similar to the one reported by Ottaviani 
et al. [65] who developed neurological deficits overlapping 
those of SARS-CoV-2 infection.

More than 50% of patients exhibited electrophysiologi-
cal features consistent with an acute demyelinating poly-
neuropathy; in contrast, only four patients had an axonal 
profile [55–68]. To our knowledge, seven patients out of the 
14 reported developed severe respiratory failure requiring 
ICU admission and MV. However, it was unclear if the cause 
of respiratory failure was due to GBS or the severity of the 
respiratory infection.

Toscano et al. [56] rose a very important point, as whether 
the reduced vital capacity (VC) in their patients was propor-
tional to neuromuscular weakness and to the extent of the 
chest imaging findings; interestingly, three cases had nor-
mal thorax scans, whereas the other three revealed typical 
interstitial pneumonia. Table 1 summarizes the demographic 
characteristics of the reported patients: age, gender, delay 
between antecedent infections and neurological symptoms, 
cranial nerve involvement, clinical phenotypes, electrophysi-
ological findings, CSF results, treatments and final outcome.

Differential diagnosis in GBS related to COVID‑19 
infection

CIP and CIM are complications of critical illness that are 
present in ICU patients with muscle weakness and weaning 
failure after ventilation [69]. Muscle weakness is frequent 
in ICU patients with a reported median prevalence of 43% 
(interquartile range 27–75%) over 31 studies [69]. The need 
of a differential diagnosis between GBS and CIP or CIM 

was considered and discussed by Kim et al. [15] in four 
patients with MERS coronavirus infection. Indeed, from the 
clinical point of view, differential diagnosis is important for 
treatment strategy. The key points for differential diagnosis 
between ICU-acquired weakness and GBS during or after 
COVID-19 infection are the following: (1) the disease course 
is typically monophasic and the onset is rapid in GBS; (2) 
the history of exposure to neuromuscular blockade agents 
is crucial in the development of CIP and CIM, while it is 
not part of the pathogenetic mechanism of GBS; (3) cranial 
nerves are spared in CIP/CIM; (4) CSF in GBS might show 
albuminocytological dissociation; (5) in GBS the serum 
might exhibit antiganglioside antibodies.

Consequences of GBS overlap in acute respiratory 
failure due to SARS‑CoV‑2

SARS-CoV-2 is reported to cause acute highly lethal pneu-
monia in 15% of cases with clinical features similar to those 
reported for SARS-CoV and MERS-CoV, but with different 
phenotypes and heterogeneous presentation [1–3, 23, 24]. 
Indeed, the pathophysiological characteristics of patients 
with SARS-CoV-2 pneumonia may differ from what previ-
ously defined by the ARDS Berlin criteria [31]. Observa-
tional data document that more than 50% of cases exhibit a 
dissociation between the mechanical characteristics of the 
respiratory system and the severity of hypoxemia [33]; in 
these patients, the compliance of the respiratory system is 
almost within normal range (> 50 mL/cmH2O), as well as 
the amount of gas in the lung, while presenting with a high 
shunt fraction (about 50%). The mechanism underlying this 
discrepancy is not known, but severe hypoxemia can prob-
ably be explained by an altered regulation of perfusion due 
to the loss of hypoxic vasoconstriction [33, 34]. Autopsy and 
lung biopsy studies show that at least some SARS-CoV-2 
infected patients who are critically ill present a general-
ized thrombotic microvascular injury mediated by intense 
complement activation [70]; these findings could justify the 
severe respiratory distress despite relatively normal respira-
tory mechanics.

Moreover, a proportion (30%) of patients with SARS-
CoV-2 pneumonia may share clinical features and physi-
ological characteristics with severe ARDS: severe hypox-
emia, low respiratory system compliance (< 40 mL/cmH2O) 
and diffuse bilateral infiltrates on CT scan. Based on these 
observations, Gattinoni et al. [35] proposed the distinction 
between two phenotypes of critically ill patients with SARS-
CoV-2 pneumonia: (1) “non-ARDS” type L (low elastance, 
low ventilation-to-perfusion, low lung weight, low lung 
recruitability), (2) “ARDS” type H (high elastance, high 
right-to-left shunt, high lung weight, high lung recruitabil-
ity). In some cases, the two phenotypes could even represent 
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two phases of the same disease; indeed, patients with type L 
may have a progression to type H.

Pulmonary alterations may overlap with an acute neu-
romuscular disease such as GBS which can cause relevant 
respiratory physiological changes. Predictive factors for 
the development of respiratory failure are bulbar dysfunc-
tion, short interval between onset of weakness and hospital 
admission, high Erasmus GBS Respiratory Insufficiency 
Score (EGRIS 5–7 indicates high risk) [49]. The develop-
ment of respiratory muscle weakness has obvious conse-
quences on respiratory mechanics, ventilation–perfusion 
mismatch and gas exchange. Early studies on neuromuscular 
disorders showed a change in lung volumes by reporting 
decrease in vital capacity (VC), moderate reduction in func-
tional residual capacity (FRC) and normal residual volume 
(RV) [71]. The reduction in VC was initially attributed to 

the direct effect of weakness of inspiratory and expiratory 
muscles, but subsequent observations have shown that the 
elastic properties of the lung were altered with a significant 
reduction in compliance [72, 73]. Reduced lung distensibil-
ity was attributed to loss of gas-containing alveoli (patchy 
atelectasis), generalized increase in surface tension of the 
alveolar lining layer caused by breathing at low lung volume, 
and intrinsic alteration in lung tissue elasticity.

In patients with GBS, the rapid development of severe 
diaphragmatic weakness can lead to the appearance of 
areas of basal atelectasis causing a reduction in lung 
compliance and an increase in the intrapulmonary shunt 
(Fig. 1). These changes, in association with COVID-19 
pneumonia, can cause rapid worsening of respiratory 
mechanics and hypoxemia, with the appearance of alveo-
lar hypoventilation and hypercapnia. Given that, from a 

Fig. 1  Example of respiratory pathophysiological changes in a patient 
with GBS. The upper part of the figure estimate shunt fraction  (QS) 
and dead space (VD). The middle represents the pressure–volume 
relationship of the lung (red line: normal lung, blue line: effect of the 
supine position and respiratory muscle weakness). The lower part 
of the figure shows CT scan of the basal areas of the lung. Panel A 

62-year-old GBS with intact respiratory muscle function. In supine 
position, there is a physiological slight decrease in FRC (see lung 
pressure–volume relationship). CT scan is normal. Panel B The 
patient develops severe diaphragmatic weakness with appearance of 
basal atelectasis at CT scan, decrease in compliance and significant 
increase in shunt fraction  (QS)
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clinical point of view, the alarming respiratory markers 
suggesting an overlap between SARS-CoV-2 pneumonia 
and a neuromuscular disorder affecting respiratory muscle 
such as GBS are the appearance of hypercapnia and basal 
atelectasis. Therefore, in patients with SARS-CoV-2 infec-
tion, when the diagnosis of GBS has been established or 
even suspected, respiratory muscle assessment is clinically 
essential to decide the timing of tracheal intubation. A VC 
of less than 20 mL/kg, maximal inspiratory pressure (MIP) 
less than – 30  cmH2O, maximal expiratory pressure less 
than 40  cmH2O or a decrease of VC greater than 30% over 
24 h, are good indicators of the need for invasive MV [25].

Conclusions

Since WHO declared COVID-19 as a “Public Health 
Emergency of International Concern” on January 30, 
2020, all the neurologists’ work has changed. Now, 
almost 4 months from the pandemic spread, the impact 
of COVID-19 on neurological care and patient services 
is relevant. Joint efforts are essential to gather the needed 
clinical data to develop awareness, recognition of clini-
cal manifestations and specific treatment guidelines. For 
patients with COVID-19, much is still unknown about 
clinical and neurological complications (i.e., their fre-
quency, characteristics, pathophysiology, risk factors, and 
prognosis) and possible regional differences in the disease 
course and outcomes [75, 76].

To conclude, it is unproven up to now whether COVID-
19 is able to trigger or it is simply accidentally associated 
with GBS. Further investigations, large trials and case con-
trol studies should be conducted to clarify their association 
and possible causality. Post-infectious molecular mimicry 
plays a crucial role in GBS, but it has been proven only 
in animal models for C. jejuni infection and not for other 
preceding viral infections; therefore, it might be unlikely 
as mechanism of SARS-CoV-2 related GBS. Given that, 
we must take into account some seminal works on viral 
mimicry in severe SARS respiratory syndrome involving 
the binding of virus antibody complexes to Fc or com-
plement receptors on the surface of monocytes or mac-
rophages resulting in virus uptake via receptor mediated 
endocytosis [74].

Another issue to be discussed concerns the timing of 
onset of neurological signs in relation with the viral infec-
tion. In some patients, neurologic symptoms appeared as 
early as few days after, suggesting a direct viral neuro-
pathic mechanism progressing with a hyperacute para-
infectious temporal profile [55, 61, 65]. In this context, 
also intrinsic host factors (i.e., genetic susceptibility) may 
play a role in the magnitude of the “cytokine storm” dur-
ing the early phases of the disease.

Moreover, we wish to add a few practical comments 
which might help clinicians. First, the diagnosis of GBS 
must be considered in patients with COVID-19 who 
develop signs of diaphragmatic weakness (basal atelecta-
sis on chest X-ray, development of hypercapnia in arterial 
blood gas analysis). Second, in patients with suspected 
or diagnosed acute neuromuscular disease in the course 
of COVID-19 infection, the instrumental monitoring of 
the respiratory muscles is recommended in addition to a 
careful neurological evaluation and it is critical in decid-
ing the timing of intubation regardless of the degree of 
respiratory failure from SARS-CoV-2 infection. Finally, in 
ICU patients with COVID-19 infection, the development 
of diaphragmatic weakness is not uncommon, therefore, a 
careful differential diagnosis between ICU-acquired weak-
ness and GBS should be taken into consideration, since 
the two conditions require different therapeutic strategies.
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