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Simple Summary: BRAF is a serine/threonine kinase that is commonly mutated across cancers.
The BRAF V600E mutation is targetable with kinase inhibitors; however, many patients eventually
develop resistance. Recent evidence suggests that tumors harboring BRAF mutations may oxidize
fatty acids for energy rather than utilizing aerobic glycolysis (the Warburg effect). Understanding the
metabolism of cells harboring BRAF mutations may uncover targets to improve therapy response. We
studied the effects of BRAF mutation and expression on metabolism. We found that cell expressing
BRAF V600E were enriched with immunomodulatory lipids and have a metabolism that is distinct
from cells expressing wild type BRAF. We also found that patients with melanoma who did not
respond to BRAF-targeted therapy had plasma lipid profiles that were different from patients who
responded to this therapy. Overall, our findings indicate that targeting lipid metabolism may be a
potential alternative strategy to improve patient responses to BRAF-targeted therapies.

Abstract: There is increasing evidence that oxidative metabolism and fatty acids play an important
role in BRAF-driven tumorigenesis, yet the effect of BRAF mutation and expression on metabolism
is poorly understood. We examined how BRAF mutation and expression modulates metabolite
abundance. Using the non-transformed NIH3T3 cell line, we generated cells that stably overex-
pressed BRAF V600E or BRAF WT. We found that cells expressing BRAF V600E were enriched with
immunomodulatory lipids. Further, we found a unique transcriptional signature that was exclusive
to BRAF V600E expression. We also report that BRAF V600E mutation promoted accumulation
of long chain polyunsaturated fatty acids (PUFAs) and rewired metabolic flux for non-Warburg
behavior. This cancer promoting mutation further induced the formation of tunneling nanotube
(TNT)-like protrusions in NIH3T3 cells that preferentially accumulated lipid droplets. In the plasma
of melanoma patients harboring the BRAF V600E mutation, levels of lysophosphatidic acid, sphin-
gomyelin, and long chain fatty acids were significantly increased in the cohort of patients that did
not respond to BRAF inhibitor therapy. Our findings show BRAF V600 status plays an important
role in regulating immunomodulatory lipid profiles and lipid trafficking, which may inform future
therapy across cancers.
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1. Introduction

The mitogen-activated protein kinase (MAPK) pathway is a kinase cascade with RAS-
RAF-MEK-ERK kinase components and is essential for cellular growth and development.
Approximately 30% of all human cancers have mutations in the MAPK pathway and approx-
imately 7% are mutations in the RAF kinase gene, BRAF [1,2]. BRAF is a serine/threonine
kinase that may be phosphorylated, dimerize, and signal downstream [3–5]. The most common
mutation in BRAF is a GTG→GAG mutation at codon 600 that results in a valine to glutamic
acid transition (BRAF V600E) [6]. The glutamic acid associates with a positively charged lysine
residue in the N-lobe of the kinase to promote kinase closure and activity [7]. BRAF mutation
also modulates the aspartate-phenylalanine-glycine (DFG) regulatory motif to adopt an active
DFG-in conformation resulting in constitutive kinase activity [8]. BRAF V600E protomers can
signal as monomers, dimers, or kinase-dead protomers and are not regulated by ERK feedback
phosphorylation [9–11]. The BRAF V600E mutation is found across cancer types including >97%
of hairy cell leukemias, 40–67% of melanomas, 36–69% of papillary thyroid tumors, 15–20%
of low-grade pediatric tumors, and 5–17% of colorectal cancers [12–16]. Further, BRAF V600E
oncogenic mutations in monocytes/macrophages etiologically contribute to the development of
human inflammatory neoplasms such as in Erdheim–Chester disease [17].

Conventional therapies targeting the BRAF V600E mutation often have short-lived benefit
since many tumors quickly acquire resistance [18]. Recent efforts have identified specific changes
in metabolism that are associated with BRAF activity. SREBP-1 lipogenesis, PGC1α oxidative
metabolism, MITF, and other transcriptional regulators play important roles in regulating BRAF
activity and consequently sensitivity to BRAF inhibition [19–23]. These studies identify potential
therapeutic strategies to improve sensitivity to BRAF inhibition and overcome resistance in
BRAF mutated cancers. While these preliminary studies have promising results, we have yet
to understand the precise mechanisms by which the BRAF V600 mutation affects metabolism.
Importantly, this information is essential to effectively modulate tumor metabolism and improve
therapies for BRAF mutated cancers.

In this study, we introduced a BRAF V600E mutation into non-transformed fibroblast cells
and found BRAF V600 status modulates metabolite abundancy. Specifically, the BRAF V600E
mutation rewires metabolic flux for non-Warburg-like behavior and promotes accumulation of
lipids. Immunomodulatory long chain polyunsaturated fatty acids (PUFAs) were enriched in
cells expressing BRAF V600E. These metabolic changes were accompanied by transcriptional
upregulation of FAS, CPT1a, PPARγ, and SCLA27a1. Further, BRAF V600E mutation changes
the cellular phenotype and induces formation of long F-actin containing protrusions that
preferentially accumulate lipid droplets. In patients with melanomas harboring the BRAF V600E
mutation, immunomodulatory lipids and long chain fatty acids were significantly increased post-
BRAF inhibitor (BRAFi) therapy in the non-responder cohort. Specifically, palmitic acid, adrenic
acid, lysophosphatidic acid, and sphingomyelin were significantly increased post-treatment
in the plasma from non-responders. Together, these data show BRAF V600 status plays an
important role in determining the immunomodulatory lipid profile and lipid trafficking, which
may inform future combination therapies to improve patient response to BRAF inhibitor therapy
across cancers.

2. Materials and Methods
2.1. Plasmids and Gene Constructs

cDNA sequences for wild type BRAF were synthesized (GenScript Biotech, Piscataway,
NJ, USA) and cloned in to the pLVX-EF1α-IRES-ZsGreen vector (Clonetech Laboratories Inc.,
Fremont, CA, USA) as previously used [24]. The BRAF V600E clone was generated from the
wild type BRAF sequence using site directed mutagenesis (GenScript). Vectors were introduced
and grown in One Shot® Mach1TM T1 (Clontech Laboratories Inc., San Jose, CA, USA) phage-
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resistant chemically competent E. coli (Invitrogen, Carlsbad, CA, USA). DNA was extracted
using a HiSpeed® Plasmid Midi Kit (Qiagen, Hilden, Germany).

2.2. Stable Gene Expression, Cell Lines, and Culture Conditions

Viral particles were produced by transfecting human embryonic kidney (HEK) 293T cells
(ATCC, Manassas, VA, USA) with empty vector DNA and vectors with either wild type BRAF
or BRAF V600E inserted (Clonetech Laboratories Inc.) using Lenti-XTM Packaging Single
Shots (VSV-G) (Clontech Laboratories Inc.). Virus was collected and filtered at 48 and 72 h.
Mycoplasma tested and STR profiled NIH3T3 cells (ATCC) were infected with viral particles
and 8 µg/mL of polybrene (Santa Cruz Biotechnology Inc., Dallas, TX, USA). Infected NIH3T3
cells were then sorted using fluorescence-activated cell sorting (FACS) by a MoFlo XDP cell
sorter (Beckman Coulter, Brea, CA, USA). Cells were then mass cultured in RPMI growth media
with 10% fetal bovine serum and 1% penicillin-streptomycin.

2.3. Mass Spectrometry, Metabolomics, and Lipidomics

Samples were collected from in vitro cultures or patient plasma samples. Cells were plated
in 15 cm plates in triplicate with 300,000 cells per plate. After 72 h, cells and supernatant were
harvested. One million cells per sample were pelleted. All samples were stored at −80 ◦C
before being analyzed by liquid chromatography/tandem mass spectrometry as previously
described [25]. In brief, metabolites from frozen cell pellets were extracted at 4 ◦C in the presence
of 5:3:2 MeOH:MeCN:water (v/v/v) and the resulting supernatant was analyzed by a Thermo
Vanquish UHPLC coupled to a Thermo Q Exactive mass spectrometer as previously described in
detail [26]. Lipids from frozen cell pellets were extracted at 4 ◦C in the presence of methanol and
the resulting supernatant was analyzed by a Thermo Vanquish UHPLC coupled to a Thermo Q
Exactive mass spectrometer as previously described in detail [27]. All mass spectrometry data is
provided in Tables S1 and S3.

2.4. Metabolic Flux Assay

Cells were plated at 20,000 cells per well of a 96-well plate in complete media and cultured
in a CO2 incubator overnight. The sensor cartridge was placed in a utility plate that was loaded
with 200 µL of XF Calibrant and hydrated in a non-CO2 incubator overnight. Oligomycin (75351,
Sigma-Aldrich, St. Louis, MO, USA), FCCP ((4-(trifluoromethoxy) phenyl) carbonohydrazonoyl
dicyanide, C2920, Sigma-Aldrich), and antimycin A (A8674, Sigma-Aldrich) + rotenone (R8875,
Sigma-Aldrich) were prepared for a titration curve at concentrations of 5 µM, 10 µM, 100 µM,
and 1000 µM in 25 mM glucose at pH 7.4. Drugs were loaded into the cartridge and the cartridge
was run on a Seahorse XFe96 Analyzer with 96-well plates (Agilent Technologies, Santa Clara,
CA, USA). A 10 µM drug concentration was determined as optimal for data collection with
NIH3T3 cells (Figure S2). Supplemented fatty acids were purchased from Sigma-Aldrich,
resuspended in ethanol for a stock solution of 10 mM, and stored at −80 ◦C. Drugs were
prepared in either 25 mM glucose or 25 µM palmitic acid, oleic acid, or α-linolenic acid at pH 7.4
and cells were analyzed for OCR and ECAR. Analysis was performed using Seahorse Wave
software (Agilent Technologies).

2.5. Immunofluorescence and Microscopy

Cells were cultured on a 22 mm glass coverslip placed in a 6-well plate with 20,000 cells
per well. After 24 h, the cells were washed with PBS and fixed in 10% formalin for 20 min.
The coverslips were stored in PBS at 4 ◦C until they were permeabilized with BD perm/wash
buffer (554723, BD Biosciences, San Jose, CA, USA). Lipid droplets were stained using Nile red
(1:500, 19123, Sigma-Aldrich) for 20 min at room temperature. F-actin was stained using the
phalloidin-Alexa 488 antibody (1:1000, Thermo Fisher Scientific, Waltham, MA, USA) for 1 h at
room temperature. Nuclei were stained using DAPI (1:1000, 62248, Thermo Fisher Scientific) for
5 min at room temperature. Coverslips were washed with PBS and mounted onto slides using
mounting media (ab104135, Abcam, Cambridge, UK). Images were taken with an Olympus
1X83 V-TB190 inverted microscope at 400× using cellSens software and quantified using FIJI
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software (available online: https://imagej.nih.gov/ij/ and accessed on 7 July 2019). Total
fluorescence was calculated from the red channel and normalized for the number of cells.
Regions of interest (ROIs) were used to quantify regional cell fluorescence with a minimum of
15 measurements per condition.

2.6. Melanoma Patient Samples

Samples were collected from ten melanoma patients from the University of Colorado
Hospital from 2008 to 2020. Plasma samples from melanoma patients were collected in green-
top heparin tubes with pre- and post-treatment samples. These samples were collected directly
from the hospital and processed immediately and frozen in a−80 ◦C freezer until use. These
plasma samples were never thawed or moved in the interim. These samples were obtained as
part of the International Melanoma Biorepository and Research Laboratory at the University
of Colorado Cancer Center. Patients were consented under the approval from the Colorado
Institutional Review Board (IRB# 05-0309). These patient studies were conducted according to
the Declaration of Helsinki, Belmont Report, and U.S. Common Rule.

2.7. Sanger Sequencing and Quantitative Real-Time PCR

Genomic DNA was isolated using the DNeasy Blood and Tissue kit (Qiagen, Hilden,
Germany). PCR was performed using GoTaq (Promega, Madison, WI, USA) with the following
primer sequences specific for BRAF: 5′ CTCCAGCTTGTATCACCATCTC 3′; 5′ CTGGTCC-
CTGTTGTTGATGT 3′. Additional PCR primers are listed in Table S2. PCR products were
purified using the QIAquick PCR purification kit (Qiagen) and submitted to the Barbra Davis
Center for sequencing using the BigDye Terminator Cycle Sequencing Ready Reaction kit
version 3.1 (Applied Biosystems, Foster City, CA, USA). RNA was extracted from pelleted
cells using the RNeasy Plus Mini Kit (Qiagen). Cells were homogenized by pipetting and
on-column DNase I digest was performed using an RNase-free DNase I set (Qiagen). RNA was
reverse transcribed into cDNA using the Verso cDNA Synthesis Kit (Thermo Fisher Scientific).
Quantitative real-time PCR was carried out in triplicate using PowerUp SYBER Green master
mix (Thermo Fischer Scientific) and was analyzed on the StepOne Plus real-time PCR system
(Applied Biosystems). Primer sequences are listed in Table S2 (Sigma-Aldrich).

2.8. Western Immunoblotting

Cell lysis was carried out in cold RIPA buffer with added protease and phosphatase
inhibitors (Thermo Fisher Scientific) for 10 min. Lysates were centrifuged at 13,000 rpm for
10 min. Fifty micrograms of protein was loaded into each well and separated by SDS-PAGE.
Samples were transferred to nitrocellulose membranes. The following primary antibodies
from Cell Signaling (Danver, MA, USA) and SC Biotechnology (Dallas, TX, USA) were used:
phospho-BRAF (Ser 445, #2696), total BRAF (sc-166), and β-actin (#4970). LiCor (Lincoln, NE,
USA) fluorescent anti-rabbit and -mouse secondary antibodies were used, and blots were
imaged using a Li-Cor Odyssey.

2.9. Statistical Analyses

Experiments were performed in biological replicates. Results are expressed as the
mean ± standard error of the mean. Direct comparisons were made using non-parametric
analyses, ANOVA, and Student’s t Test. Cohort sizes were determined based on statistical
and power considerations.

3. Results
3.1. BRAF Expression and Mutation Modulates Metabolic Profiles

To study how BRAF mutation affects metabolism, we generated stable cell lines overex-
pressing wild type BRAF (BRAF WT) or BRAF V600E using the NIH3T3 mouse fibroblast cell
line (Figure S1). With this model, we assessed how BRAF V600 status and kinase activity af-
fected basal metabolism using high resolution mass spectrometry to measure global metabolites.
First, we performed an unsupervised principal component analysis (PCA) (Figure 1A). In this

https://imagej.nih.gov/ij/
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three-dimensional PCA, we found over 90% of variation in the data was observed for three
principal components. Each of the triplicates clustered together, and cells overexpressing BRAF
WT or BRAF V600E clustered separately from the parental or control cell lines. A hierarchical
clustering analysis of 156 metabolites further showed BRAF WT and BRAF V600E cells clustered
separately from the controls (Figure 1B). Interestingly, cells overexpressing BRAF WT had a
metabolic profile that was more different from the controls than cells overexpressing BRAF
V600E. Altogether, these data demonstrate BRAF V600E cells have a metabolic profile different
from BRAF WT cells. To determine specific metabolic differences between BRAF WT and BRAF
V600E cells, we performed a differential metabolite analysis to identify the top 50 metabolites
most abundant in BRAF V600E cells (Figure 1C; enriched metabolites). We found lipids com-
prised the largest percentage of the top metabolites (% of top 50) and remained the most enriched
metabolite class when normalized to the total number of metabolites measured (normalized %).
In a separate analysis, we generated a heatmap of metabolites normalized to the control parental
cell line (Figure 1D). We performed statistical analyses of these metabolites and found lipid
metabolites to be significantly increased (Table S1). In these analyses, lipids were again found
to be enriched in BRAF V600E cells, and specifically, we found long chain PUFAs containing
18–22 carbons were highly abundant in cells expressing BRAF V600E.Cancers 2022, 14, x  6 of 20 
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parental control. Z-scores represent highly abundant metabolites in red and less abundant metabo-
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long chain PUFAs, were uniquely abundant in cells expressing BRAF V600E. 

Figure 1. BRAF V600 status and expression modulates the metabolic profile. Global metabolomic data was
collected by mass spectrometry for each biological replicate and evaluated by (A) unsupervised principal
component analysis (PCA) and (B) and hierarchical clustering analysis. (C) Class and frequency of the
top 50 metabolites present in BRAF V600E compared to BRAF WT. Normalized % refers to normalized
abundancy based on the total number of metabolites in each class. (D) Heatmap representing relative
metabolite abundancies with averaged triplicates normalized to the parental control. Z-scores represent
highly abundant metabolites in red and less abundant metabolites in blue. Heatmap was generated using
http://heatmapper.ca/ and was accessed on 19 February 2019.
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From these data, we identified that cells expressing BRAF WT have a different
metabolic profile from cells expressing BRAF V600E. Further, lipid metabolites, specif-
ically long chain PUFAs, were uniquely abundant in cells expressing BRAF V600E.

3.2. Cells Expressing BRAF V600E Do Not Exhibit Warburg-Like Metabolism

Next, we questioned how cells expressing BRAF V600E were using PUFAs. To address
this question, we assessed metabolic flux using the live-cell metabolic Agilent Seahorse
assay via a mitochondrial stress test. This mitochondrial stress test measures oxygen
consumption rate (OCR) and extracellular acidification rate (ECAR) using the following
metabolic poisons to disrupt the electron transport chain: oligomycin (complex V inhibitor),
FCCP (proton uncoupler), antimycin (complex III inhibitor), and rotenone (complex I
inhibitor) (Figure 2A). We performed a titration assay in 25 mM glucose to determine the
optimal concentration of poisons to use for assessing mitochondrial function (Figure S2)
and determined that 10 µM of each poison was most effective to measure mitochondrial
function in our non-transformed NIH3T3 models. We next measured OCR and ECAR in
BRAF WT, BRAF V600E, control, and parental cells when cultured in media supplemented
with either glucose, palmitic acid, oleic acid, or α-linolenic acid. BRAF WT cells consistently
displayed the highest OCR (Figure 2B–E) when cultured with glucose or lipids. In contrast,
BRAF V600E cells had an OCR that was considerably reduced compared to BRAF WT
cells and more similar to parental cells. Noticeably, ATP-linked production and maximal
respiratory capacity spiked in BRAF WT cells when cultured in 25 µM oleic acid, but this
was not observed for BRAF V600E or parental cells. Interestingly, BRAF WT cells had a
high ECAR in media supplemented with 25 mM glucose and a low ECAR when cultured
in palmitic acid, oleic acid, or α-linolenic acid (Figure 2F–I). BRAF V600E cells had a low
ECAR in all cultured conditions, similar to control and parental cells. Thus, all cell lines
appeared glycolytically inactive when cultured in the presence of palmitic acid, oleic acid,
and α-linolenic acid. We found this result to be unexpected since both overexpression of
BRAF WT and BRAF mutation are known oncogenic drivers and would be predicted to
behave with a Warburg-like metabolism by relying on glycolysis to drive mitochondrial
respiration [28,29].

In summary, these findings show that BRAF WT cells are more reliant on aerobic
respiration than BRAF V600E or parental cells. In addition, BRAF WT cells are glycolytically
active in glucose-abundant conditions. However, overexpression of either BRAF WT or
BRAF V600E resulted in non-Warburg-like behavior with little glycolytic activity in lipid-
abundant conditions. Taken together, these findings show BRAF WT cells are more sensitive
to nutrient availability and have a flexible metabolism, whereas BRAF V600E cells are not
only less flexible in their metabolism but are also less metabolically active than cells
expressing BRAF WT.

3.3. BRAF V600E Expression Promotes Formation of Tunneling Nanotube (TNT)-like Protrusions
Which Preferentially Accumulate Lipids

Our findings show that BRAF V600E cells are evidently consuming long chain PUFAs
(specifically oleic acid and α-linolenic acid) for respiration at a slower rate than BRAF
WT cells. Thus, we questioned where these lipids were located in the cell, and by using
immunofluorescence with Nile red (lipid droplet staining dye) and phalloidin (that binds
F-actin), we assessed lipid droplet localization (Figure 3A). These analyses revealed that
BRAF V600E cells harbored significantly more lipid droplets than BRAF WT, control, and
parental cells lines (Figure 3B). Notably, BRAF V600E cells had a unique morphology;
specifically, BRAF V600E cells harbored lipid droplets that preferentially accumulated in
long F-actin-containing protrusions (Figure 3C, D). We quantified the lipid droplets in this
region of interest and compared it to the amount of lipid droplets in the perinuclear region
(Figure 3E, F). These results demonstrated that lipid droplets preferentially accumulated
in long F-actin-containing protrusions in BRAF V600E cells, but not BRAF WT or parental
cells. Notably, similar F-actin-containing protrusions make up tunneling nanotubes (TNTs),
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which have been shown to have important roles in long-range cell communication by
transferring cytoplasmic components between cells [30,31].Cancers 2022, 14, x  8 of 20 
 

 

 

Figure 2. Cells expressing BRAF WT are more sensitive to nutrient availability than cells expressing 
BRAF V600E. (A) Schematics of Seahorse metabolic flux analysis for both oxygen consumption rate 
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(oligo), (4-(trifluoromethoxy) phenyl) carbonohydrazonoyl dicyanide (FCCP), antimycin (ant), and 
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Figure 2. Cells expressing BRAF WT are more sensitive to nutrient availability than cells expressing
BRAF V600E. (A) Schematics of Seahorse metabolic flux analysis for both oxygen consumption rate
(OCR) and extracellular acidification rate (ECAR). The poisons used (10 µM each) are oligomycin
(oligo), (4-(trifluoromethoxy) phenyl) carbonohydrazonoyl dicyanide (FCCP), antimycin (ant), and
rotenone (rot). In OCR (left), red represents non-mitochondrial respiration, teal represents basal
respiration, purple represents ATP-linked production, yellow represents proton leak, green represents
maximal respiratory capacity, and the reserve respiratory capacity is calculated from [maximal
respiratory capacity]− [basal respiration]. In ECAR (right), red represents non-glycolytic acidification,
teal represents glycolysis, green represents glycolytic capacity, and the reserve glycolytic capacity
is calculated from [glycolytic capacity] − [glycolysis]. OCR and ECAR were measured one hour
after BRAF WT (blue lines), BRAF V600E (teal lines), control (green lines), and parental (red lines)
cells were cultured in media supplemented with either (B,F) 25 mM glucose, (C,G) 25 µM palmitic
acid, (D,H) 25 µM oleic acid, or (E,I) 25 µM α-linolenic acid. The ANOVA statistical test with post-
hoc analysis was performed where * p < 0.05, ** p < 0.005, **** p < 0.00005 indicates the level of
statistical significance.
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Figure 3. BRAF V600E overexpressing cells accumulate lipids in tunneling nanotube (TNT)-like
structures. (A) Immunofluorescence staining for lipid droplets using Nile red (red), F-actin using
phalloidin (green), and nuclei using DAPI (blue). Scale bars represent 20 µm. (B) Quantified total
fluorescence in the red channel normalized to cell number. (C) Aspect ratios were determined by
measuring the length and width of individual cells. (D) Annotated immunofluorescence staining
from the experiment shown in panel (A) with white arrows highlighting TNT-like protrusions.
(E,F) Regions of interest were quantified using fixed areas to measure fluorescence in the red channel.
All quantifications were performed using FIJI and statistics were performed with GraphPad software.
The ANOVA statistical test with post-hoc analysis was performed where * p < 0.05, ** p < 0.005,
*** p < 0.0005, **** p < 0.00005 indicates the level of statistical significance.

In summary, we found that overexpression of BRAF V600E changes the cell phenotype
and accumulates lipid droplets in TNT-like protrusions.

3.4. Expression of BRAF V600E Enriches for Immunomodulatory Profiles

Thus far, our results have shown that long chain PUFAs were highly abundant in BRAF
V600E cells that are not apparently used for metabolic respiration (Figure 2). Long chain PUFAs
are metabolized from 18-carbon linoleic acid and α-linolenic acid to the longer 20-carbon PUFAs,
arachidonic acid and eicosapentaenoic acid (Figure 4A) [32]. These 20-carbon PUFAs are able
to serve as precursors for lipids mediators that play important roles in pro-resolving inflam-
mation (also described as type II inflammation) [33]. Tandem mass spectrometry of the long
chain PUFAs involved in synthesizing pro-resolving lipid mediators showed linoleic acid (LA),
α-linolenic acid (αLA), arachidonic acid (AA), and eicosapentaenoic acid (EPA) were all highly
abundant within cells expressing BRAF V600E, but not BRAF WT, control, and parental cells
(Figure 4B). Notably, these long chain PUFAs were equally abundant in supernatants from cells
expressing BRAF WT and BRAF V600E, but not control and parental cells (Figure 4C). Next,
we measured the relative intracellular abundance of pro-resolving inflammatory fatty acids.
While we were not able to measure all downstream lipid products, we determined the relative
abundance of 9-hydroxyeicosatetraenoic acid (9-HETE), docosahexaenoic acid (DHA), and
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prostaglandin E2 (PGE2). Notably, Figure 4D–F reveal that these pro-resolving immunomodu-
latory lipids were highly abundant in BRAF V600E cells. To assess associated transcriptional
changes, we performed quantitative real time PCR for genes associated with lipid and immune
regulation (Figures 4G and S3). FAS (Fas cell surface death receptor), SCL27a1/FATP1 (solute
carrier family 27 member 1), CPT1a (carnitine palmitoyltransferase 1a), and PPARγ (peroxisome
proliferator-activated receptor γ) were exclusively upregulated in cells expressing BRAF V600E
(Figure 4H–K).Cancers 2022, 14, x  12 of 20 
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Figure 4. Immunomodulatory lipid enrichment and a unique transcriptional signature are exclu-
sive characteristics of cells expressing BRAF V600E. (A) Schematic of polyunsaturated fatty acid
metabolism. LA, linoleic acid; αLA, α-linolenic acid; AA, arachidonic acid; EPA, eicosapentaenoic
acid; HETE, hydroxyeicosatetraenoic acids; LxA4, lipoxin A4; PGE2, prostaglandin E2; DHA, docosa-
hexaenoic acid; RvE1, resolvin E1. Fold-change in abundancy of (B) intracellular and (C) extracellular
LA, αLA, AA, and EPA in BRAF V600E, BRAF WT, and control cells normalized to parental cells.
(D–F) Relative intracellular abundancies of (D) 9-hydroxyeicosatetraenoic acid (9-HETE), (E) docosa-
hexaenoic acid (DHA), and (F) prostaglandin E2 (PGE2) in BRAF V600E, BRAF WT, and control
cells normalized to parental cells. (G) Heatmap of 2 ˆ (average of -dCT) values. Z-scores represent
highly expressed mRNA in red and less expressed mRNA in blue. Heatmap was generated using
http://heatmapper.ca/ accessed on 19 February 2019. Quantified mRNA expression for (H) FAS,
(I) SCL27a1, (J) CPT1a, and (K) PPARγ by qRT-PCR analysis in BRAF V600E, BRAF WT, and control
cells normalized to parental cells. Expression was normalized to GAPDH and the standard error of
the mean of triplicates are represented by the error bars. Individual graphs represent the top four
upregulated genes in cells expressing BRAF V600E. The ANOVA statistical test with post-hoc analysis
was performed where * p < 0.05, ** p < 0.005, *** p < 0.0005, **** p < 0.00005 indicates the level of
statistical significance.
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These findings show pro-resolving (type II) inflammatory precursor PUFAs are highly
abundant only in cells expressing BRAF V600E. Additionally, BRAF V600E mutation results
in transcriptional upregulation of immunomodulatory and lipid regulators, which may
play a role in tumorigenesis and inflammatory responses.

3.5. Circulating Plasma Lipids Are Increased in Melanoma Patients That Do Not Respond to
MAPK Inhibitor Therapy

We next questioned if and how BRAFi therapy modulates the lipid profile in humans
with advanced stage melanoma. To investigate this question, we collected plasma samples
pre- and post-treatment with MAPK inhibitor (MAPKi) therapy from patients with late-
stage melanomas that harbored a BRAF V600E mutation (Table 1). The patient cohort
included responders (R) and non-responders (NR) to BRAFi/MAPKi (R is classified as
a complete response or partial response; NR is classified as stable disease or progressive
disease). We performed lipidomics on the plasma samples and completed unpaired analysis
of responder vs. non-responder groups and paired analysis of pre- vs. post-treatment
samples (Figure 5 and Figure S4, respectively). Long chain fatty acids, including palmitic
acid, adrenic acid, and sphingomyelin, were elevated in the post-treatment plasma samples
of non-responders. We also found the immunomodulatory lipid, lysophosphatidic acid,
was also elevated in the post-treatment plasma samples of non-responders. Sphingomyelin
was the only lipid found to be significantly lower in the plasma of non-responders from pre-
treatment samples. Notably, sphingomyelin is the precursor to sphingosine-1-phosphate,
which is a functional lipid mediator required for T cell homing and egress from secondary
lymphoid organs [34]. Sphingosine-1-phosphate was not significantly different in either the
unpaired analysis of responders and non-responders or the paired analysis comparing lipid
levels pre- and post-treatment with BRAFi/MAPKi (Figure S4A). However, myristoleic
acid was found to be significantly elevated in post-treatment plasma samples of non-
responders, whereas taurolithocholic acid was elevated in post-treatment plasma samples
of responders. Altogether, these findings show that BRAFi/MAPKi treatment modulates
systemic lipid levels in advanced stage cancer patients. Further, palmitic acid, adrenic acid,
lysophosphatidic acid, and sphingomyelin could serve as potential markers for a response
to BRAFi/MAPKi.

Table 1. Patient clinical characteristics.

Patient No. Sex BRAF Status Stage Treatment Response

1 F V600E IV Dabrafenib + Trametinib R

2 M V600E IV Dabrafenib + Trametinib R

3 M V600E IV Dabrafenib + Trametinib R

4 F V600E IV Dabrafenib + Trametinib R

5 M V600E IV Dabrafenib + Trametinib R

6 M V600E IV Dabrafenib + Trametinib R

7 F V600E IV Dabrafenib + Trametinib NR

8 F V600E III Vemurafenib NR

9 F V600E IV Vemurafenib NR

10 M V600E IV Vemurafenib/Dabrafenib + Trametinib NR/NR
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Figure 5. Plasma long chain fatty acid levels vary in response BRAF/MAPK inhibitor therapy
in advanced stage melanoma patients. Relative abundance of (A) palmitic acid, (B) adrenic acid,
(C) lysophosphatidic acid, and (D) sphingomyelin in responder patients (blue symbols; complete
response and partial response) or non-responders (red symbols; stable disease and progressive
disease) measured both pre-(left) and post-treatment (right). The unpaired Student’s t test analysis
was performed where * p < 0.05 and ns designates not statistically significant.
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4. Discussion

This study examines how BRAF V600 status affects metabolism. Our findings identify
key differences in cells overexpressing BRAF WT or BRAF V600E. Using an NIH3T3
overexpression model and tandem mass spectrometry, we show long chain PUFAs are
enriched in cells expressing BRAF V600E, and that the immunomodulatory PUFA profile
is determined by BRAF V600 status. We demonstrate metabolic consumption is different
between cells expressing BRAF WT or BRAF V600E using the Agilent Seahorse assay,
and cells expressing either BRAF WT or BRAF V600E exhibit non-Warburg-like behavior.
We also report cells expressing BRAF V600E have a more elongated morphology and
form TNT-like structures that specifically associate with lipid droplets. To our knowledge,
this is the first report identifying immunomodulatory PUFA metabolism and TNT-like
protrusion formation as unique characteristics of cells expressing BRAF V600E. We also
demonstrate increases in immunomodulatory PUFA and long chain PUFA levels in the
plasma of patients failing to respond to BRAFi therapy. In recent years, lipid metabolism
and its role in cancer has been an emerging field that somewhat calls into question the
Warburg effect [18].

The Warburg effect first established that cancer cells preferentially utilize glucose
in a process known as aerobic glycolysis, even in the presence of oxygen [35–38]. Both
overexpression of BRAF WT and BRAF V600E are reported as oncogenic events and would
be predicted to promote a Warburg-like metabolism. Contrary to our hypothesis, we
found both overexpression of BRAF WT and BRAF V600E in NIH3T3 cells resulted in little
overall glycolytic activity when cultured in palmitic acid and other fats. While these cells
overexpress cancer-promoting constructs, they may not be completely transformed cancer
cells and may require a second “hit” to achieve a Warburg-like change in metabolism [39].
Additionally, the BRAF V600E mutation and its transformative potential is also controver-
sial. The first report of BRAF V600E identified this alteration as a transforming mutation in
NIH3T3 cells [6]. Yet, some non-transformed, healthy cell types, including normal nevi,
express BRAF V600E and are benign [40–42]. Nevertheless, some cancers, such as hairy
cell leukemia, almost exclusively express BRAF V600E mutations with few to no other
known oncogenic drivers [12,43]. Our findings contribute to an evolving body of evidence
aiming to elucidate the role of the Warburg effect and the transformative properties of
BRAF expression.

The role of lipid trafficking in TNT-like structures in cancer remains unclear. We
found that introducing the BRAF V600E mutation resulted in a phenotypic change with
the formation of TNT-like structures that house lipid droplets. A recent study found
myeloid cells use TNTs as a form of cellular communication [44]. Based on our findings
and previous reports, we hypothesize cells expressing BRAF V600E have the potential to
form TNT-like connections with surrounding cells to transfer communicating lipid droplets
and pro-resolving fatty acids that may rewire the immune response for a tumor promoting
response. Importantly, specific pro-resolving lipids, such as PGE2, can potentiate the
suppressive function of myeloid-derived suppressor cells (MDSCs) [45]. Altogether, we
suspect BRAF V600E mutation in certain cell types may rewire immune responses that are
metabolically mediated by lipid signaling. We hypothesize lipid signaling may serve as a
non-canonical second “hit” and ameliorate the inflammatory microenvironment. However,
more investigation is needed to better understand how BRAF and lipid signaling may
contribute to oncogenic and transformative potential in healthy cells and cancer cells.

Understanding the role of lipid signaling in cancer progression for BRAF-driven
cancer cells is important for diagnosis, treatment, and improving patient outcomes. We
found significant differences in the lipid profile and phenotype between cells expressing
BRAF WT and BRAF V600E. Furthermore, we noted significant differences in plasma lipid
levels between patients that responded and did not respond to BRAF inhibitor therapy.
Lysophosphatidic acid, sphingomyelin, adrenic acid, and palmitic acid were all significantly
increased in the plasma of BRAFi non-responders post-treatment. Notably, lysophospha-
tidic acid is a signaling lipid that is elevated in chronic inflammatory states, including
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cancer [46]. One prominent role of lysophosphatidic acid is rearrangement of the actin
cytoskeleton [47]. In fibroblasts, lysophosphatidic acid induces actin polymerization result-
ing in the formation of cytoplasmic stress fibers that consist of filamentous actin (F-actin)
and are associated with cell contraction, supporting movement, and migration of cells [47].
Furthermore, lysophosphatidic acid is involved in lymphocyte biology and has been shown
to impair CD8 T cell anti-tumor immunity [46]. Specifically, lysophosphatidic acid signaling
through its receptor (LPAR5) on CD8 T cells impairs intracellular calcium mobilization,
disrupts T cell receptor stimulated ERK activation, and perforin degranulation [46]. Con-
sequentially, CD8 T cell cytotoxic activity is significantly compromised in the presence of
elevated lysophosphatidic acid levels. Further studies should elucidate the mechanisms
whereby BRAF V600E cells that are resistant to BRAFi therapy increase lysophosphatidic
acid production and whether targeting lipid signaling decreases treatment resistance.

While sphingomyelin increased post-treatment in patients that did not respond to
BRAFi therapy, sphingosine-1-phosphate levels were not significantly different between
BRAFi responders and non-responders pre- and post-treatment. Sphingomyelin is a pre-
cursor to sphingosine-1-phosphate, which promotes tumor growth via a number of mecha-
nisms, including stimulation of G-protein coupled receptors and crosstalk with receptor
tyrosine kinases [48]. Data in this study may be limited due to sample size, so further
studies should investigate whether sphingosine-1-phosphate levels are altered based on
BRAF status or BRAFi treatment resistance. Increased levels of adrenic acid and palmitic
acid in non-responders post-BRAFi/MAPKi treatment may represent metabolic alterations
in resistant tumors, such as increased fatty acid oxidation in response to metabolic stress
induced by MAPKi. Previous studies have shown that melanoma cells increase CPT1a-
dependent fatty acid oxidation in response to treatment with MAPKi therapy, and inhibiting
MAPK, glycolysis, and fatty acid oxidation together inhibits tumor cell growth in vitro and
in vivo [23]. Further, BRAF overexpression and mutation is observed across cancers and
targeting metabolic pathways, including CPT1a, may be an alternative approach to im-
proving the response to treatment [18,49]. In addition to MAPKi therapy, immunotherapy
is another treatment option for melanoma. The data we have presented here shows that
BRAF V600E expression modulates an immunomodulatory lipid profile. As such, levels of
these lipids could impact the response to immunotherapy. More investigation in this area
should be conducted to understand how signaling lipids modulate immune responses and
therapeutic outcomes.

Further, it remains unknown how specific these metabolic features are to BRAF V600E
mutation compared to other MAPK activating mutations. While there are similar lipid droplet
phenotypes seen in diseases harboring BRAF V600E mutations [17], mutations in RAS are
also frequently observed in melanoma and could potentially result in similar metabolic
changes. This question about metabolic specificity is an open area for investigation.

Altogether, our study adds to the existing body of evidence that lipid signaling and
fatty acid metabolism may be a potential therapeutic target for improving anti-cancer ther-
apies. Our findings provide valuable insight into the clinical management and underlying
pathophysiology of BRAF-driven tumors across cancers.

5. Conclusions

BRAF is frequently mutated across multiple cancer types and in normal nevi. Un-
derstanding how BRAF expression and mutation affects cellular metabolism, cytoskeletal
structure, and oncogenic transformation is important for improving patient outcomes. The
data presented here identifies BRAF as a key regulator of metabolism and cellular morphol-
ogy. Further, we show lipid use and accumulation is in part determined by BRAF V600
status. Characterization of the BRAF V600E mutation in non-transformed cells showed that
BRAF status modulates metabolite abundancy. Specifically, BRAF regulates the abundancy
of immunomodulatory lipids and rewires metabolic flux for non-Warburg-like behavior.
Cells exclusively expressing BRAF V600E remodeled the F-actin cytoskeleton to form
long TNT-like protrusions, which specifically co-localized with lipid droplets. We further
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found that plasma lipid profiles in advanced stage melanoma patients were modulated
by BRAF/MAPKi therapy. Immunomodulatory lipids, including lysophosphatidic acid,
were elevated in patients that did not respond to targeted therapy. Altogether our findings
show that BRAF V600 status plays an important role in regulating the immunomodulatory
lipid profile that may offer potential therapeutic benefit and improve patient outcomes for
cancers driven by BRAF.
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ative expression measured by qRT-PCR and normalized to GAPDH. Figure S4: Paired and un-
paired analyses of sphingosine-1-phosphate, myristoleic acid, and taurolothocholic acid. Table S1:
Mass spectrometry data (Intracellular Metabolites and Extracellular Metabolites); Table S2: Primer
Sequences; Table S3: Mass spectrometry data (Plasma AQ and Plasma RQ).
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