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ABSTRACT

The understanding of the multi-scale nature of
molecular networks represents a major challenge.
For example, regulation of a timely cell cycle must
be coordinated with growth, during which changes
in metabolism occur, and integrate information from
the extracellular environment, e.g. signal transduc-
tion. Forkhead transcription factors are evolution-
arily conserved among eukaryotes, and coordinate
a timely cell cycle progression in budding yeast.
Specifically, Fkh1 and Fkh2 are expressed during
a lengthy window of the cell cycle, thus are poten-
tially able to function as hubs in the multi-scale cel-
lular environment that interlocks various biochemi-
cal networks. Here we report on a novel ChIP-exo
dataset for Fkh1 and Fkh2 in both logarithmic and
stationary phases, which is analyzed by novel and
existing software tools. Our analysis confirms known
Forkhead targets from available ChIP-chip studies
and highlights novel ones involved in the cell cycle,
metabolism and signal transduction. Target genes
are analyzed with respect to their function, tempo-
ral expression during the cell cycle, correlation with
Fkh1 and Fkh2 as well as signaling and metabolic
pathways they occur in. Furthermore, differences in
targets between Fkh1 and Fkh2 are presented. Our
work highlights Forkhead transcription factors as
hubs that integrate multi-scale networks to achieve
proper timing of cell division in budding yeast.

INTRODUCTION

Biological systems exploit their functions across space and
time, and their robustness results from the coherent in-
tegration of functionally diverse elements (e.g. molecules
and modules) that interact selectively and non-linearly (1).
Thus, the cross-talk between modules representing cellu-
lar layers of regulation (e.g. gene regulation, cell cycle,
metabolism and signal transduction) is crucial to achieve
system’s functions. In this context, identification of ele-
ments with high connectivity (hubs) bridging multiple spa-
tial, temporal and functional scales within cellular networks
is a major challenge in Systems Biology. This also holds for
the generation of multi-scale models to understand how a
function emerges from a network of interactions (2).

Transcription factors are pivotal in gene regulation, by
switching on or off entire molecular pathways, thus modu-
lating their activity or, more subtly, affecting the timing of
their activation. Among these regulators, Forkhead (Fkh)
transcription factors (Forkhead Box (FOX) in mammals)
are highly conserved across eukaryotes, and have garnered
interest because of their involvement in multiple cellular
pathways that, when dysregulated, may lead to development
of pathologies such as neurodegeneration and cancer, and
aging (3–6).

The homologues of the FOX proteins in budding yeast,
Fkh1 and Fkh2, play an essential role as regulators of the
CLB2-cluster, i.e. a set of genes transcriptionally regulated
after CLB2 activation (7). This set consists of 33 genes
whose transcription peaks in late G2/early M phase of the
cell cycle (7). Fkh2 promotes activation of the CLB2 pro-
moter, in complex with the Mcm1 scaffold protein and the
co-activator Ndd1, leading to cell division (8–11). Fkh1
function overlaps with Fkh2, but it binds less efficiently to
the CLB2 promoter and represses CLB2 transcription (12–
14).
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We have recently demonstrated that Fkh2 synchronizes
the temporal expression of mitotic CLB genes by connect-
ing the cyclins CLB5, CLB3 and CLB2 in a linear cascade,
and ensuring their timely activation (15). We also showed,
with others (16), an Ndd1/Fkh interaction, but the func-
tion of this complex is currently not understood. Fkh1 is
expressed during S and G2 phases, and its transcript lev-
els peak in the S phase, whereas Fkh2 is expressed from G1
until the M phase, and its transcript levels peak during the
G1(P) (pre-replicative G1) and S phase (17,18). This rela-
tively lengthy window of expression, in particular for Fkh2,
may allow the Fkh’s to potentially interact with a diverse set
of temporally separated cellular pathways.

We have also shown an interplay between metabolism and
cell cycle, with the NAD+-dependent histone deacetylases
Sir2 modulating the Fkh-dependent regulation of target
genes (19). Sir2 associates with Fkh in the G1 and M phases,
where it inhibits activation of CLB2 through Fkh-mediated
binding to the CLB2 promoter (19). The NAD+/NADH
ratio reflects the intracellular redox state, and is a readout
of metabolic activity (20).

Additional data also suggest a possible role of Fkh
in cellular processes beside cell cycle regulation. A ge-
netic approach based on a microarray-based RNA profil-
ing identified four target genes of Fkh1 and two targets of
Fkh2 (21). Furthermore, chromatin immunoprecipitation
(ChIP)-based methodologies, specifically ChIP-chip (22),
have retrieved hundreds of targets of Fkh1 and Fkh2 (23–
25). Moreover, ChIP-chip-based computational strategies
to identify sequence patterns that bind to transcription fac-
tors (referred to as binding motifs) have identified similar
binding motifs for Fkh1 and Fkh2 (25), as also reported in
the YeTFaSCo database (26).

These studies identified several potential Fkh targets in
metabolism. For example, Fkh1 has been suggested to regu-
late FAB1, which encodes a vacuolar membrane kinase that
generates phosphatidylinositol––the latter involved in vac-
uolar sorting and homeostasis––and ALG5, which encodes
a �-glucosyltransferase that is involved in asparagine-linked
glycosylation in the endoplasmic reticulum (23–25). Simi-
larly, Fkh2 has been suggested to regulate several metabolic
enzymes such as: GLN1, encoding a glutamine synthetase
that synthesizes glutamine from glutamate and ammo-
nia; IDI1, encoding an isopentenyl diphosphate that cat-
alyzes an essential activation step in the isoprenoid biosyn-
thetic pathway; and UTH1, encoding a mitochondrial inner
membrane protein implicated in cell wall biogenesis (23–
25). Furthermore, HOS3, encoding a histone deacetylase,
has been shown as a common enzymatic target of Fkh1
and Fkh2 (23–25). Together, this evidence suggests a Fkh-
mediated connectivity between cell cycle and metabolism.

Here, we provide a comprehensive, up-to-date overview
of the current knowledge of Fkh target genes. First, we
report on a novel dataset of Fkh targets using ChIP-
exo, which combines ChIP with lambda exonuclease diges-
tion followed by high-throughput sequencing, which allows
identification of a nearly complete set of binding sites at
near single-nucleotide resolution (27). We have recently em-
ployed ChIP-exo to investigate targets of transcription fac-
tors in budding yeast (28,29). The ChIP-exo dataset gener-
ated in this study was annotated using GEMMER, a novel

web-based data-integration and visualization tool that we
have recently developed to integrate and visualize the large
experimental data available for budding yeast (30). Subse-
quently, known and novel Fkh target genes were analyzed
with respect to their function, temporal expression during
the cell cycle as well as signaling and metabolic pathways
they occur in. Emphasis is given to target connecting cell cy-
cle with other cellular processes, in particular metabolism.
Our study clarifies and expands the understanding on the
role that Fkh have as hubs that integrate multi-scale regula-
tory networks to achieve proper timing of cell division.

MATERIALS AND METHODS

Yeast strains and growth conditions

The yeast strain BY4741 (MATa his3Δ1 leu2Δ0 met15Δ0
ura3Δ0) was used to generate the respective strains Fkh1-
Myc (FKH1-MYC9::kanMX6) and Fkh2-Myc (FKH2-
MYC9::kanMX6), as described (19). Yeast strains were
grown on plates with YPD with G418 (Formedium) 200
mg/l or in liquid cultures of defined media containing
NH4SO4 3.75 g/l, KH2PO4 7.18 g/l, MgSO4 0.25 g/l,
glucose 10 g/l, Complete supplement mix (Formedium,
DCS0019 - Adenine 5 mg/l, L-Arg 25 mg/l, L-Asp 40 mg/l,
L-His 10 mg/l, L-Iso 25 mg/l, L-Leu 50 mg/l, L-Lys 25
mg/l, L-Met 10 mg/l, l-Phe 25 mg/l, L-Thr 50 mg/l, L-Trp
25 mg/l, L-Tyr 25 mg/l, Uracil 10 mg/l, Val 70 mg/l), Vi-
tamin solution (D-Biotin 0.05 mg/l, D-Pantothenic acid 1
mg/l, Thiamin-HCl 1 mg/l, Pyridoxin-HCl 1 mg/l, Nico-
tinic acid 1 mg/l, 4-aminobenzoic acid 0.2 mg/l, myo-
insoitol 25 mg/l) and Trace metal solution (FeSO4 3 mg/l,
ZnSO4 4.5 mg/l, CaCl2 4.5 mg/l, MnCl2 0.84 mg/l, CoCl2
0.3 mg/l, CuSO4 0.3 mg/l, Na2MoO4 0.4 mg/l, H3BO3 1.0
mg/l, KI 0.1 mg/l, Na2EDTA 19 mg/l). pH of defined me-
dia was adjusted to 6.35 by adding KOH.

ChIP-exo

To start the liquid cultures, a yeast colony carrying Fkh1-
Myc or Fkh2-Myc was picked mid-day into the above de-
fined media and cultured with shaking at 30◦C until the
next morning. Cultures were then split to become logarith-
mic and stationary phase cultures. Cultures in logarithmic
phase were started at OD600 ∼ 0.2 and grown until OD600
for Fkh1 replicates: 0.75, 0.72 and Fkh2 replicates: 0.80,
0.80. Cultures in stationary phase were grown until the af-
ternoon and collected until OD600 for Fkh1 replicates: 2.00,
1.70 and Fkh2 replicates: 1.76, 1.78. For the ChIP-exo ex-
periments, 100 OD of cells were collected from each culture,
diluted to OD600 ∼ 0.7 with water, added with formaldehyde
(Sigma F8775) to a final concentration of 1% and left shak-
ing at room temperature for 15 min. Glycine (Sigma G7126)
was added to quench the cross-linking at a final concentra-
tion of 125 mM and left shaking for 5 min. Cells were then
washed twice with cold TBS (Tris-HCl (Sigma 252859) pH
7.5 1 mM, NaCl (Sigma, S3014) 150 mM) and snap frozen
in liquid N2. ChIP-exo was performed according to the orig-
inal protocol (27) with modifications as described (31).
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Data processing

Raw reads were mapped to the SacCer3 genome
(S288C reference sequence R64–2-1 20150113.fsa, down-
loaded from the Saccharomyces Genome Database (SGD)
website (https://downloads.yeastgenome.org/sequence/
S288C reference/genome releases/) with Bowtie2 (32).
SAM files were converted to BAM files, sorted and in-
dexed using SAMtools 1.3.1 (33). ChIP-exo data analysis
was performed through a pipeline that uses two existing
software tools and a novel method, which we refer to as
maxPeak, for peak detection. The existing tools, GEM
(Genome wide Event finding and Motif discovery) (34) and
MACE (Model based Analysis of ChIP-Exo) (35), require
the sorted and indexed BAM files as input and use iteration
schemes to identify and enrich peaks. Data analysis by
GEM and MACE was performed through the command
line. GEM and MACE require a relatively large amount
of strong peaks to iterate successfully. MACE was able to
analyze the Fkh1 data but unable to iterate on the Fkh2
data due to the relatively low number of peaks detected.
Specifically, MACE detected only 25 strong peaks (called
‘elite border pairs’) for the Fkh2 data, while it requires
more than 30 by default. Therefore, in order to analyze the
Fkh2 data, the threshold was reduced to 25 elite border
pairs. This choice comes at the cost of a higher potential
for picking up noise and low quality binding events.

The maxPeak peak detection method was applied, start-
ing from the indexed BAM files, using a combination of
bash scripts and R scripts. Based on the principle of ChIP-
exo, there is a transcription factor-specific optimal read
length, where the whole binding site is covered by reads
on both DNA strands, which corresponds to the width of
the DNA covered by the transcription factor. We manually
identified this read length by comparing the raw read align-
ments for several genes exhibiting a strong peak. We ob-
served that a read length of 12 bp corresponds well to the
strong peaks for both Fkh1 and Fkh2 (data not shown).
This is consistent with the previously identified binding mo-
tifs for Fkh1 and Fkh2, which have been reported to cover
a length of 8 and 7 bp, respectively (25), as the ChIP-exo
read length is slightly larger than the binding motif due to
additional ‘head room’ that the exonuclease cannot reach.

In the maxPeak method, the number of reads on both
+ and – DNA strands was summed up genome wide for
each nucleotide position. At this stage, biological duplicates
were averaged. Finally, by using the R environment for sta-
tistical computing and graphics, the 65th percentile of the
maximum read counts for genes that had a maximum > 0
was calculated for each experimental condition (logarithmic
and stationary phases) independently, creating one noise
threshold level per experiment. The highest read count per
gene was then divided by the noise threshold for each ex-
periment to calculate the signal-to-noise ratio (SNR). Es-
sentially, maxPeak ranks genes based on their signal. The
65th percentile normalization threshold is irrelevant for the
ranking of the genes, and it only serves to set a rough thresh-
old below which a gene’s signal is considered as noise. We
did not average the read counts among the experiments of
each Fkh transcription factor because a significantly higher
signal in the stationary phase experiments for both Fkh1

and Fkh2 was observed. This evidence suggests that there is
no equal background noise across the different conditions,
and that averaging may result in retrieving false positives as
a consequence of the lowered threshold for the stationary
phase experiments.

To score the significance of the target genes retrieved,
maxPeak and GEM assign SNRs, whereas MACE assigns
P-values. A comparison between the principle of working of
maxPeak, GEM and MACE methods is shown in Supple-
mentary Materials and Methods, Supplementary Figure S1,
whereas the specific thresholds used for each peak detection
method (PDM) are indicated in Figure 1 and in Supplemen-
tary Materials and Methods, Supplementary Figures S2–
S4. The scripts used for data processing and the unanno-
tated output from maxPeak, GEM and MACE are available
as Supplementary Code Repository.

Gene annotation and data analysis

In budding yeast, the median promoter length is 455 bp
(36). To also cover the promoter regions that are longer
than this median length, we have recently considered a win-
dow length of 1000 bp (28,29,31). In this work, we analyzed
the data for binding enrichment up to 1000 bp upstream
of the start of 7217 ORFs (Open Reading Frames) anno-
tated in the sacCer3 genome, possibly reaching the cod-
ing sequence of an upstream gene. Gene annotation was
performed through GEMMER, a novel web-based data-
integration and visualization tool that we have recently de-
veloped for budding yeast (30) (Supplementary Materials
and Methods Section S1). We retrieved annotation from
GEMMER for the ∼6800 protein-coding genes, as identi-
fied by SGD. As in GEMMER, we considered genes that
have an annotated E.C. number to be enzymes; we referred
to enzymes that catalyze reactions in the Yeast 7.6 metabolic
map (37,38) as metabolic enzymes to emphasize their spe-
cific function. The SNRs and P-values assigned by max-
Peak, GEM and MACE were all merged into one dataset
together with the annotation (Supplementary Excel Supple-
mentary Table S1). Data analysis was performed on the pro-
cessed and annotated dataset described above using Python
3.6 and the Pandas and Matplotlib modules. A collection of
Python scripts reproducing the data integration and Jupyter
notebooks reproducing the data analysis are available in the
Supplementary Code Repository and as part of a Github
repository (https://github.com/barberislab/Fkh ChIP-exo).

KEGG pathway map visualization

We used the R library Pathview to superimpose the experi-
mental data on KEGG pathway maps (39). We performed
the mapping two times, first by mapping the set of targets
identified in our experiments. Second, we associated each
gene with a verification score and an associated color: (i)
a value of -1 (yellow) for genes not suggested as a target
by our ChIP-exo experiments, but shown by one or more
of the available ChIP-chip studies (23–25); (ii) a value of 0
(red) for target genes identified only by our ChIP-exo exper-
iments; (iii) a value of +1 (green) for target genes identified
by at least one ChIP-chip study and our ChIP-exo experi-
ments. The R script to reproduce the image generation (see

https://downloads.yeastgenome.org/sequence/S288C_reference/genome_releases/
https://github.com/barberislab/Fkh_ChIP-exo
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Figure 1. Comparison of GEM SNRs versus MACE SNRs for target genes that scored a MACE P-value lower than 0.01. (A) Fkh1, exponential phase.
(B) Fkh1, stationary phase. (C) Fkh2, exponential phase. (D) Fkh2, stationary phase. The horizontal and vertical black dotted lines represent the GEM
and MACE target thresholds, respectively. Blue circles represent genes that were assigned a SNR ≥ 1 by maxPeak. Red circles represent genes that were
assigned a SNR < 1. Genes with circles in the upper-left quadrant of each panel were considered targets. Blue circles in the bottom-left and upper-right
quadrants of each panel were also considered targets.

Supplementary Code Repository, and images (Supplemen-
tary KEGG Figures) are available.

RESULTS

Data analysis pipeline using the novel maxPeak method to
detect high-confidence targets

ChIP-exo experiments were performed on Fkh1 and Fkh2,
in logarithmic and stationary phases, for a total of four
experiments (see ‘Materials and Methods’ section). Subse-
quently, two existing peak detection methods (PDMs) were
applied to the ChIP-exo datasets: GEM (34) and MACE
(35). We observed a significant divergence in the target genes
retrieved when comparing GEM (SNR ≥ 1) and MACE (P-
value ≤ 0.01) (Supplementary Text, Supplementary Figure
S5). The large number of targets retrieved only by GEM
or only by MACE led us to develop a novel ChIP-exo data
analysis method, which we have named maxPeak, which
does not use iteration and is not sensitive to a relatively low
number of strong peaks. Application of three PDMs simul-
taneously on the ChIP-exo dataset allowed us to identify
genes that are consistently retrieved as targets by Fkh1 and
Fkh2 across multiple PDMs. In order for a target gene to
be retrieved, it had to score above (GEM and maxPeak)
or below (MACE) threshold in at least two out of three
PDMs. To set thresholds that define which genes are con-
sidered targets by each of the three PDMs, we generated
three 2 × 2 score comparisons (see Figure 1 and Supple-
mentary Materials and Methods, Supplementary Figures
S2–S4). We considered any target gene that is retrieved as
significant by both GEM and MACE as a confident tar-
get. Consequently, we set the threshold of significance for

maxPeak to the lowest score obtained across all four exper-
imental conditions by any gene that was retrieved by both
GEM and MACE. Altering the 65th percentile normaliza-
tion threshold that we applied for maxPeak (see ‘Materials
and Methods’ section) would not have an impact on the set
of the retrieved target genes. By following this approach, we
could then use maxPeak to discriminate between those tar-
get genes that are retrieved by only GEM or only MACE.
The overlap of target genes among the three PDMs is shown
in Supplementary Text, Supplementary Figures S6. Figure
2 shows the data processing pipeline implementing the three
PDMs: GEM, MACE and the novel maxPeak.

ChIP-exo identifies a consensus of verified and novel targets
of Fkh1 and Fkh2

The pipeline presented in Figure 2 identified several hun-
dred target genes of Fkh1 and Fkh2. An overview of the
number of target genes that were retrieved in the four ChIP-
exo experiments is reported in Table 1, and the targets are
listed per experimental condition in Supplementary Excel
Supplementary Table S2. A higher number of Fkh1 targets
was retrieved as compared to Fkh2 targets, and a higher
number of Fkh targets was retrieved in stationary phase
as compared to logarithmic phase. CLB2 is considered to
be the major Fkh target gene; thus, it has been consid-
ered as a positive control for both Fkh1 and Fkh2. CLB2
was not considered significant as a Fkh1 target in logarith-
mic phase by both GEM and MACE; hence, this gene was
not considered a target for subsequent analyses. Conversely,
in the other three experimental conditions, CLB2 was re-
trieved as a Fkh target. Specifically, in all ChIP-exo exper-
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Figure 2. Illustration of the pipeline implemented for the identification of target genes from ChIP-exo data. First, BAM files were generated, sorted and
indexed, on which GEM and MACE are run. For the maxPeak peak detection method, the number of reads on both DNA strands for each nucleotide is
counted and, subsequently, the highest read count at a single nucleotide per gene is assigned as the gene’s signal. Finally, the read count for each gene is
normalized by the 65th percentile of all genes with a read count > 0, calculating a signal-to-noise ratio (SNR). Finally, target genes (indicated by a ‘T’ in
the pie chart) are selected if these are retrieved as significant by at least two out of three peak detection methods (PDMs); conversely, target genes that are
retrieved as significant by only one PDM (indicated as ‘NT’ in the pie chart) are not considered further in the analyses.

iments, CLB2 revealed a SNR > 2 (Supplementary Excel
Supplementary Table S2) assigned by the maxPeak method.
Notably, in Fkh2 datasets, CLB2 scores the fourth highest
SNR in logarithmic phase and the highest SNR in station-
ary phase. These results agree with CLB2 being the pivotal
Fkh2 target required for cell division (8–11).

A subset of target genes scored above threshold in all
three PDMs (referred to as ‘3x PDM verified’ in Table 1);
the detailed list of targets for each experiment is reported
in Supplementary Excel Table S3 and Supplementary Text,
Supplementary Table S1. A number of available genome-
wide studies provide datasets of Fkh target genes (21,23–
25). We focused specifically on the previous ChIP-chip stud-
ies (23–25), where experiments were performed after grow-
ing cells in exponential phase: MacIsaac et al. to an OD ∼
0.8 (25) (the experimental work was originally performed in
(40)), Venters et al. to an OD ∼ 1.0 (24), and Ostrow et al.
to an OD ∼ 0.8 (23). For this reason, for the comparison of

our ChIP-exo datasets with the ChIP-chip studies, the ex-
periments performed in stationary phase were neglected.

We quantified the agreement between the ChIP-exo
peak locations and the enriched regions identified in the
most recent ChIP-chip dataset (23) by overlaying them on
chromosome-wide summary plots and counting the overlap
(see Supplementary Text, Section S4). In Figure 3, a sum-
mary plot for Fkh2 in logarithmic phase is shown for chro-
mosome XVI, which contains the CLB2 gene, a major Fkh2
target (see Supplementary exo-chip Figures for all sum-
mary plots). We observed that, in logarithmic phase, 81%
and 59% of the ChIP-exo target genes show peaks within
enriched windows identified by the ChIP-chip experiments
for Fkh1 and Fkh2, respectively (see Supplementary Text,
Supplementary Table S2). The remaining 19% and 41% of
the ChIP-exo target genes are peak locations upstream of
ORFs that the ChIP-chip study did not identify. Vice versa,
51% and 46% of the enriched ChIP-chip regions upstream
of ORFs for Fkh1 and Fkh2, respectively, contain at least
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Table 1. Number of target genes identified in this study for specific subgroups

Target genes Fkh1 logarithmic Fkh1 stationary Fkh2 logarithmic Fkh2 stationary

Total 291 416 105 220
4x ChIP verified 29 – 15 –
3x PDM verified 31 84 6 25
Novel 43 – 38 –
Cell cycle-regulated 84 122 46 65
Enzymes 60 (31) 103 (51) 18 (10) 50 (27)

‘4x ChIP verified’, verified targets retrieved by our ChIP-exo experiments and three available ChIP-chip studies. ‘3x PDM verified’, targets retrieved by
three peak detection methods, PDMs (maxPeak, GEM and MACE). ‘Novel’, novel targets retrieved by this study but not by the three available ChIP-chip
studies. ‘Cell-cycle regulated’, targets retrieved by this study that have been described as cell cycle-regulated genes (17). ‘Enzymes’, targets retrieved by this
study that are enzymes; specifically, the number of enzymes that catalyze reactions in the Yeast 7.6 metabolic map (i.e. metabolic enzymes) is indicated
within parentheses. Since the available ChIP-chip studies were performed in logarithmic phase, verified and novel targets are not available for the stationary
phase experiments.

Figure 3. Comparison of ChIP-exo peak locations as identified by three different PDMs (maxPeak, GEM and MACE) and the ChIP-chip enriched regions
identified by Ostrow et al. for Fkh2 in logarithmic phase on chromosome XVI. The horizontal green dotted line indicates the threshold for GEM and
maxPeak; the horizontal blue dotted line indicates the threshold for MACE. All ChIP-exo peak locations with a SNR > 1

2 (for GEM and maxPeak)
and/or a P-value < 0.01 (MACE) are displayed. ChIP-exo target gene peaks are labeled as identified through the pipeline reported in Figure 2. When
multiple gene names are comma-separated in one label, the peak location was within a window of 1000 bp upstream of all listed gene ORFs.

one significant peak event (in any PDM) as identified by
ChIP-exo using our PDM thresholds (see Supplementary
Text, Supplementary Table S3). These results highlight the
increased specificity achieved using ChIP-exo as compared
to ChIP-chip, and the higher stringency applied by (i) the
thresholds used in this work and (ii) the requirement of
passing the threshold in at least 2 PDMs.

To highlight new targets of Fkh1 and Fkh2 identified us-
ing ChIP-exo, we compared the overlap between our ChIP-
exo targets and the ChIP-chip targets (23–25). Strikingly,
only 42 out of 2939 Fkh1 target genes and 18 out of 1553
Fkh2 target genes are in common between the three pub-
lished ChIP-chip studies (see Supplementary Text, Supple-
mentary Figure S7 and Supplementary Excel Supplemen-
tary Table S4). This lack of overlap among ChIP-chip stud-
ies is a general observation; for this reason, the recently de-
veloped ChIP-exo methodology may help to clarify these
discrepancies. Indeed, our ChIP-exo experiments recovered
the majority of the target genes retrieved by all three ChIP-
chip studies. Furthermore, it highlights a number of novel,
previously not detected, Fkh target genes. Table 1 summa-
rizes the number of verified and novel target genes. The
verified, thus highly reproducible, target genes by all four
ChIP experiments are 29 for Fkh1 (ADD37, ALG5, ATG42,
BDF1, BUD4, CDS1, CIK1, DIN7, DSE1, DYN1, EGO2,
ERS1, ESP1, FHL1, HOS3, JSN1, KIP2, MKK2, NEW1,
RHO4, RPN11, SPC24, SSO2, SUB2, TDA7, TEL2, VTI1,

YBR138C, YPI1) and 15 for Fkh2 (ATG42, BUD4, CDC20,
CHS2, IRC8, JSN1, MTC6, PPN1, SCO1, SPO12, SUR7,
SWI5, UTH1, YHP1 and YML053C) (see Figure 4 and
Supplementary Excel Supplementary Table S5). Among
these common target genes, 8 (for Fkh1) and 4 (for Fkh2)
are enzymes. Three target genes are in common among
both Fkh: ATG42, coding a vacuolar carboxypeptidase;
BUD4, coding for a protein that has a role in bud site se-
lection and is a substrate of the Clb2/Cdk1 kinase activ-
ity; and JSN1, coding an RNA-binding protein that in-
teracts with mRNAs of membrane-associated proteins of
the mitochondria. Strikingly, a potential metabolic role of
Fkh target genes is suggested by the Fkh1 targets CDS1,
coding a phosphatidate cytidylyltransferase involved in the
synthesis of all major yeast phospholipids, and ERS1, cod-
ing a cysteine transport protein that localizes to mem-
branes of organelles, and by the Fkh2 target the CHS2,
coding a chitin synthase required for chitin synthesis prior
cell division. Moreover, a subset of target genes high-
light the known role that Fkh2 plays in the control of
cell division: SWI5, coding for the transcription factor of
SIC1, which coded protein is the stoichiometric inhibitor of
mitotic cyclin/Cdk1 kinase activities; CDC20, activator of
the anaphase-promoting complex/cyclosome (APC/C) re-
quired for the metaphase/anaphase transition; and BUD4
(described earlier). Furthermore, the Fkh1 target MKK2,
coding for a MAP kinase kinase (MAPKK) involved in the
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Figure 4. Identification of subsets of novel and verified Fkh target genes. 4-way Venn diagrams for Fkh1 (A) and Fkh2 (B) showing the overlap between
ChIP-exo datasets and previous ChIP-chip studies that have identified Fkh target genes (21,23–25).

protein kinase C signaling pathway and in the control of
cell integrity, points to a potential role in signal transduc-
tion. Finally, our study retrieves 43 novel Fkh1 targets and
38 novel Fkh2 targets (Figure 4), among which 3 and 6, re-
spectively, are enzymes (see Table 1 and Supplementary Ex-
cel Supplementary Table S6).

Correlation analysis between Fkh expression levels and tar-
gets

To evaluate the quality of our results, we monitored the
correlation between the expression level of Fkh1 and Fkh2
and their targets, by using publicly available gene expres-
sion datasets. We combined the target genes identified in
logarithmic and stationary phases (listed in Supplementary
Excel Supplementary Table S2) for each Fkh transcription
factor, and analyzed them using the SCEPTRANS database
(http://moment.utmb.edu/cgi-bin/sceptrans.cgi). We tabu-
lated the total number of genes and the number of retrieved
target genes that are correlated with Fkh1 or Fkh2, based
on correlation coefficient thresholds of 0.60 and 0.80, across
the nine microarray datasets from five studies in SCEP-
TRANS (7,41–44). The correlated genes grouped by the
threshold and by microarray dataset are listed in Supple-
mentary Excel Supplementary Table S7. In total, 305 and
157 of the retrieved target genes (72% and 69%) are corre-
lated with Fkh1 and Fkh2, respectively, in at least one of
the nine datasets.

Furthermore, we tabulated the genome-wide fraction of
genes correlated with Fkh1 and Fkh2 across each of the
nine datasets. By multiplying that fraction with the number
of target genes, we calculated the expected number of cor-
related ChIP-exo target genes if the target genes were ran-
domly selected from the total pool of genes. We then cal-
culated the ratio of the actual number of correlated ChIP-
exo target genes and the expected number. We observed
an enrichment in correlated Fkh1 target genes (i.e. a ra-
tio > 1.5) in eight out of nine microarray datasets. Fkh2-
correlated target genes were enriched in six out of eight mi-
croarray datasets (see Supplementary Excel Supplementary
Table S7).

Dynamics of cell cycle-regulated target genes highlight a dis-
tinct activation of Fkh1 and Fkh2 functions across cell cycle
phases

An earlier study applied a deconvolution algorithm to one
of the nine microarray datasets analyzed above (43) and has
identified 1082 genes as being cell cycle-regulated (i.e. ex-
pressed cyclically), among which 198 metabolic enzymes,
reporting the time of peak expression and cell cycle phase
where it occurs for each such gene (17). Fkh1 and Fkh2
were considered part of the ‘high-quality’ set of 694 cell
cycle transcriptionally regulated (CCTR) genes with 95%
confidence or better. Subsets of 84 and 122 target genes for
Fkh1 and 46 and 65 target genes for Fkh2 belong to the ex-
tended CCTR set for logarithmic and stationary phases, re-
spectively (see Table 1). The main expression peaks of Fkh1
and Fkh2 were identified to occur at 67 and 3 min during S
and G1(P) phase, respectively. In addition, Fkh2 did exhibit
a secondary expression peak at 74.5 min during S phase.

We analyzed the subset of identified targets that are cell
cycle-regulated (Supplementary Excel Supplementary Ta-
ble S8) in terms of their cell cycle phase of peak expression
(Figure 5). When comparing the distributions of the iden-
tified target genes in the four ChIP-exo experiments to the
genome-wide distribution (17), for both Fkh1 and Fkh2 we
observed an enrichment of targets whose expression peaks
in the mid cell cycle (S phase) and an underrepresentation
of targets that peak in the early cell cycle (G1, G1(P), G1/S
phases), in both logarithmic and stationary phases (see Fig-
ure 5 and Table 2). The enrichment of targets that peak in
S phase is significantly higher for Fkh1 than Fkh2. Con-
versely, Fkh2 but not Fkh1 targets are enriched in the late
cell cycle (G2, G2/M, M, M/G1 phases), consistent with
earlier data showing that Fkh2 is expressed during the late
stages of the cell cycle (18). Analyzing the data in more
detail, we observed that both Fkh1 and Fkh2 targets are
shifted toward S and G2 and away from G1, G1(P), G1/S
and M, in both logarithmic and stationary phases. More-
over, Fkh1 and Fkh2 targets show an opposite trend at the
G2/M and M/G1 transitions as compared to the genome-
wide distribution (17): Fkh1 targets are under-represented
in G2/M and enriched in M/G1, whereas Fkh2 targets are

http://moment.utmb.edu/cgi-bin/sceptrans.cgi
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Figure 5. Distribution of the phases of peak expression for cell cycle-regulated Fkh target genes. A genome-wide dataset (17) was compared to the ChIP-
exo Fkh dataset to identify target genes that are cell cycle-regulated. The distribution of the cell cycle-regulated genes (17) is shown on top, whereas the
other four pie charts show the distribution of Fkh1 and Fkh2 targets, in both logarithmic and stationary phases.

enriched in G2/M and under-represented in M/G1. Taken
together, these findings highlight a tendency for the Fkh1
targets to peak earlier (in the S phase) as compared to the
Fkh2 targets, which peak in the late cell cycle phases (G2
through M/G1 phases).

Figure 6 visualizes the set of cell cycle-regulated targets of
Fkh1 and Fkh2 in logarithmic phase as a stack plot. Each
target is colored according to the function associated to
the GO annotation, which was performed through GEM-
MER (see ‘Materials and Methods’ section). The stack plot
of Fkh1 and Fkh2 targets in stationary phase is visual-
ized in Supplementary Text, Supplementary Figure S8. The
position on the y-axis within each column, corresponding
to a cell cycle phase where the expression is maximal for
each gene, is dictated by the maxPeak SNR of the ChIP-
exo experiments. We observe that the majority of Fkh1 cell-
cycle regulated targets show their expression peak in the S
phase. Moreover, when focusing on the cell cycle-regulated
enzymes (indicated in bold in Figure 6A) across different
cell cycle phases, we observe that among the 24 Fkh1 en-
zymatic targets the majority is enriched in the early and
mid cell cycle (G1, G1(P), G1/S and S phases) as compared
to the late cell cycle (G2, G2/M, M and M/G1 phases).
Conversely, the eight enzymatic targets of Fkh2 are equally
distributed throughout early and late cell cycle phases (in-
dicated in bold in Figure 6B). These findings suggest that
Fkh1 cellular functions, mediated by the activity of its tar-
gets, are realized earlier than Fkh2 functions.

Using the CDC28 data from (17) as an informative ex-
ample (see Supplementary Text, Section S7), target genes
that are cell cycle regulated, with expression peaks within
a window of -25 to 45 min after Fkh1 and Fkh2 expres-

sion peaks, may be considered to align with expected be-
havior for Fkh1- and Fkh2-regulated genes. This implies
a target window of 42–102 min (from the end of G1/S to
mid G2 phase) for Fkh1. For Fkh2, this would suggests
two target windows: from (i) 278–48 min (from the end of
G1 to the start of G1/S phase) and from (ii) 49.5–109.5
min (from the end of G1 to mid G2 phase). We conclude
that genes listed in Figure 6 and Supplementary Figure S8
that fall within these time windows show expected behav-
ior for genes regulated by Fkh1 and Fkh2. The well-known
Fkh1/Fkh2 target genes CLB1 and CLB2 fall within these
windows; furthermore, CLB3, which we have shown to be
regulated by Fkh2 (15) falls within the Fkh2 window. How-
ever, it should be noted that, given that Fkh2 exhibits two
expression peaks, it may well be present in the intermittent
time-period as well so that targets peaking in the window
109.5–278 should not be discounted.

Functional enrichment of identified Fkh targets genes

For all identified Fkh target genes we performed an over-
representation analysis for GO terms with respect to the bi-
ological processes they are involved in, by using the Fisher’s
exact test through the PANTHER database (45). We found
several significantly overrepresented terms for a false dis-
covery rate (FDR) threshold of 0.05 (Supplementary Ex-
cel Supplementary Table S9 lists the FDR for all GO terms
across all experimental conditions). The GO terms for cell
cycle and mitotic cell cycle were enriched across all four
ChiP-exo experiments. Furthermore, the GO terms for (mi-
totic) cell cycle and cell division were enriched across three
out of four ChiP-exo experiments (lacking in Fkh2 station-
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Figure 6. Stack plot of target genes identified by ChIP-exo in logarithmic phase that have a cell cycle-regulated peak expression level (17). (A) Fkh1 target
genes. (B) Fkh2 target genes. Within each column a higher position on the y-axis indicates a higher maxPeak SNR. The x-axis indicates the phases of peak
expression of genes, as reported (17). The color for each target gene indicates its major biological function if identified in GEMMER (30). Targets marked
with an asterisk are verified by all four (4x) ChIP studies, whereas targets marked with a triangle indicate novel target genes that have not been reported in
the previous ChIP studies. Targets identified as significant by all three PDMs are shown with a dashed border.
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Table 2. Enrichment of targets for which expression peaks in the early, middle or late cell cycle phases as compared to the cell cycle-regulated genes as
previously identified (17)

Experimental condition Early (G1, G1(P), G1/S) Mid (S) Late (G2, G2/M, M, M/G1)

Fkh1 logarithmic −12% +13% −1%
Fkh1 stationary −13% +13% 0%
Fkh2 logarithmic −20% +2% +18%
Fkh2 stationary −13% +6% +8%

The numbers reported are inferred from the pie charts shown in Figure 5.

ary phase and Fkh1 stationary phase, respectively). Fkh1
has uniquely enriched terms for organelle fission, (mitotic)
nuclear division and (mitotic) sister chromatid segregation.
Moreover, the Fkh1 logarithmic experiment showed unique
enrichment in the terms for (nuclear) chromosome segre-
gation, whereas the Fkh1 stationary experiment showed
unique enrichment in the terms for regulation of cell cycle
and regulation of (mitotic) cell cycle process. Finally, the
Fkh2 stationary experiment showed no uniquely enriched
terms, whereas the Fkh2 logarithmic experiment showed a
unique enrichment in the terms (fungal-type) cell wall or-
ganization and external encapsulating structure organiza-
tion. In addition to the formal enrichment test of GO terms,
the Fkh target genes identified in the four ChIP-exo exper-
iments were analyzed for their global, rather than for their
specific, function, showing an enrichment of targets with a
function in cell cycle and cell division (see Supplementary
Text, Supplementary Table S4). This result supports the ear-
lier finding that Fkh targets are primarily cell cycle genes
(7).

Interestingly, even though no GO terms related to
metabolism were enriched in the analyses above, we ob-
served that a fraction of genes with a metabolic function
was present among the Fkh targets. Specifically, we iden-
tified 60 and 18 enzymatic targets of Fkh1 and Fkh2, re-
spectively, in logarithmic phase, and 103 and 50 enzymatic
targets, respectively, in stationary phase, most of which cat-
alyze metabolic reactions (see Table 1 and Supplementary
Excel Supplementary Table S10). This provides a clear in-
dication of the potential role of Fkh1,2 as hubs connecting
cell cycle and metabolism.

Fkh targets in their functional context through projection
onto KEGG Pathways

With the aim to explore the pathways where a metabolic
function was observed for Fkh targets, our ChIP-exo results
were superimposed on a set of 25 KEGG maps of interest,
in order to intuitively display the (metabolic) function of
Fkh targets (see ‘Materials and Methods’ section), by us-
ing the Pathview library for R (see Supplementary KEGG
Figures). In particular, we focused on Fkh1 and Fkh2 tar-
gets in central carbon metabolism as identified by ChIP-
exo (Figure 7). In Supplementary Text, Supplementary Fig-
ure S9 a similar overview includes Fkh targets previously
identified in ChIP-chip studies that were not recovered by
ChIP-exo. Noteworthy, 16 (iso)enzymes catalyzing 14 reac-
tions in the visualized part of central carbon metabolism
are potentially regulated by Fkh. About 14 enzymes out of
16 are potential Fkh1 targets and 5 enzymes out of 16 are
potential Fkh2 targets, pointing once again to a predom-

inant metabolic role for Fkh1 as compared to Fkh2. Re-
markably, all three isoenzymes of the citrate synthase (CIT),
rate-limiting enzyme of the TCA cycle, as well as enzymes
involved in ethanol fermentation were retrieved as targets.
In detail, for the TCA cycle: CIT1 as Fkh1 target in both
logarithmic and stationary phases; CIT2 as Fkh1 target in
stationary phase; and CIT3 as both Fkh1 and Fkh2 tar-
get in logarithmic phase. For the ethanol fermentation, the
pyruvate decarboxylase PDC1 and the alcohol dehydroge-
nase ADH4 were retrieved as Fkh1 targets in both logarith-
mic and stationary phases. All 16 enzymatic targets, with
the exception of GND1 and IDH2 for Fkh2 and CIT3 for
Fkh1, have been previously reported by ChIP-chip studies
(23,24).

We annotated the ChIP-exo dataset with the KEGG
pathways that each of the 7217 target genes occurs in. To-
gether, the Fkh targets in all four experimental conditions
map onto 89 distinct KEGG pathways, ranging from cell cy-
cle to signaling and metabolism (see Supplementary Excel
Supplementary Table S11). In Supplementary Excel Sup-
plementary Table S10, all enzymatic targets of Fkh1 and
Fkh2 in logarithmic and stationary phases are reported
with the KEGG pathways they occur in and their cell cy-
cle phase of peak expression (if available). Moreover, exam-
ples of Fkh1,2 targets in autophagy, signal transduction and
cell cycle are shown in Supplementary Text, Supplementary
Figure S10. To illustrate the multi-scale nature of Fkh1 and
Fkh2 target genes, we highlighted 13 pathways and the Fkh
target genes that function therein in Supplementary Text,
Supplementary Table S5.

Altogether, our findings provide the field with an up-
to-date overview of the current knowledge of Fkh targets
within their functional context. The functional diversity of
these targets points out to the potential of Fkh1 and Fkh2
as hubs that integrate cell cycle regulation with signaling
and metabolic processes.

DISCUSSION

As compared to previous ChIP-based methodologies, our
ChIP-exo analyses were performed for the Fkh1 and Fkh2
transcription factors in two experimental conditions: log-
arithmic and stationary phases. Due to a relatively large
amount of targets identified by the GEM and MACE
PDMs we have developed a novel PDM that we named
maxPeak and used it alongside GEM and MACE for the
analysis of our ChIP-exo dataset. We considered only those
target genes as targets that scored above threshold (see Fig-
ure 1 and Supplementary Materials and Methods, Supple-
mentary Figures S2–S4) in at least two out of three methods.
In this way we aimed at minimizing the occurrence of false
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Figure 7. Overview of metabolic enzymes in central carbon metabolism that are targets of Fkh1 and Fkh2. Each enzyme is associated with eight squares
divided in two rows (Fkh1, top row; Fkh2, bottom row) representing data analysis of four different genome-wide studies: MacIsaac et al., Venters et al.,
Ostrow et al. and this study. Empty squares indicate genes that were not retrieved as significant targets, whereas colored squares indicated a positive evidence.
A distinction between the results in logarithmic and stationary phases is visualized through the color of the squares (see the figure insert). Isoenzymes that
have no available evidence in any of the four studies were neglected. In some cases, metabolic enzymes may have no associated squares when no isoenzyme
is available with an experimental validation.
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positives and false negatives and maximizing true negatives
and true positives.

We have observed that different ChIP-based methodolo-
gies retrieve different numbers and collections of Fkh tar-
gets. However, by analysing the verified Fkh targets in com-
mon between various studies, we have provided a compre-
hensive view of the most likely genes whose expression may
be modulated by Fkh1 and Fkh2. Noteworthy, when we
conducted the data analysis comparing the outcome of the
three PDMs (maxPeak, GEM and MACE) we observed
that the divergence in the target genes retrieved between
GEM and MACE as well as between both software tools
and the novel maxPeak method is substantial (a detailed
analysis is presented in Supplementary Text, Supplemen-
tary Figures S5–S6). This evidence points out a need in the
field to (i) identify the stability of the methods, (ii) inves-
tigate advantages and shortcomings of each method, and
(iii) measure the accuracy of the methods with regard to the
identification of functional targets. Our analysis of the tar-
gets retrieved by at least two out of three PDMs solidifies the
global perspective on the functions possibly exerted by Fkh,
and highlights the role that Fkh have as hubs that integrate
multi-scale regulatory networks, exemplified by metabolism
and cell cycle, to achieve proper timing of cell division.

Fkh1 and Fkh2 are paralogs that have diverged, with a
protein identity of 70.65% and a protein similarity of 85%
(46). The previously identified canonical Fkh1/Fkh2 bind-
ing motif 5′-GTAAACAA-3′ reported in the YeTFaSCo
database (26) and by MacIsaac et al. (25), is present in over
1400 locations throughout the genome. To analyze the en-
richment of this binding motif on our ChIP-exo dataset,
we extracted all peak locations corresponding to the tar-
get genes spanning a -250 to +250 bp window around the
peak location. We combined the sequences for both log-
arithmic and stationary phase experiments for each tran-
scription factor to obtain a robust motif identification. This
collection of sequences was analyzed using three algorithms
from the MEME-suit (47) with complementary charac-
teristics: MEME (48), DREME (49) and CentriMo (50).
MEME and DREME identify long and short ungapped
motifs, respectively, whereas CentriMo identifies known
DNA-binding motifs from other transcription factors. The
top significantly enriched motifs returned by MEME and
DREME either contain, or are similar to, the canonical
DNA-binding motif (Figure 8). The DREME motifs for
Fkh1/Fkh2 are virtually equal to the canonical motif, and
differ among each other only in terms of possible alterna-
tively preferred bases at 2 or 3 locations. The enriched se-
quence pattern identified by MEME is longer than the es-
tablished canonical motif (19–21 bp) but the latter can be
clearly identified within it for both Fkh1 and Fkh2. We ob-
serve that this top motif is very similar for both Fkh1 and
Fkh2, but with a changed and increased preference for the
surrounding bases for Fkh2. The presence of a longer and
more specific motif for Fkh2 as compared to Fkh1 may
translate to a different set of target genes and/or a differ-
ent affinity for such target genes.

Given the similarity of their protein sequence and DNA-
binding motifs, we were interested to explore the overlap
between targets of Fkh1 and Fkh2 in both logarithmic and
stationary phases. The ChIP-chip studies (23–25) already

showed a large set of unique targets, with only 10.6–44.1%
of identified Fkh1 targets shared with Fkh2 (see Supple-
mentary Text, Supplementary Table S6). In Table 3, we re-
port the number of overlapping ChIP-exo Fkh targets in
the two experimental conditions, as well as among the set
of 4x ChIP verified targets. Using ChIP-exo we observed
less common targets than in the published ChIP-chip stud-
ies, strengthening the hypothesis of divergent functions for
Fkh1 and Fkh2. The percentage of overlapping Fkh tar-
get genes is 7.0% and 11.4% for logarithmic and stationary
phases, respectively. Considering the number of overlapping
versus specific (Fkh1 only and Fkh2 only) targets reported
in Table 3, we conclude that the vast majority of Fkh tar-
gets is unique for Fkh1 and Fkh2 specific functions. A sim-
ilar outcome was observed for the 4x ChIP verified targets,
with a percentage of overlapping Fkh target genes equal to
7.3%. These data suggest that, regardless of the different
ChIP methodologies employed, Fkh1 and Fkh2 appear to
have divergent functions.

The observation of divergent target genes for Fkh1,2 is
further highlighted by the analyses of the subset of cell
cycle-regulated targets (Figure 5), which indicate a major
metabolic role for Fkh1 in the early cell cycle (from G1/S
through S phases) and a major cell cycle role for Fkh2 in the
late cell cycle (from S through M phases). These findings are
in agreement with early data showing that Fkh1 is expressed
earlier than Fkh2 (18). Furthermore, the same analyses sug-
gest a metabolic function for both Fkh1 and Fkh2, which
however may be realized at different times throughout cell
cycle regulation.

We investigated the height of the ChIP-exo signal up-
stream of non-overlapping target genes for the Fkh for
which they were not considered a target. We observed that
roughly half (44–59%) of the genes that we list as unique tar-
get genes in Table 3 cross the threshold in one of the three
PDMs and that, similarly, the other half does so in none of
the PDMs. The latter subset supports the conclusion that
there are substantial differences in the set of target genes.
Simultaneously, the former subset points out that many of
the unique target genes may show some limited, but lower
binding affinity, for the other Fkh, potentially indicating a
compensatory interplay between the two transcription fac-
tors. This result calls for a detailed investigation of the bind-
ing affinity on targets shared between Fkh1 and Fkh2.

It remains speculative whether or not the differences in
the observed motifs for Fkh1 and Fkh2 contribute to the
difference in target genes that we retrieved. It has previously
been observed that both redundant and different functions
for Fkh1 and Fkh2 exist, and that these differences were not
attributable to the DNA-binding domain (14). Fkh1 and
Fkh2 are paralogs with a similar DNA-binding motif, and
we observed that they bind only to partially overlapping sets
of a target genes (potentially with a different affinity). This
evidence suggests that the evolutionary divergence between
the two transcription factors, together with the shift in the
timing of the expression window (17), left in place a com-
mon set of redundant functions but, over time, gave rise to
more specific sets of target genes.

Aside from a difference in the main binding motif, it
is possible that that Fkh1 and Fkh2 bind different sec-
ondary motifs or interact (in complex) with different sec-
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Figure 8. Top DNA-binding motifs for Fkh1 and Fkh2 based on the ChIP-exo target gene peak sequences, as identified by the MEME and DREME
algorithms using MEME-ChIP.

Table 3. Overlap between Fkh1 and Fkh2 target genes

Targets genes Logarithmic Stationary 4x ChIP verified

Overlap 26 65 3
Fkh1 specific 265 351 26
Fkh2 specific 79 155 12

The columns with logarithmic and stationary data refer to this study. The 4x verified ChIP column refers to the experiments in logarithmic phase performed
in this study, Ostrow et al. (23), Venters et al. (24) and MacIsaac et al. (25).

ondary transcription factors. Our motif analysis suggested
secondary enriched motifs which differed between Fkh1
and Fkh2 that are similar to binding sequences of other
transcription factors. Mcm1 acts as a scaffold protein for
both Fkh2 and the co-activator Ndd1, regulating the G2/M
transition and, thus, cell division (9,11). Since the Mcm1
motif showed an E-value of 10−12 for Fkh2, we considered
all enriched motifs above this threshold. We found enriched
motifs matching eight transcription factors (Ecm22, Azf1,
Ixr1 Hmlalpha2, Mcm1, Hmra2, Matalpha2 and Dal82)
for Fkh1 and two transcription factors for Fkh2 (Gcn4
and Mcm1). We observed that the Azf1 and Hmra2 mo-
tifs were very similar to the canonical Fkh motif, therefore
disregarded these. None of the remaining transcription fac-
tors with similar binding motifs have known physical or ge-
netic interactions with Fkh1 or Fkh2, with the exception of
Mcm1. For several transcription factors with similar bind-
ing motifs of Fkh1, genetic evidence of an interaction with
Fkh2 is available. Specifically, a genetic interaction of Fkh2
was suggested with Ixr1 and Rox1 (51), transcriptional re-
pressors that regulate hypoxic genes during normoxia. Fur-
thermore, a genetic interaction was reported between Fkh2
and Dal82 (52), regulator of allophanate inducible genes. In
light of the observation that Fkh1 and Fkh2 target a differ-
ent set of genes, currently no reason may be envisioned re-
garding the enrichment of these motifs within peak regions.
However, this evidence calls for detailed experimental inves-
tigations of the possible interplay between Fkh1 and Fkh2
and these transcription factors.

Interestingly, our work highlights a number of metabolic
enzymes as targets of Fkh1 and Fkh2, 16 of which play
a role in central carbon metabolism (Figures 6 and 7):
HXT5, GND1, RPE1, TAL1, PFK2, PYK1 / CDC19,

PYC2, PDC1, ADH4, CIT1, CIT2, CIT3, ACS1, ACS2
(Fkh1 targets) and GND1, PYK1 / CDC19, CIT3, ACO2,
IDH2 (Fkh2 targets). The deletion of two of these enzyme
is inviable: pyruvate kinase (PYK1 / CDC19) for both Fkh1
and Fkh2 and acetyl-coA synthetase (ACS2) for Fkh1. Fur-
thermore, deletion of many among the other 16 genes re-
sults in reduced growth rates in a number of experimental
conditions (e.g. GND1, RPE1, PFK2, PYC2, PDC1, CIT1,
CIT2, ACS1, ACS2 and IDH2). Consequently, the altered
growth rate observed in fkh1Δ, fkh2Δ and fkh1Δ fkh2Δ
mutants (14) may be due to absence in the regulation of
one or more of the 16 target enzymes in the central car-
bon metabolism. Thus, our work highlights a potentially
significant role for both Fkh1 and Fkh2 in central carbon
metabolism.

When focusing on the 24 (Fkh1) and 8 (Fkh2) cell
cycle-regulated metabolic enzymes across different cell cy-
cle phases (indicated in bold in Figure 6 and Supplementary
Text, Supplementary Figure S8), we observed that Fkh1
and Fkh2 target several cyclically expressed metabolic en-
zymes that are involved in membrane processes, which are
centered around the two major cell cycle transition. Specif-
ically, Fkh1 targets PMA1, ALG3, ERS1, ALG2, ALG5
and MNT2 around the G1/S transition (G1(P)–G1/S–S)
and EXG1, SUN4 and STE6 around the M/G1 transition
(M–M/G1–G1). Similarly, Fkh2 targets PMA1, UTH1 and
ALG5 around the G1/S transition (G1(P)–G1/S–S). We hy-
pothesize that Fkh transcription factors, which are not ac-
tive after cell cycle exit until the next S phase upon Ndd1
activation (53), affect the plasma membrane by: (i) switch-
ing on their targets centred around the G1/S transition, and
(ii) switching these off in S phase due to Fkh activation upon
binding of the co-activator Ndd1 (8,11). Following this line
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Figure 9. Fkh1 and Fkh2 target genes in the molecular cascade regulating dynamics of cell cycle progression. (A) Molecular players driving phase-specific
cell cycle events (see text for details). (B) Overview of cell cycle regulators that are Fkh targets. The transcription factors SWI4, SWI6, MPB1, SWI5,
ACE2 and FKH2 are shown within rectangles.

of thought, Fkh1 will subsequently affect the plasma mem-
brane at the late cell cycle phases, when Fkh are inactivated
until the following S phase.

The Forkhead family of transcription factors is defined
by a shared DNA-binding motif, referred to as the winged-
helix domain. The mammalian Forkhead family encom-
passes 18 subfamilies (54,55), and the human genome con-
tains over 40 FOX genes. Of these, the FoxM1 and FoxP
proteins represent the closest homologs of Fkh1,2 (46,56).
FoxM1 was identified to have the in vitro DNA-binding con-
sensus site TAAACA (57). This motif shares the core se-
quence recognized by other members of the Forkhead fam-
ily (57) and also matches part of the motif we, and oth-
ers (25), identified for Fkh1,2. The similarity in the bind-
ing motif suggests that some of the target genes retrieved
in this work may carry over to the FoxM1 transcription
factor. FoxM1 is involved in cell cycle regulation, stress re-
sponse, chromatin silencing and aging (56). However, if the
suggested Fkh1,2-mediated regulation of metabolic genes
would translate to FoxM1, it would be especially interest-
ing since FoxM1 has already been implicated in cell divi-
sion by regulating the expression of the mitotic Cyclin B
(58), homolog of Clb2, and its expression has been observed
in multiple tumor-derived cell-lines (see (59) and references
therein).

Considering that our data point to multiple roles for
Fkhs in cell cycle progression, we have explored the rel-
evance of our ChIP-exo findings for Fkh1 and Fkh2 on
cell cycle dynamics (Figure 9). In Figure 9A, the regulatory
cascade driving phase-specific events in cell cycle progres-
sion is shown: in G1 phase, the cyclin Cln2, together with
the kinase Cdk1, inhibits the cyclin/Cdk1 inhibitor Sic1.
When Sic1 activity is blocked, Sic1-mediated inhibition of

Clb5/Cdk1 is released, allowing it to activate substrates
required for DNA replication in S phase. Subsequently, a
Clb/Cdk1 cascade is activated, involving waves of Clb5,
Clb3 and Clb2 cyclins (all bound to Cdk1). These waves of
cyclins are responsible for the control of DNA replication
and mitotic entry/exit from S through M (60,61). In Figure
9B, we summarize the evidence of Fkh binding at promot-
ers of target genes in this cascade. In our ChIP-exo study,
CLB2 is confirmed to be a major target of Fkh1 and Fkh2,
as reported (8–14). Noteworthy, our findings highlight that
this is evident in both logarithmic and stationary phases for
Fkh2. We also confirm SWI5 being target of Fkh2 (9,10,62)
and FKH2 being target of Fkh1, as reported by multiple
genome-wide studies (23,24).

Besides known verified targets in the cell cycle cascade,
our ChIP-exo experiments highlight three Fkh targets in the
cell cycle cascade, previously identified only by some but not
all the ChIP-chip studies, for which experimental validation
in currently lacking: CLN1 and ACE2 being targets of both
Fkh1 and Fkh2, and NDD1 being a target of Fkh1 (not
shown). Further analyses are required in order to validate
these findings, shedding light on possible novel regulatory
mechanisms of Fkhs in cell cycle regulation.

Our study also points to limitations of genome-wide stud-
ies, including ChIP-exo, in the identification of targets, such
as the CLB3 gene. Fkh2 binding to CLB3 promoter was
shown only by one ChIP-chip study (23). Furthermore, we
have recently demonstrated that Fkh2 binds to the CLB3
promoter and regulates Clb3 expression, thus synchroniz-
ing the temporal expression of mitotic CLB genes in a lin-
ear cascade (Clb5 → Clb3 → Clb2) (15). However, in our
ChIP-exo data for Fkh2, CLB3 does not score above thresh-
old in any of the three PDMs, and therefore it was not con-
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sidered as a Fkh2 target gene (false negative). This exam-
ple highlights that genes that show low DNA binding signal
in ChIP studies should not be regarded as not being regu-
lated. Conversely, a potential regulation may be suggested
for high-scoring target genes. Binding data of transcription
factors provide an indication of potential regulatory activi-
ties; however, these are not proof of such activity, for which
an experimental validation would be required.

In addition, our findings do not support previously sug-
gested Fkh targets: SWI4 and SWI6 for both Fkh1 and
Fkh2 (24), SIC1 for Fkh1 (23,24), and CLB5 for Fkh2 (23).
The latter scenario has been recently excluded by our in-
dependent experimental analyses, showing that CLB5 may
not be a Fkh2 target (15), thus highlighting the occurrence
of false positives identified by previous ChIP-chip studies.

We observed a higher number of correlated retrieved tar-
get genes than randomly expected for both Fkh1 and Fkh2
across nine publicly available microarray datasets (Supple-
mentary Excel Supplementary Table S7). This work points
towards future studies aimed to the experimental validation
of the targets retrieved, by assessing changes in gene expres-
sion upon Fkh knockout. In our view, priority should be
given to: (i) high scoring target genes as ranked by all three
PDMs (Supplementary Excel Supplementary Table S3), (ii)
high scoring target genes identified by all four ChIP studies
available for Fkh1 and Fkh2 (see Figure 6 and Supplemen-
tary Excel Supplementary Table S5) and (iii) target genes
that we identified as highly correlated with Fkh1 and Fkh2
in available gene expression studies (Supplementary Excel
Supplementary Table S7).

Finally, by referencing the KEGG pathways the target
genes mapped on, and providing the number of metabolic
targets, our analyses highlighted the potential of Fkh1
and Fkh2 to connect their specific functions within the
core cell cycle network with other regulatory processes in
metabolism and signal transduction. Altogether, the data
presented in this study clearly provide evidence of the wide-
reaching influence of Fkh, and open avenues for further re-
search by pointing to the Fkh transcription factors as hubs
that integrate multi-scale regulatory networks to achieve
proper timing of cell division in budding yeast.
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