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Abstract: Diabetic patients need long-term and frequent glucose monitoring to assist in insulin intake.
The current finger-prick devices are painful and costly, which places noninvasive glucose sensors
in high demand. In this review paper, we list several advanced electromagnetic (EM)-wave-based
technologies for noninvasive glucose measurement, including infrared (IR) spectroscopy, photoacoustic
(PA) spectroscopy, Raman spectroscopy, fluorescence, optical coherence tomography (OCT), Terahertz
(THz) spectroscopy, and microwave sensing. The development of each method is discussed regarding
the fundamental principle, system setup, and experimental results. Despite the promising achievements
that have been previously reported, no established product has obtained FDA approval or survived a
marketing test. The limitations of, and prospects for, these techniques are presented at the end of
this review.

Keywords: noninvasive glucose measurement; IR spectroscopy; Raman spectroscopy; photoacoustic
spectroscopy; THz spectroscopy; microwave sensing

1. Introduction

Blood glucose level is one of the most important physiological parameters that is associated with
the metabolic and homeostatic mechanism in the human body. Diabetes mellitus is a prolonged metabolic
disorder due to insufficient insulin production or an improper cell response to insulin [1]. The diabetic
population was projected to be 552 million by 2030, as reported by David R. Whiting et al. [2], based
on data sources for 80 countries. Diabetes imposes a heavy economic burden on patients and their
families. According to the American Diabetes Association, the total cost associated with diabetes in
the U.S. was $327 billion in 2017 [3]. Diabetes can be classified into three main categories: Type I, Type
II, and gestational diabetes [4]. The first one is usually called “juvenile diabetes”, which is mainly
diagnosed in children and results from a lack of insulin produced by beta-cells [5–7]. Only 5~10%
of diabetic patients have this form. The second one is the most prevalent among diabetic patients,
accounting for more than 90% [8], and is primarily caused by an unhealthy lifestyle and genes [9]. It is
characterized by insulin resistance and sometimes combines with reduced insulin secretion [4,10–12].
The last category usually occurs among pregnant women and will either disappear or develop to
Type II diabetes after delivery [4,13,14]. Long-term abnormal levels of glucose (hyperglycemia when
the glucose level is >200 mg/dL [15] and hypoglycemia when the glucose level is <70 mg/dL [16])
often lead to complications, including accelerated atherosclerosis [17], stroke [18], neuropathy [19],
nephropathy [20], and retinopathy [21]. In addition, it has been reported that diabetes also significantly
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increases the risk of cause-specific death [18,22,23]. Since there is no specific cure for diabetes [24],
daily glycemic measures need to be carried out together with active treatments (insulin injection or
bariatric surgery) to improve diabetic patients’ quality of life. Since 1962, when Clark and Lyons
proposed the electrochemical method [25], glucose oxidase (GOx) has been widely applied for glucose
determination. The well-established glucose meters are mainly based on electro-enzymatic reactions,
which require a finger-prick device to obtain a drop of blood (~1 µL) and apply it onto a disposable
testing strip [26,27]. Although the accuracy of this kind of invasive device has been proved and
is accepted, physical pain and infection can be easily caused [28,29] with a discrete readout only.
Moreover, the annual cost of testing strips is estimated to be $750 per patient [30]. Therefore,
semi-invasive or minimally invasive devices have been developed with the aim of replacing those
finger-prick devices and achieving continuous blood glucose monitoring (CBGM). They usually
measure the glucose concentration in interstitial fluid (ISF) by implanting a tiny and relatively painless
subcutaneous sensor. Nevertheless, the sensitivity gradually degrades as the protein builds up on the
surface of the sensor, and hence frequent calibration is required [31,32]. Much effort has been devoted
to the development of truly noninvasive glucose sensors that employ various emerging technologies.
Among those methods, electromagnetic (EM) wave sensing has drawn much attention due to its rich
interactions, including absorption, scattering, and transmission, with particular compounds inside
the body. As shown in Figure 1, EM waves can be classified as radio waves, microwaves, terahertz
(THz) waves, visible/infrared (IR) light, ultraviolet, X-rays, and gamma rays [33] based on different
frequencies or wavelengths. EM waves with higher frequencies carry higher photon energy, which can
damage tissues and organs by ionizing radiation. In contrast, non-ionizing radiation is relatively safe
and suitable for noninvasive biomedical sensing and imaging. The boundary between ionizing and
non-ionizing radiation falls in the UV region with a photon energy between 10 eV and 33 eV, which is
not well-defined. Herein, we will mainly discuss the utilization of non-ionizing radiation, including
vis/IR, T-ray, and microwaves, regarding the application of a noninvasive glucose measurement.
A molecule’s characterization is realized by its specific vibrational frequencies. Fundamental vibrations
can be excited by the mid-infrared (MIR) light, known as the “fingerprint region” of many molecules,
including glucose. Overtones and combinational bands usually fall into the near-infrared (NIR) region,
while T-waves and microwaves can be used to detect tissue permittivity variations caused by glucose
fluctuations. Several review articles for minimally invasive/noninvasive glucose monitoring have
been published previously. The authors in [32] focused more on noninvasive glucose monitoring
devices as commercial products and briefly introduced those related techniques. The authors in [34]
emphasized NIR spectroscopy with comprehensive descriptions, while the other techniques were just
mentioned in brief. The authors in [35] and [36] presented recent developments in minimally invasive
CBGM biosensors for body fluids testing. In this article, we will review the EM-based noninvasive
glucose sensing techniques; more specifically, optical methods, photoacoustic spectroscopy, THz
spectroscopy, and microwave sensing. We will focus more on the theoretical basis for these techniques,
implementation details from scientific and engineering points of view, and updating the reader
on recent achievements from different groups to tackle this challenging issue. Various EM-based
technologies are listed and compared in Section 3. Section 4 contains a discussion on, and the outlook
for, noninvasive glucose sensing.
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Figure 1. A diagram of the electromagnetic (EM) spectrum and its relevance to glucose. NIR, near-
infrared; MIR, mid-infrared; FIR, far-infrared. 

2. Performance Evaluation 

To evaluate the performance of noninvasive techniques and devices, the obtained data are 
usually calibrated and paired with references measured by invasive blood glucose meters at the same 
time point. Several indicators are often adopted to quantitatively assess the performance from a 
statistical and clinical point of view. Firstly, the coefficient of correlation R can be used to show the 
degree of correlation between two data sets. Its value always varies within ±1, where a positive value 
indicates the same variation trend while a negative one represents the opposite trend. Another 
indicator, the R-squared (R2) value, is known as the coefficient of determination, which measures the 
goodness of a linear regression. Besides these, the root-mean-square error (RMSE), the mean absolute 
error (MAE), and the mean absolute percentage error (MAPE) [37] are used to evaluate the deviation 
of predicted values compared to references. The limit of detection (LOD) defines the minimum 
amount of target sample that can be measured. It reflects the system sensitivity and noise 
performance. In 1986, J. M. Bland and D. G. Altman claimed that using a correlation is misleading 
and they suggested a new statistical approach to assess degree of agreement: the Bland–Altman plot 
[38,39], as shown in Figure 2a. It can be used to show the difference between measured values and 
references, where the solid black line represents their mean difference ( d ) and the two dotted lines 
are “limits of agreement” whose values are calculated as 1 96d . SD±  (SD is the standard deviation 
of the differences). Apart from the abovementioned statistical accuracy evaluation methods, W. L. 
Clarke proposed the use of a scatterplot to describe the clinical accuracy of glucose meters, which has 
become the “gold standard” [40]. As shown in Figure 2b, the Clarke Error Grid (CEG) is divided into 
five regions, where A contains values within a ±20% deviation from the reference, and B contains 
predictions with >20% error but not leading to an inappropriate treatment. Data in these two regions 
are regarded as clinically acceptable. On the contrary, predictions falling into region C will lead to 
overcorrection of normal glucose levels and D represents a failure to detect abnormal glucose levels 
for prompt treatment. Data falling into region E will result in an erroneous and a dangerous treatment. 
Measurement results in these three regions (C, D, and E) are not beneficial in patients’ daily care. 

Figure 1. A diagram of the electromagnetic (EM) spectrum and its relevance to glucose. NIR, near-infrared;
MIR, mid-infrared; FIR, far-infrared.

2. Performance Evaluation

To evaluate the performance of noninvasive techniques and devices, the obtained data are usually
calibrated and paired with references measured by invasive blood glucose meters at the same time
point. Several indicators are often adopted to quantitatively assess the performance from a statistical
and clinical point of view. Firstly, the coefficient of correlation R can be used to show the degree
of correlation between two data sets. Its value always varies within ±1, where a positive value
indicates the same variation trend while a negative one represents the opposite trend. Another
indicator, the R-squared (R2) value, is known as the coefficient of determination, which measures
the goodness of a linear regression. Besides these, the root-mean-square error (RMSE), the mean
absolute error (MAE), and the mean absolute percentage error (MAPE) [37] are used to evaluate
the deviation of predicted values compared to references. The limit of detection (LOD) defines the
minimum amount of target sample that can be measured. It reflects the system sensitivity and noise
performance. In 1986, J. M. Bland and D. G. Altman claimed that using a correlation is misleading and
they suggested a new statistical approach to assess degree of agreement: the Bland–Altman plot [38,39],
as shown in Figure 2a. It can be used to show the difference between measured values and references,
where the solid black line represents their mean difference (d) and the two dotted lines are “limits of
agreement” whose values are calculated as d± 1.96SD (SD is the standard deviation of the differences).
Apart from the abovementioned statistical accuracy evaluation methods, W. L. Clarke proposed the
use of a scatterplot to describe the clinical accuracy of glucose meters, which has become the “gold
standard” [40]. As shown in Figure 2b, the Clarke Error Grid (CEG) is divided into five regions,
where A contains values within a ±20% deviation from the reference, and B contains predictions with
>20% error but not leading to an inappropriate treatment. Data in these two regions are regarded as
clinically acceptable. On the contrary, predictions falling into region C will lead to overcorrection of
normal glucose levels and D represents a failure to detect abnormal glucose levels for prompt treatment.
Data falling into region E will result in an erroneous and a dangerous treatment. Measurement results
in these three regions (C, D, and E) are not beneficial in patients’ daily care.
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Figure 2. Examples of (a) a Bland–Altman plot and (b) a Clarke Error Grid (CEG) Analysis. 
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In this section, various EM-wave-based noninvasive glucose monitoring techniques are 
reviewed in detail, including the basic theories, system instrumentation, and laboratory tests. 

3.1. Infrared (IR) Spectroscopy 

There are several kinds of interactions between light and biological tissues depending on the 
properties of target tissues and the characteristics of illuminating sources. The interactions can be 
mainly categorized into absorption, transmission, emission, reflection, and scattering. Among those, 
absorbance information is by far the most widely used. Molecules with vibrational and rotational 
motions tend to absorb light at matched frequencies or wavelengths due to resonance. More 
specifically, chemical bonds can move in the form of bending, symmetrical stretching, asymmetrical 
stretching, et al. [41]. The quantum vibrational energy bands usually fall into the infrared (IR) region 
[42]. Thus, IR spectroscopy has been widely applied in analytical chemistry for characterizing 
samples in various states such as gases, liquids and solids. Based on different excitation sources, it 
can be classified into near-infrared (NIR) spectroscopy [43], mid-infrared (MIR) spectroscopy [44], 
and far-infrared (FIR) spectroscopy [45]. In Section 3.1, we will discuss NIR and MIR, and separately 
discuss THz in Section 3.6, which overlaps with the FIR region. 

3.1.1. Near-Infrared (NIR) Spectroscopy 

NIR radiation was discovered by Sir William Herschel in 1800 [46], and the first NIR spectrum 
was obtained in 1881 by Abney and Festing in the range of 1000–1200 nm [47]. Nowadays, NIR 
spectroscopy utilizes an EM wave in the range of 700–2500 nm [34,43,48,49], which covers several 
optical windows where photons have less interactions with interfering tissue compounds, such as 
water, hemoglobin, and lipids, so that the penetration depth can achieve several millimeters [32,50], 
where capillary beds locate [51–53]. The absorption in this wavelength range corresponds to a 
combination, the first overtone, the second overtone, or a higher-order overtone of a fundamental 
molecule’s stretching and bending [43,54,55]. Glucose is a kind of monosaccharide with the molecular 
formula C6H12O6 in the form of pyranose. It has several absorption peaks in the NIR region, which 
are listed in Table 1. 

Table 1. Absorption peaks of glucose in the NIR region and the corresponding functional groups. 

No. Wavelength (nm) Functional Group 
1 2273 Combination of O-H/C-O stretching [55] 
2 2261 νCH + νCCH [56] 
3 1688 2νCH [56] 
4 1638 First overtone [57] 
5 1536 νOH + νCH [56] 

Figure 2. Examples of (a) a Bland–Altman plot and (b) a Clarke Error Grid (CEG) Analysis.

3. Methodologies for Noninvasive Glucose Sensing Utilizing Electromagnetic Waves

In this section, various EM-wave-based noninvasive glucose monitoring techniques are reviewed
in detail, including the basic theories, system instrumentation, and laboratory tests.

3.1. Infrared (IR) Spectroscopy

There are several kinds of interactions between light and biological tissues depending on the
properties of target tissues and the characteristics of illuminating sources. The interactions can be
mainly categorized into absorption, transmission, emission, reflection, and scattering. Among those,
absorbance information is by far the most widely used. Molecules with vibrational and rotational motions
tend to absorb light at matched frequencies or wavelengths due to resonance. More specifically, chemical
bonds can move in the form of bending, symmetrical stretching, asymmetrical stretching, et al. [41].
The quantum vibrational energy bands usually fall into the infrared (IR) region [42]. Thus, IR
spectroscopy has been widely applied in analytical chemistry for characterizing samples in various
states such as gases, liquids and solids. Based on different excitation sources, it can be classified
into near-infrared (NIR) spectroscopy [43], mid-infrared (MIR) spectroscopy [44], and far-infrared
(FIR) spectroscopy [45]. In Section 3.1, we will discuss NIR and MIR, and separately discuss THz in
Section 3.6, which overlaps with the FIR region.

3.1.1. Near-Infrared (NIR) Spectroscopy

NIR radiation was discovered by Sir William Herschel in 1800 [46], and the first NIR spectrum was
obtained in 1881 by Abney and Festing in the range of 1000–1200 nm [47]. Nowadays, NIR spectroscopy
utilizes an EM wave in the range of 700–2500 nm [34,43,48,49], which covers several optical windows
where photons have less interactions with interfering tissue compounds, such as water, hemoglobin,
and lipids, so that the penetration depth can achieve several millimeters [32,50], where capillary
beds locate [51–53]. The absorption in this wavelength range corresponds to a combination, the first
overtone, the second overtone, or a higher-order overtone of a fundamental molecule’s stretching and
bending [43,54,55]. Glucose is a kind of monosaccharide with the molecular formula C6H12O6 in the
form of pyranose. It has several absorption peaks in the NIR region, which are listed in Table 1.
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Table 1. Absorption peaks of glucose in the NIR region and the corresponding functional groups.

No. Wavelength (nm) Functional Group

1 2273 Combination of O-H/C-O
stretching [55]

2 2261 νCH + νCCH [56]
3 1688 2νCH [56]
4 1638 First overtone [57]
5 1536 νOH + νCH [56]
6 1408 2νOH [56]
7 1126 3νCH [56]
8 1042 Combination of νCH [58,59]
9 1018 Combination of νCH [60]

10 939 3νOH [56]
11 930 3νCH2 [58]
12 910 4νCH [58,59]

The attenuated light simply due to the absorption of analytes after they pass through tissue is
governed by the Beer–Lambert Law, which is expressed as

I = I0 exp(−µal) (1)

where µa is the absorption coefficient and l is the effective optical path length. µa is proportional to
εC cm−1, where ε represents the molar extinction coefficient and C is the molar concentration of the
analyte [56,61,62]. µa may increase with an elevated glucose level due to its intrinsic absorption or
decrease due to a water displacement effect. The latter is less specific as changes of other components
can also result in the same effect [56].

The basic instrumentation of NIR spectroscopy consists of a light source, such as a tungsten
halogen lamp, and an IR detector. Then, the analog signal is filtered and amplified before being
digitized by an analog-to-digital converter (ADC). Given the complexity of interfering component
matrices, various signal-processing techniques are adopted to extract glucose-related information,
including principle component regression (PCR)-, partial least-square regression (PLSR)-, and artificial
neural network (ANN)-based analysis [63–67].

Uwadaira et al. identified the informative bands in the NIR region by 391 data sets from 34
participants’ 2-h carbohydrate tolerance tests [68]. Five tungsten halogen lamps at 1 W placed in a
circle were used as an illuminating source and the diffusely reflected light was collected by the guide
of a spectrometer. Patients’ hands were fixed by plaster molds. The detailed setup is shown in Figure 3.
Wavelengths were scanned from 700 to 1050 nm at a step size of 1 nm. They suggested some characteristic
bands (1018 nm, 1030 nm, and 1042 nm) for noninvasive glucose measurement, although the correct
assignment and relation to glucose are hard to explain. Xue et al. compared linear and nonlinear
regression methods by using PLS and ANN on living rats [69]. Besides this, different combinations of
pretreatment methods, including first derivative, second derivative, and vector normalization, were
also investigated. In their study, PLS achieved a better performance than ANN did with a lower
RMSE and a higher R. Yang and co-workers investigated the informative bands in shortwave and first
overtone regions [57] by a homemade NIR Fourier transform spectrometer. All-reflective optics with
an Offner relay lens were employed to reduce axial chromatic and magnification chromatic aberrations.
They reported that the characteristic peaks of glucose solution are 938 nm, 1040 nm, and 1295 nm
caused by glucose variations in the short waveband. They also found a prominent absorption peak at
1639 nm in the first overtone band. Transmission spectra from the middle fingers of seven volunteers
were obtained by performing an oral glucose tolerance test (OGTT), and characteristic peaks were only
observed in the shortwave band due to the low signal-to-noise ratio (SNR) in the first overtone band.
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Figure 3. (a) Setup details. (b) A plaster mold to restrain a patient’s hand. Reprinted with permission 
from [68]. 
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Despite the relatively good specificity or selectivity, penetration depth is severely limited due to 
the strong absorption of water and lipids [79]. Thus, MIR light can only pass through the first layer 
of skin—stratum corneum—with a thickness of 10–20 μm [80] and detect glucose of ISF found in the 
stratum spinosum layer [74,81]. It was proved that ISF in epidermis has a strong correlation with 
blood glucose in spite of several minutes’ delay [82–85]. Thanks to the recent development of 
Quantum Cascade lasers (QCLs) with high power, several groups have reported in vivo applications 
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QCL) and a hollow core fiber to deliver light to the human palm. Then, backscattered light was 
collected by a fiber bundle and a mercury cadmium telluride (MCT) detector. PLSR and second 
derivative spectroscopy were applied for prediction in three human subjects. All data points fell in 
Region A and B of the CEG, which shows that the maximum error in the prediction results was within 
20%. One-hour continuous measurement was also conducted, which showed the general trend of 
glucose variation successfully. Their group recently improved the system by adding an integrating 
sphere to enhance the collection efficiency of backscattered light [90]. Kino et al. adopted attenuated 
total reflection (ATR) spectroscopy and utilized the evanescent wave generated when total internal 

Figure 3. (a) Setup details. (b) A plaster mold to restrain a patient’s hand. Reprinted with permission
from [68].

NIR spectroscopy allows for deep tissue (>1 mm) measurement with high sensitivity.
The instrumentation is simple and relatively low-cost. However, glucose absorption peaks are broad in
this region and may overlap with other interferences, such as water and lipids. Besides this, temperature,
humidity, and other environmental factors may also affect the measurement results.

3.1.2. Mid-Infrared (MIR) Spectroscopy

Unlike NIR spectroscopy, MIR spectroscopy employs a longer wavelength that ranges from
2500 to 10,000 nm [70] where the well-known “fingerprint region” of glucose locates. The featured
absorption peaks in this region are sharper and provide better specificity than NIR spectroscopy does.
The maxima of glucose absorption in the MIR region are listed in Table 2.

Table 2. Absorption peaks of glucose in the MIR region and the corresponding functional groups.

No. Wavelength (nm) Functional Group

1 8000 C-H bending vibrations [70–73]
2 8244 [74]
3 8658 Pyranose ring [75,76]
4 8680 [77]
5 9290 C-H bending vibrations [70–74,77]
6 9551 C-H bending vibrations [70–73]
7 9680 ν(C–O–H) or ν(C–O–C) vibration [72–74,77,78]
8 9746 C–O–H bending vibration [70,72,73]

Despite the relatively good specificity or selectivity, penetration depth is severely limited due to
the strong absorption of water and lipids [79]. Thus, MIR light can only pass through the first layer
of skin—stratum corneum—with a thickness of 10–20 µm [80] and detect glucose of ISF found in the
stratum spinosum layer [74,81]. It was proved that ISF in epidermis has a strong correlation with blood
glucose in spite of several minutes’ delay [82–85]. Thanks to the recent development of Quantum
Cascade lasers (QCLs) with high power, several groups have reported in vivo applications of MIR
spectroscopy [76,86–90]. Liakat et al. proposed a system with an external cavity QCL (EC-QCL) and a
hollow core fiber to deliver light to the human palm. Then, backscattered light was collected by a fiber
bundle and a mercury cadmium telluride (MCT) detector. PLSR and second derivative spectroscopy
were applied for prediction in three human subjects. All data points fell in Region A and B of the CEG,
which shows that the maximum error in the prediction results was within 20%. One-hour continuous
measurement was also conducted, which showed the general trend of glucose variation successfully.
Their group recently improved the system by adding an integrating sphere to enhance the collection
efficiency of backscattered light [90]. Kino et al. adopted attenuated total reflection (ATR) spectroscopy
and utilized the evanescent wave generated when total internal reflection occurs to penetrate into the
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sample. The absorption of the evanescent wave by the sample can be measured by an MCT detector
to infer the glucose concentration. Their hollow optical-fiber-based spectroscopy system is equipped
with a trapezoidal ATR prism that allows for multiple reflections to enhance the sensitivity [76]. Inner
lip mucosa were selected as the measurement site owing to the relatively thin stratum corneum and
the lack of a keratinized layer, which makes the ISF accessible to the evanescent wave. They found that
an absorption peak at 1155 cm−1 was most relevant to glucose, and originated from its pyranose ring
structure. An in-vivo experiment was conducted. The R2 value of 0.75 was achieved, and the all of the
data points were in Region A of the CEG.

The selectivity of MIR spectroscopy is better than that of NIR spectroscopy as it covers glucose’s
“fingerprint region”. The major drawback of this method is that the penetration depth is limited to
several microns and only ISF can be reached. Besides this, the illuminating source, such as a QCL, is
bulky and expensive.

3.2. Photoacoustic Spectroscopy

The photoacoustic (PA) effect refers to a phenomenon where an object absorbs heat from light
and undergoes thermal expansion followed by the generation of an acoustic wave. Combining the
high contrast of an EM wave with the deep penetration of an acoustic wave in biological tissue, the PA
technique is able to achieve prominent performance in bio-sensing and bio-imaging applications.
Although, theoretically, any kind of EM wave can generate a PA signal, vis/IR lasers are the most
frequently reported due to the wide availability of sources, the convenience of manipulation, and
the rich functionality. Compared to IR spectroscopic methods for glucose detection, PA spectroscopy
collects acoustic waves, which are more immune to tissue scattering and directly related to the laser
energy deposited in skin, yielding deeper penetration and better sensitivity. Besides pure optical
properties, such as absorption, a PA signal also contains information about the mechanical or acoustic
properties of the tissue [91,92], which could be related to glucose concentration. The received PA signal
by an ultrasound transducer at position z can be expressed by a one-dimensional wave equation along
the z-direction [93] and solved by Green’s function [94] as follows:

p(z, t) =
βv2

2Cp
ηFµaδ(t− z

v
) (2)

where β is the thermal expansion coefficient, v is the sound velocity, Cp is the heat capacity at constant
pressure, η represents the optic-heat conversion efficiency, and F represents the laser fluence. µa

and v vary with glucose concentration, which can be utilized in prediction [95–97]. Similar to
optical spectroscopy, laser wavelengths ranging from NIR to MIR have been adopted in various
studies [74,98–101].

Sim et al. combined an MIR PA sensor with a raster scan to investigate the microscopic structure
of skin and reduce skin condition variation during measurement [100]. The system consists of an
external cavity QCL (950–1240 cm−1) as the illuminating source and a photoacoustic cell, whose
resonance frequency was designed to match the laser repetition rate. The PA signal was collected by a
microphone, amplified by a pre-amplifier, and then sent to a lock-in amplifier. The index finger was
in direct contact with the PA cell, and the resolution achieved was 90 µm. They suggested that the
dark area between the friction ridges of a finger was non-secreting and immune to sebum and sweat,
so better prediction results could be achieved there. The experimental setup and acquired images are
shown in Figure 4.
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Figure 4. (i) (a) A schematic of the position scanning photoacoustic (PA) microscopy system and
(b) system resolution evaluation by SU-8 (a kind of photoresist structure). (ii) PA images (a,b) and
corresponding micrographs (c,d) of two fingertip regions. Reprinted with permission from [100]. PC,
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Zhang and co-workers proposed to utilize both PA signal amplitude and time information to
enhance prediction accuracy by data fusion, without increasing apparatus and system complexity [101].
They employed an NIR laser at ~1600 nm, which is one of the broad glucose absorption peaks. Glucose
solutions at both high and low concentrations were tested, and the prediction accuracy was significantly
enhanced by data fusion compared to single-parameter-based prediction. The prediction results on a
glucose solution with a concentration in the physiological range (0–400 mg/dL) were evaluated by a
CEG and are shown in Figure 5. They also proposed a “guide-star”-assisted indirect method to enhance
the sensitivity by combining [102] the fundamental principle of transmission NIR spectroscopy with
that of PA spectroscopy. The modified expression of PA pressure generated by the “guide star” is

p(z, t) =
βv2

2Cp
ηµF0exp[−ε(λ)Cl]δ(t− z

v
) (3)

where l is the adjustable optical path length used to amplify the signal difference caused by glucose
variation. To verify the method, 1-mm- and 2-mm-thick quartz cuvettes were used. The latter showed
better sensitivity and accuracy as expected. This method provides an alternative solution to the
noninvasive PA measurement of glucose by detecting a transmitted signal passing through the target
tissue with a certain thickness (the optical path length).
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Photoacoustic technology detects a laser-induced pressure change by an acoustic transducer with
good sensitivity. The acoustic wave is less-scattered in tissue, resulting in a better penetration depth.
Nevertheless, the measurement is sensitive to ambient pressure, temperature, and humidity.

3.3. Fluorescence Spectroscopy

Fluorescence refers to a phenomenon in which substances emit light (usually at a longer
wavelength) when they absorb EM radiation. Fluorescence spectroscopy is useful in medical and
biochemical analysis of chemical groups. The excitation source usually falls in the ultraviolet (UV)
region with high photon energy. Fluorescence has the advantage of high sensitivity, which even allows
for single molecule detection [103]. In addition, the characteristic emission of a certain fluorophore also
guarantees high specificity. Fluorescent methods for glucose measurement can be based on intrinsic skin
fluorescence spectroscopy (SFS) or specially designed molecule reporters. For the design of extrinsic
fluorophores, several factors, including quantum yield, photostability, absorption, and wavelength,
have to be considered [104]. Both fluorescence intensity and lifetime can be evaluated to provide
sufficient information.

VeraLight, Inc. announced an SFS-based product, SCOUT DS, which has obtained market
approval in several countries. It aims to alert adults who are at risk of diabetes by identifying advanced
glycosylation end products (AGEs). Glucosense, developed by Prof. Jose’s group from the University of
Leeds, utilizes ion-doped silica glass, whose fluorescent lifetime depends on the glucose concentration.
They claimed that blood glucose can be measured by simply placing a finger on the glass. Tiangco and
co-workers fabricated a non-enzymatic fiber optic sensor based on a glucose binding protein (GBP),
aiming to detect a tiny amount of passively diffused glucose though the skin [105]. The system
consists of a fiber with a GBP at the tip, a mini-fluorimeter, and other electronics, including a driver,
lock-in photodetectors, and a controller as shown in Figure 6. The target was excited at 405 nm and
fluorescence at 540 nm was collected. An in-vitro experiment verified the linearity of the sensor from
4 to 20 µM with a sensitivity of 0.1296 µM−1. A phantom experiment was conducted with porcine
skin and a static Franz cell to demonstrate passive diffusion. Because of the thickness of 700 µm,
the measurement could only be realized when the glucose in the bottom reservoir is >8 mM.
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Su et al. designed a sensor based on glucose oxidation by indirectly sensing oxygen consumption [106]:

Glu cos e + O2 + H2O
GOX→ Gluconic Acid + H2O2.

Glucose oxidase was attached on an oxygen-sensing film, and the fluorescence intensity was
correlated with the glucose concentration. The used excitation wavelength was 380 nm, and a 650-nm
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emission was received. The sensing specificity and reversibility were well-proved by a seven-day
in-vitro test, suggesting its potential to be used as a tear glucose sensor.

Fluorescence-based methods have excellent sensitivity. However, the excitation source, which
falls in the UV region, suffers from strong scattering and it usually measures body fluids, such as tears
and sweat, which have relatively poor correlation with blood glucose.

3.4. Raman Spectroscopy

Raman spectroscopy relies on the inelastic scattering of photons, named after C.V. Raman [107],
to identify different molecules. There are two types of Raman scattering: stokes scattering, in which
incident photons transfer energy to molecules, resulting in scattered photons with lower energy;
and anti-Stokes scattering, which leads to increased photon energy when molecules transfer energy to
incident photons, as illustrated in Figure 7i. A Raman spectroscopy system consists of a coherent and
monochromatic light source, a grating to disperse the light, filters, and a photodetector to obtain Raman
spectra. Several advanced Raman techniques have been developed, such as surface-enhanced Raman
spectroscopy (SERS), resonance Raman spectroscopy (RRS), tip-enhanced Raman spectroscopy (TERS),
and their combinations. Glucose has characteristic scattering features in the range of 400–1500 cm−1 as
shown in Figure 7ii [108].
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Enejder and co-workers successfully demonstrated the first application of Raman spectroscopy
for noninvasive glucose monitoring [109] on 17 volunteers. Four hundred and sixty-one spectra were
collected and compared with a reference glucose level. A good correlation (R2 = 0.87) was obtained,
and the average prediction error was 7.7%. Zheng et al. developed a miniaturized wearable Raman
spectroscopy system [110]. The main body consists of a miniature Raman spectrometer, a 785-nm laser
diode as an illuminating source, lenses, a Czerny–Turner optical system, and a linear array charge
coupled device (CCD). The sensor probe was made of a wearable fiber with a thallium-doped grin lens
for interaction and collection. The signal peak area was evaluated with a nonlinearized PLS model
to predict the glucose level. Raman spectra were examined from 300 to 3000 cm−1. Ten volunteers
were tested, and the mean R2 value was found to be 0.844, suggesting the feasibility of this system for
clinical application.

Owing to the sharp and distinct peaks, Raman spectroscopy has excellent selectivity. However,
the long acquisition time makes it sensitive to laser intensity fluctuation, and the signal is weak.

3.5. Optical Coherence Tomography (OCT)

OCT is able to provide depth-resolved information on skin layers by detecting coherently
backscattered photons. It was developed by Huang et al. in 1991 [111]. The system usually consists of
a two-beam interferometer and a photodiode. An envelope of an interferometric signal can be used
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to reconstruct a cross-sectional, two-dimensional (2D) image and the light attenuation information
can be calculated thereafter. Noninvasive glucose measurement by OCT is based on the fact that
glucose variation in extracellular fluid (ECF) will induce a refractive index mismatch change between
ECF and cellular components. Thus, the scattering coefficient will change, which is reflected by the
backscattered signal strength. The effect of the refractive index mismatch induced by glucose is higher
than that of other body osmolytes [112].

Pretto and co-workers presented a method based on both spatial information on light’s total
attenuation coefficient and a temporal analysis of the speckle decorrelation time to predict glucose
level [113]. The former is due to a refractive index mismatch and the latter is because of a viscosity
change caused by glucose fluctuation. A mouse blood sample with a glucose concentration from
160 to 310 mg/dL at a step size of 50 mg/dL was tested. An increase in signal attenuation was
shown with increasing glucose concentration, which resulted from an osmotic shock of red blood cells
(RBCs) that only occurred in vitro. The data were well-fitted by a linear model with an R2 of 0.98.
Besides this, they also suggested that the decorrelation time of the Brownian motion is proportional to
viscosity. An autocorrelation analysis was performed, and the apparent linear trend between glucose
concentration and average decorrelation time was shown. Lan et al. applied OCT to diabetic patients
and showed that the monitoring results were better than those of healthy subjects [114] based on R
values (0.91 for diabetic patients and 0.78 for healthy volunteers).

OCT provides good resolution; however, it is similar to the scattering method for noninvasive
glucose sensing. The obtained value can be affected by the presence of other interfering components,
which results in poor selectivity.

3.6. Terahertz Spectroscopy

EM waves with frequencies ranging from 0.3 to 3 THz are named terahertz waves, which fall between
far-infrared and microwaves. They are sensitive to not only the molecule itself but also intra- and
inter-molecular rotational and vibrational transitions [115]. The excitation sources include, but are not
limited, to QCLs, Gunn and tunnel transit-time (TUNNETT) diodes, solid-state electronic devices, such
as uni-travelling-carrier photodiodes (UTC-PDs), and optical rectification. Photoconductive antenna,
Schottky barrier diodes (SBDs), and bolometers have been widely used as terahertz detectors [116].
Moreover, electro-optic (EO) techniques can be also employed with nonlinear crystal [117]. Terahertz
time-domain spectroscopy (THz-TDs) was developed for the characterization of chemical compounds
and medical imaging by non-ionizing radiation. Both amplitude and phase information can be
obtained in the time domain. Although many nonmetallic or nonpolar materials are transparent to
T-rays, the penetration depth is limited to hundreds of micron in biological tissues, due to the strong
water absorption [118,119]. Hence, transmission spectroscopy can be only applied to ex vivo sample
testing [120] and is not suitable for in-vivo applications. Similar to MIR spectroscopy, reflectance
spectroscopy is usually considered for ISF testing.

Cherkasova et al. adopted an ATR optical scheme with a silicon prism to obtain THz spectra of
human skin [121]. The T-wave was emitted by a femtosecond laser and a low temperature grown
gallium arsenide (LT-GaAs) surface, and the reflected wave was detected by a 1-mm-thick EO crystal.
A 0.1–2.5 THz frequency range was used. Six volunteers were measured for 90 min with OGTT.
They explained the dielectric permittivity change in the solution by a Debye model, which involves
the dielectric constant and the relaxation time. When water molecules are bound to glucose molecules,
the relaxation time of the bound water will change and affect the spectra shape. However, only
qualitative trends were observed and explained in the article. Chen and co-workers quantified blood
glucose level through ex-vivo experiments using THz-TDs [120]. A 0.2–0.9 THz wave was generated
by an indium arsenide (InAs) wafer and an 800-nm femtosecond laser. The system was arranged in
transmission mode. Twenty fresh blood samples from diabetic patients were measured and compared
with a glucose meter. A linear correlation was obtained and the relative error was less than 15%, which
verified the capability of THz-TDs to quantify glucose level.
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THz is sensitive to molecules and intra/inter-molecule transitions. Nevertheless, it requires a
dedicated excitation source and suffers from poor penetration depth, which means that a T-wave can
only reach ISF with a reflection setup.

3.7. Microwave Sensing

A microwave is an EM wave that ranges from 1 mm to 1 m, which corresponds to frequencies
between 300 GHz and 300 MHz. Microwaves can easily penetrate homogeneous tissue with a thickness
of millimeters, especially in a low-frequency range [122], which remains a challenge for most of the
optical-based methods. Besides this, the cost of microwave sensors is usually low and fabrication
is relatively easy. The reflection, transmission, and absorption of a millimeter wave are closely
related to the dielectric property or relative permittivity of skin [123,124], which varies with glucose
fluctuations [125–127]. The complex permittivity varies with frequency, and can be expressed by the
Cole–Cole equation [128]:

ε∗(ω) = ε∞ +
εs − ε∞

1 + (jωτ)1−α
(4)

where ε∞ and εs are dielectric constants at infinite and static frequencies, respectively, and τ is a
relaxation time constant. These three parameters are related to glucose concentration [129]. α is a value
between 0 and 1. Scattering or S parameters describing the two-port networks are usually investigated
to infer glucose change. In-vitro (with a tiny sensing volume (~nL)) as well as in-vivo applications
utilizing a microwave for glucose measurement have been studied recently [130–139], and we will
mainly focus on noninvasive detection here.

Xiao and Li proposed an ultra-wide band (UWB) microwave-based method using a pair of planar
antennas applied to an earlobe [133]. A tissue-mimicking phantom with fat, blood, and skin layers was
made to model the earlobe. A short-time Fourier Transform (STFT) was applied for the time-frequency
analysis. A glucose concentration from 0 to 400 mg/dL with a step size of 50 mg/dL was tested.
The regularity of forward gain S21 verified the sensor function at 6.5 GHz. Similarly, Saha and
co-workers presented microstrip antennas operating at 60 GHz and measured S21 to predict glucose
levels [137]. They demonstrated the sensor’s performance by in vitro and in vivo OGTT. The detection
limit for aqueous glucose solution was found to be 1.33 mmol/L (1 mmol/L = 18 mg/dL), which is far
below the physiological range. Apart from the amplitude of S-parameters, other characteristics of an
equivalent radio frequency (RF) circuit can also be utilized to reflect permittivity change due to glucose
fluctuation. Choi et al. designed a split-ring resonator that aimed to eliminate the temperature effect
for noninvasive and continuous glucose monitoring [137,139]. The ring nearest to the measurement
site is responsible for interacting with tissue, whereas the ring that is furthest away acts as a reference
resonator. The two rings are made of silver-coated copper wire and exhibit similar temperatures.
OGTT was carried out, and the 3-dB bandwidth changes in the resonance peaks were measured and
correlated with a reference glucose concentration. One hundred percent of data points fell within Zone
A and B of the CEG.

Microwave-based glucose sensors are low-cost and can be easily miniaturized. The penetration
depth is also appreciated, especially at a low-frequency range. However, it lacks selectivity as the
dielectric constant is strongly affected by other blood components as well.

4. Discussion and Conclusions

Researchers have not stopped pursuing the ultimate solution for noninvasive blood or ISF glucose
monitoring, driven by the tremendous academic and market values. EM-wave-based methods are
the most attractive ones owing to their wide spectral region and being information-rich. We listed
several representative techniques herein and the corresponding achievements to date. Although a
number of groups have demonstrated in-vitro and in-vivo applications, there is no well-recognized
method that has conquered the great difficulty so far. Global challenges include sensitivity, specificity,
system stability, and calibration. For example, IR and PA spectroscopy often rely on a powerful light
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source with a wide wavelength range as well as advanced calibration methods, such as PCR and
ANN, to achieve specificity. Moreover, the penetration depth is also limited due to the strong tissue
absorption in this region. Microwaves can reach deeper tissue, but there is no specific absorption for
glucose. In other words, they lack specificity. Raman spectroscopy possesses favorable specificity.
Nevertheless, its sensitivity is poor and it is sensitive to laser stability. Fluorescence-based methods
have prominent sensitivity and specificity; however, most of them require exogenous markers and
are not truly noninvasive or measure such body fluids as tears. To summarize, Table 3 that briefly
compares different EM-wave-based methods is presented below.

Table 3. Comparison of different EM-wave-based methods.

Technology Penetration Target Sensitivity Selectivity System Size Cost
NIR >1 mm ISF, blood High Good Portable Low

MIR Several µm ISF High Good, better than
NIR spectroscopy Large High

PA Better than IR
spectroscopy ISF, blood High Good Portable Low

Fluorescence <1 mm Tear, ISF,
blood High Excellent Portable Low

Raman <1 mm ISF, tears Low Excellent Portable Medium

OCT <1 mm ISF High Poor Portable Medium

THz ~100 µm ISF High Good Large High

Microwave >1 mm Blood, ISF High Poor Portable/wearableVery Low

ISF, interstitial fluid; OCT, Optical Coherence Tomography.

A quantitative performance comparison is listed in Table 4, where the parameters representing
each technology were extracted from the literature discussed in Section 3.

Table 4. Performance comparison of different technologies.

CEGTechnology Experiment Number of
Points A B C D

Sensitivity R2 MAE LOD

NIR [68] In vivo 2737 94.2% 5.7% 0% 0.1% - - 0.65 mM -

MIR [76] In vivo 14 100% 0% 0% 0% - - 0.67 mM -

PA [100] In vivo 76 70% 30% 0% 0% - - 1.03 mM -

Fluorescence [105] In vitro 8 - - - - 0.1296
µM−1 0.99 - 2 µM

Raman [110] In vivo 34 - - - - - 0.84 0.37 mM -

OCT [114] In vivo 81 - - - - 5.78%
mM−1 0.91 - -

THz [120] Ex vivo 20 - - - - - 0.97 0.25 mM -

Microwave [138] In vivo 89 - - - - 0.0235
dB*mM−1 - - 1.33

mM

MAE, mean absolute error; LOD, limit of detection.

For clinical application and device development, environmental factors, such as temperature,
humidity, pressure, and movement, have to be taken into account during measurement. Besides this,
effort should also be devoted to miniaturization and cost reduction of the instrumentation to convert
these technologies into commercial products, since portability and price are the major concerns of
end-users, which determine the potential market shares. Based on the above considerations, NIR
spectroscopy, PA spectroscopy, fluorescence, Raman spectroscopy, and microwave sensing have
great potential to be turned into affordable products and used in daily healthcare. There are several
tentative products employing the abovementioned technologies, such as Glucotrack, Glucosense,
Aprise, and SugarTrac. Despite that, researchers are continuing to explore unknown areas and
promising results have been reported. The requirements have yet to be met, and there is still a long
way to go for these novel approaches to replace the current finger-prick glucose meters.
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