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Background. Serum creatinine is suboptimal as a biomarker in the early diagnosis of contrast-induced nephropathy (CIN). In this
study, we investigated a panel of novel biomarkers in the early diagnosis of CIN and in assessing patient outcomes.Methods. 'is
single-centre, nested, prospective case-controlled study included 30 patients with CIN and 60 matched controls. Serum and urine
samples were collected before contrast administration and at 24 hours, 48 hours, and ≥5 days after contrast administration.
Concentrations of NGAL, cystatin C, β2M, IL18, IL10, KIM1, and TNFα were determined using Luminex and ELISA assays.
Outcomes were biomarker diagnostic discrimination performance for CIN and mortality after generation of area under receiver
operating characteristic curves (AUROCs). Results. Median serum levels for 24 h cystatin C (p< 0.01) and 48 h β2M levels
(p< 0.001) and baseline urine NGAL (p � 0.02) were higher in CIN patients compared to controls with AUROCs of 0.75, 0.78,
and 0.74, respectively, for the early diagnosis of CIN. Serum β2M levels were higher in CIN patients at all time points. Elevated
baseline serum concentrations of IL18 (p< 0.001), β2M (p � 0.04), TNFα (p< 0.001), and baseline urine KIM (p � 0.01) and 24 h
urine NGAL (p � 0.02) were significantly associated with mortality. Baseline serum concentrations of IL18, β2M, and TNFα
showed the best discrimination performance for mortality with AUROCs, all >0.80. Baseline NGAL was superior for excluding
patients at risk for CIN, with positive and negative predictive ranges of 0.50–0.55 and 0.81–0.88, respectively. Cystatin C
(p � 0.003) and β2M (p � 0.03) at 24 h independently predicted CIN risk. β2M predicted increased mortality of 40% at baseline
and 50% at 24 hours. Conclusion. Serum cystatin C at 24 h was the best biomarker for CIN diagnosis, while baseline levels of serum
IL18, β2M, and TNFα were best for predicting prognosis.

1. Introduction

Despite increased morbidity and mortality linked with io-
dinated contrast media-induced nephropathy (CIN) [1–4],
early interventions are delayed due to the suboptimal sen-
sitivity and specificity of serum creatinine in the early di-
agnosis of CIN [5–12]. Early diagnostic criteria should
identify almost 80% of subclinical kidney injury caused by
contrast media within 24 hours [5].

Previous studies have demonstrated that neutrophil
gelatinase lipocalin-2 (NGAL), cystatin C, interleukin 18
(IL18), kidney injury molecule 1 (KIM1), and beta-2
microglobulin (β2M) are more sensitive early biomarkers of

acute kidney injury (AKI) compared with serum creatinine
[10, 12–17] and are better at predicting adverse clinical
outcomes [18–20]. Biomarkers are needed for early iden-
tification of subclinical AKI, characterised by small increases
in levels of serum creatinine [21], as previous studies have
shown that even a small increase in serum creatinine (ex-
ceeding 44.3 μmol/l) was linked with a 7-fold increased risk
of mortality [10, 22].

Cystatin C and β2M, with molecular weights of 13 kDa
and 11.8 kDa, respectively, are nonglycosylated molecules
that are increased in the circulation due to impaired glo-
merular filtration [17, 23, 24]. Cystatin C, produced by all
nucleated cells, functions as an intracellular inhibitor of
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cysteine peptidase [25, 26], and β2M is found on major
histocompatibility complex class-1 nucleated cells [27].
NGAL, a 25 kDa glycoprotein, is upregulated within 2–4
hours of patients undergoing radio contrast administration
[5, 7, 15, 28]. Inflammatory cytokines (including IL18,
TNFα, and IL10) are upregulated in renal injury or damage
[29, 30] and released into plasma and urine [17, 21], making
them good biomarker candidates. Limited studies have
explored their roles in AKI, particularly CIN.

Previous studies on novel biomarkers focused on ho-
mogeneous populations characterised by nonheterogeneous
AKI insults (surgery and nonmixed intensive care units), but
few were based on radiocontrast studies. Our study inves-
tigated the diagnostic potential of NGAL, IL18, cystatin C,
β2M, IL10, KIM1, and TNFα in predicting risk for CIN and
their role in predicting patient outcomes.

2. Materials and Methods

2.1. Study Design, Setting, and Population. 'is nested case-
controlled study was performed on a subset of patients
undergoing contrast media administration at Charlotte
Maxeke Johannesburg Academic Hospital, South Africa,
from July 2014 to July 2015, who were followed up for
development of CIN in a cohort of 371 patients [31]. CIN
was defined according to the European Society of Urogenital
Radiology (ESUR) as reported previously [32]. 'irty pa-
tients with CIN (with available four time-point sera and
urine measurements) and 60 matched controls (who did not
develop contrast-induced kidney injury) were recruited
consecutively. Inclusion criteria for the study were patients
aged above 18 undergoing contrast media administration in
the Divisions of Radiology and Cardiology. Patients below
18 years, with pre-existing AKI, end-stage renal disease
(ESRD) on renal replacement therapy, prior contrast media
administration in the preceding 7 days, and pregnancy were
excluded. Controls were matched for race, gender, and age at
a case : control ratio of 1 : 2 for all time intervals. 'e Human
Research Ethics Committee (HREC) of the University of the
Witwatersrand approved the study, and written informed
consent was obtained from all patients.

2.2. StudyProcedures. Whole blood and urine were collected
at four time points: baseline (precontrast) and 24 hours, 48
hours, and 5 to 7 days after contrast administration. Blood
and urine samples were centrifuged at 5000 rpm at 4°C for 10
and 2 minutes, respectively (U-32012 Centrifuge, Boeco,
Germany), and the sera and urine were stored at − 80°C until
assayed. Concentrations of IL10, IL18, TNFα, NGAL, KIM1,
and cystatin C were determined using Magnetic Luminex®Screening Assays (#LXSAHM-3, R&D Systems, Inc., Min-
neapolis, USA) in accordance with the manufacturer’s in-
structions on the BioPlex™ 200 system (Bio-Rad, Texas,
USA). 'e Bio-Plex manager software, version 5, was used
for the determination of concentrations. Serum concen-
trations of β2M were determined by an enzyme-linked
immunosorbent assay (ELISA) (R&D Systems, Inc.). Serum
creatinine was determined using the Jaffe method.

2.3. Study Outcomes. 'e study outcomes were discrimina-
tion performance of the novel biomarkers for CIN at different
time intervals and in-hospital CIN-associated mortality.

2.4. Statistical Analysis. Data analyses were performed with
Stata version 13 software (STATA, Inc., Texas). Biomarker
characteristics were described as medians and interquartile
ranges (IQRs) as values were not normally distributed.
Urinary KIM1 levels were below detectable limits in 29% of
samples analysed. For these samples, a proxy level of
12.2 pg/ml (the lower level of detection (17.3 pg/ml) di-
vided by the square root of 2) was used. Comparisons of
biomarkers with CIN and mortality were determined using
the Wilcoxon–Mann–Whitney test. To determine dis-
crimination performance of biomarkers for CIN vs. non-
CIN and mortality (overall and CIN +mortality), area
under receiver operating characteristic curves (AUROCs)
were constructed. Sensitivity and specificity were
calculated for each point on the curve, and the optimal
cutoff point was determined by finding the point
with the maximum Youden index (Youden
index � sensitivity + specificity − 1). Positive predictive
values (PPVs) were calculated for the optimal cutoff point
using the following formula: PPV � (number of true
positives)/(number of true positives + number of false
positives). Similarly, the negative predictive values (NPVs)
were calculated for the optimal cutoff point using the
following formula: NPV � (number of true negatives)/
(number of true negatives + number of false negatives).
Multivariable regression analysis of biomarkers, adjusted
for age and gender, were performed to determine pre-
dictors of CIN and mortality. p values of <0.05 were re-
quired for statistical significance.

3. Results

3.1. Biomarker Characteristics in CIN Patients. 'is nested
study included 30 CIN participants matched with 60 con-
trols with a median age of 50 years (36–61). Participants’
demographic characteristics are presented in Table 1. 'ere
were no statistical differences in baseline serum creatinine
and estimated glomerular filtration rates between the CIN+
and CIN− groups. Of the 7 CIN mortalities (Table 1), 4
(57%) had underlying malignancy, 2 (28%) liver disease, and
1 (14%) sepsis. Table 2 shows serum and urine biomarker
measurements at various time points. Compared to controls,
the CIN patients showed increased levels of serum β2M at all
time points and baseline urine NGAL concentrations.
Median serum cystatin C was also significantly increased at
24 and 48 h time points in the CIN group.

3.2. Diagnostic Accuracy of Biomarkers in Predicting CIN.
'e ROCs for various biomarkers were generated for the
determination of early CIN diagnosis (Figures 1 and 2).
Serum cystatin C at 24 hours and β2M at 48 hours and
baseline urine NGAL showed the best early discrimination
performance for CIN diagnosis with AUROCs of 0.75, 0.78,
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and 0.74, respectively. Optimal cutoff values for biomarkers
in predicting the development of CIN are shown in Table 3.

Baseline serum levels of NGAL and β2M showed su-
periority in excluding patients at risk of developing CIN
(NPVs> 0.80). Cystatin C at baseline and at 24 hours
showed the best predictive values for CIN. Multivariate
analysis showed that, after adjusting for age and gender,
levels of cystatin C and β2M at 24 hours showed significant
odds ratio (OR� 1.00 (p � 0.003) andOR� 1.26 (p � 0.029),
respectively) for predicting CIN development.

3.3. Diagnostic Accuracy of Biomarkers in Predicting
Mortality. Table 4 shows urine and serum biomarker
measurements in the patients who survived and in those who
died. Baseline serum concentrations of IL18 (p< 0.001), β2M
(p � 0.04), TNFα (p< 0.001), and baseline urine KIM1
(p � 0.01) were elevated in the group who died. Twenty-
four-hour urine NGAL (p � 0.02) was also significantly
increased in this group. Baseline and postcreatinine mea-
surements were not statistically different between the sur-
viving and nonsurviving groups. ROCs for biomarker
discrimination performance for CIN mortality are shown in
Figures 3 and 4 for serum and urine biomarkers, respec-
tively. Baseline serum concentrations of TNFα, IL18, and
β2M showed best discrimination for CIN mortality with
AUROCs of 0.94, 0.83, and 0.82, respectively. Multivariable
regression analysis showed baseline and 24-hour β2M to
have significant odds of predicting mortality (OR� 1.41

(p � 0.01) and OR� 1.51 (p � 0.003), respectively) after
adjusting for other confounders.

4. Discussion

'is prospective nested case-controlled study confirmed that
increased levels of novel biomarkers demonstrated early
diagnostic potential for CIN and better negative predictive
values for excluding patients at risk of developing CIN.
Additionally, increased levels of these biomarkers predicted
poor patient outcomes. To our knowledge, it is the first case-
controlled study assessing a panel of biomarkers in pre-
diction and prognosis of CIN.

Our study showed that cystatin C at 24 hours after
contrast administration showed the best discrimination for
CIN and is consistent with previous observational and meta-
analysis studies [33–35]. In a recent study of patients un-
dergoing cardiopulmonary bypass surgery with cystatin C
measured at 2, 4, 24, and 72 hours after surgery, serum
cystatin C levels peaked significantly at 24 hours in the acute
kidney injury (AKI) group compared to controls [14]. In this
study, cystatin C AUROC at 24-hour discriminating per-
formance for the presence of AKI after surgery in patients
with normal baseline renal function was 0.75 [14], a finding
very similar to our study.

In another study limited to chronic kidney disease
(CKD) patients undergoing angiography, Briguori et al.
observed nonsignificant differences between levels of cys-
tatin C in the CIN group compared to controls at baseline

Table 1: Participants’ demographic and clinical characteristics.

Characteristic CIN+ (30) CIN− (60) p value
Age (years), median 56.5 (41–62.5) 47 (34.5–60.5) 0.19
Gender
Male, n (%) 17 (34.6) 32 (65.3) 0.82
Female, n (%) 13 (31.7) 28 (682)

Hypertension, n (%) Yes 9 (47.3) 10 (52.6) 0.18No 21 (29.5) 50 (70.4)

Diabetes mellitus, n (%) Yes 4 (33.3) 8 (66.7) 0.62No 26 (33.3) 52 (66.7)

Cancer, n (%) Yes 11 (30.5) 25 (69.4) 0.82No 19 (35.1) 35 (64.8)

HIV positive, n (%) Yes 6 (27.3) 16 (72.7) 0.41No 24 (35.3) 44 (64.7)
Baseline urea (mmol/L), median 4.9 (3.9–7.7) 4.1 (3.3–6.2) 0.19
Baseline creatinine (μmol/L), median 69 (53–96) 67 (52–84.5) 0.69
Baseline eGFR (ml/min/1.73m2), median 107 (72–133) 113 (88–136) 0.47

Baseline eGFR <60ml/min/1.73m2, n (%) Yes 2 (50.0) 2 (50.0) 0.59No 28 (32.5) 58 (67.4)
Postcreatinine (μmol/L), median 104 (85–156) 63.5 (46.5–76.5) <0.001
Serum albumin (g/dL), mean 33.6 (SD 7.6) 36.6 (SD 7.0) 0.07
Haemoglobin (g/dL), mean 11 (SD 2.9) 12.1 (SD 2.4) 0.06
Diastolic blood pressure (mmHg), median 72 (66–84) 73 (67–83) 0.76
Systolic blood pressure (mmHg), mean 116.3 (SD 15.9) 119.7 (SD 14.4) 0.37

Type of procedure, n (%) IV 26 (33.1) 51 (66.2) 0.53Arterial 4 (30.7) 9 (69.2)
Duration (days), median 16.5 (10–23) 12 (9–21) 0.42

Mortality, n (%) Yes 7 (46.7) 8 (53.3) 0.24No 23 (30.7) 52 (69.3)
HIV, human immunodeficiency virus; eGFR, estimated glomerular filtration rate; CIN, contrast-induced nephropathy; SD, standard deviation.
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[35]. However, 24 hours after contrast media administration,
cystatin C was significantly higher in the CIN cases [35].
'eir AUROC at 24 hours was ≥0.92, which was higher than
in our study [35]. 'eir study cohort comprised patients
with CKD [35], whereas in our study almost 100% of pa-
tients had normal baseline renal function. Other studies have
shown high AUROCs in CKD patients compared to patients
with normal renal function [14].

In a meta-analysis that included 19 studies, Zhang et al.
reported that 24-hour cystatin C measurements had the
best discrimination for AKI in patients with homogeneous
insults to the kidney, and measurements after 24 hours
were better in patients with nonhomogeneous insults to the
kidney [33]. 'is meta-analysis revealed that the best
AUROCs for AKI were 0.81 at 12 hours after cardiac
surgery and 0.92 at 24 hours after contrast media admin-
istration [33]. However, this meta-analysis mainly com-
prised studies of patients with homogeneous insults to the
kidney and only included one study on CIN in CKD pa-
tients [33].

'ere are several reasons why serum cystatin C dem-
onstrates best discrimination for detecting early AKI, in-
cluding CIN. Cystatin C is a filtration biomarker whose
serum or plasma concentration correlates linearly with the
glomerular filtration rate and therefore is better at detecting
subclinical renal function [21]. Cystatin C belongs to the
cystatin family and is a small molecule of 13 kDa that inhibits
intracellular cystatin peptidases [36] and whose secretion
into the circulation is unaffected by muscle mass and volume
compared to serum creatinine [34, 36].

In our study cohort, increased levels of β2M demon-
strated prediction for early diagnosis of CIN and were as-
sociated with increased mortality. Several studies on β2M
have focused on populations with underlying CKD [13]. In a
study limited to a paediatric population, El-Frargy et al.
found significantly increased levels of baseline β2M in AKI
patients compared to controls; however, the levels of serum
creatinine remained unchanged [37, 38]. After 72 hours,
β2M demonstrated superiority in detection of AKI with
sensitivity and specificity of 98% and 80% vs. 46% and 53%

Table 2: Biomarker characteristics in CIN+ and CIN− participants at various time points.

Variable CIN+ (n� 30) CIN− (n� 60) p value
sNGAL_p (ng/ml) 100.31 (64.28–142.01) 74.33 (43.97–127.99) 0.34
sNGAL_24 (ng/ml) 99.61 (72.26–135.98) 78.42 (51.12–107.00) 0.07
sNGAL_48 (ng/ml) 83.81 (57.90–109.05) 60.91 (37.36–100.71) 0.13
sNGAL_5 (ng/ml) 96.20 (74.48–156.66) 65.77 (51.94–72.44) 0.06
uNGAL_p (ng/ml) 88.4 (39.3–366.2) 34.1 (17.2–62.2) 0.02
uNGAL_24 (ng/ml) 40.1 (33.1–96.9) 46.5 (28.5–100.6) 0.72
uNGAL_48 (ng/ml) 39.4 (22.1–100.9) 49.5 (14.2–98.3) 0.96
sCystatin C_ p (ng/ml) 711.45 (550.08–934.10) 687.41 (566.61–769.76) 0.25
sCystatin C_24 (ng/ml) 856.59 (620.75–1002.96) 617.42 (533.11–805.20) <0.01
sCystatin C_48 (ng/ml) 764.32 (560.28–1010.71) 572.13 (461.67–708.11) 0.01
sCystatin C_5 (ng/ml) 811.52 (708.54–986.12) 596.14 (534.56–684.38) 0.01
uCystatin C_p (ng/ml) 53.7 (32.0–412.1) 49.4 (13.6–170.0) 0.38
uCystatin C_24 (ng/ml) 107.8 (64.3–157.7) 95.9 (27.0–193.9) 0.82
uCystatin C_48 (ng/ml) 47.8 (16.6–166.8) 43.5 (17.7–132.5) 0.87
sIL18_p (pg/ml) 170.41 (105.19–327.4) 123.73 (65.87–178.2) 0.13
sIL18_24 (pg/ml) 152.32 (92.905–279.62) 122.36 (82.45–256.6) 0.40
sIL18_48 (pg/ml) 137.62 (100.965–285.14) 95.75 (73–165.59) 0.06
sIL18_5 (pg/ml) 133.385 (122.36–395.75) 131.93 (70.82–294.91) 0.64
uIL18_p (pg/ml) 102.8 (55.3–185.6) 76.8 (33.2–189.0) 0.38
uIL18_24 (pg/ml) 145.1 (22.6–326.2) 131.0 (50.7–262.4) 0.97
uIL18_48 (pg/ml) 125.1 (50.2–348.7) 124.6 (57.0–372.6) 0.92
sβ2M_p (μg/ml) 4.4 (3.8–7.8) 3.8 (3.2–4.9) 0.04
sβ2M_24 (μg/ml) 4.55 (3.9–7.55) 3.7 (2.9–4.8) 0.01
sβ2M_48 (μg/ml) 5.1 (3.8–6.9) 3.3 (2.7–4.5) <0.001
sβ2M_5 (μg/ml) 12.1 (4.4–16.4) 3.7 (3.1–4.9) 0.01
sTNFα_p (pg/ml) 4.87 (4.15–9.12) 4.6 (2.65–5.95) 0.12
sTNFα_24 (pg/ml) 5.3 (4.15–6.7) 5.23 (3.43–7.39) 0.94
sTNFα_48 (pg/ml) 5.9 (4.6–6.7) 4.29 (2.6–7.04) 0.06
sTNFα_5 (pg/ml) 4.3 (3.43–5.23) 6.315 (4.26–8.26) 0.22
sIL10_p (pg/ml) 4.94 (4.5–11.3) 4.1 (2.59–5.4) 0.19
sIL10_24 (pg/ml) 4 (3.4–5.5) 3.9 (2.6–5) 0.45
sIL10_48 (pg/ml) 4.6 (3.7–9.2) 3.4 (2–4.5) 0.10
sIL10_5 (pg/ml) 9.5 (9.5–9.5) 4.2 (3.24–19.4) 0.51
uKIM_p (pg/ml) 108.1 (39.9–1593.2) 39.9 (12.2–274.6) 0.21
uKIM_24 (pg/ml) 144.0 (39.9–1343.0) 91.6 (12.2–196.8) 0.26
uKIM_48 (pg/ml) 160.2 (45.8–303.5) 91.6 (12.2–274.5) 0.34
CIN− , CIN absent; CIN+, CIN present; sNGAL and uNGAL, serum and urine neutrophil gelatinase-associated lipocalin; sIL18 and uIL18, serum urine
interleukin 18; sβ2M, serum beta 2 microglobulin; sTNFα, serum tumour necrosis factor alpha; uKIM1, urine kidney injury molecule 1 at various time points.

4 International Journal of Nephrology



for serum creatinine [37]. In another paediatric study,
Herrero-Moŕın et al. also demonstrated higher levels of β2M
in the AKI group compared to controls despite insignificant
changes in levels of serum creatinine [38]. β2M was also
superior in early detection of AKI with an AUROC of 0.80
vs. 0.63 for serum creatinine [38]. 'is study defined renal
disease as glomerular filtration rate (eGFR) <80ml/min per
1.73m2 [38].

Increased serum β2M levels were associated with increased
mortality in our study. In previous reports among CKD
patients who died, increased β2M was an independent pre-
dictor of mortality [39, 40]. Two reasons could explain the
association between increased levels of β2M and mortality in
our study cohort. Firstly, the predominant underlying
comorbidity of our cohort was malignancy as found in pre-
vious studies; malignancy, together with microinflammation,

was associated with increased secretion of β2M [40]. Secondly,
in the presence of renal disease including CIN, the impact of
high β2M levels is heightened [40]. Other possible reasons
include that β2M is a filtration biomarker produced by nu-
cleated cells [13], which undergoes almost complete meta-
bolism in the kidney. It is completely absorbed by megalin-
mediated endocytosis [13, 27] and is also least affected by extra
renal factors [27].

In our study, NGAL was a good predictor for patients at
low risk for the development of CIN. 'is finding is sup-
ported by two recent studies limited to CIN: one conducted
in Italy among patients with underlying renal disease who
underwent angiography [41] and another in Iran conducted
in patients with normal renal function [42]. In the Italian
study, Quintaville et al. reported NGAL PPV and NPV of
20% and 93%, respectively [41], thus demonstrating the
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Figure 1: Receiver operating characteristic curves for serum biomarker discrimination performance for CIN at precontrast baseline, 24
hours after contrast administration, 48 hours after contrast administration, and 5 days after contrast administration.
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superiority of NGAL in excluding patients at risk for CIN
and suboptimal accuracy for diagnosing CIN. In patients
with normal renal function undergoing angiography,
Khatami et al. reported NGAL positive and negative pre-
dictive values of 9.4% and 97.1%, respectively, with sub-
optimal areas under the receiver operating characteristic
curves [42]. Several studies correlating NGAL with the di-
agnosis of AKI were limited to patients with homogeneous
insults to the kidney such as surgical patients [43, 44]. In
these studies, early NGAL discrimination for AKI was

observed within 2–4 hours after an insult [14, 44]. In a non-
CKD population, Schley et al. recently reported a high
AUROC of 0.85 in the non-CKD group 4 hours after surgery
[14]. However, in patients with CIN, the efficacy of NGAL in
discriminating diagnostic performance was conflicting. A
recent meta-analysis of 10 studies, limited to NGAL dis-
criminating for CIN, showed variable AUROC [7]. In this
meta-analysis, 4 studies looked at patients with CKD [7].

In an additional study, patients undergoing contrast
administration were characterised by various heterogeneous
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Figure 2: Receiver operating characteristic (ROC) curves demonstrating the ability of urine biomarkers to predict CIN at baseline
(precontrast) and 24 hours and 48 hours after radiocontrast administration.

Table 3: Optimal cutoff values for biomarkers in predicting CIN.

Cutoff point Sensitivity Specificity PPV NPV
sNGAL_p (ng/ml) 63.15 0.84 0.45 0.50 0.81
sNGAL_24 (ng/ml) 80.81 0.74 0.52 0.47 0.78
sNGAL_48 (ng/ml) 72.95 0.70 0.62 0.50 0.79
sCystatin C_p (ng/ml) 893.43 0.37 0.96 0.88 0.70
sCystatin C_24 (ng/ml) 856.59 0.52 0.90 0.75 0.77
sCystatin C_48 (ng/ml) 764.32 0.52 0.86 0.67 0.78
Sβ2M_p (μg/ml) 3.6 0.88 0.45 0.48 0.87
Sβ2M_24 (μg/ml) 4.3 0.71 0.61 0.51 0.78
Sβ2M_48 (μg/ml) 5.1 0.57 0.88 0.72 0.80
IL18_p (pg/ml) 182.0 0.48 0.80 0.60 0.71
IL18_24 (pg/ml) 161.2 0.50 0.67 0.48 0.68
IL18_48 (pg/ml) 116.6 0.75 0.60 0.50 0.81
sNGAL and uNGAL, serum and urine neutrophil gelatinase-associated lipocalin; sIL18 and uIL18, serum and urine interleukin 18; sβ2M, serum beta 2
microglobulin.
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insults to the kidney [45] compared to cardiac surgery alone,
and additionally, the underlying comorbidities influenced
NGAL production. 'e low diagnostic accuracy for NGAL
in CIN could be due to the presence of underlying het-
erogeneity in kidney function at baseline in these patients
and the influence of various other comorbidities [41].

In our study, serum IL18 and TNFα together with urine
KIM1 demonstrated prognostic significance with mortality
in CIN+ patients, despite the poor diagnostic discrimination
performance for CIN. In a recent meta-analysis correlating
urine IL18 with AKI, the diagnostic discrimination per-
formance of IL18 was modest with an AUROC of 0.66 in
adults [46] and was lower compared to other serum bio-
markers. Increased IL18 levels are associated with acute
tubular necrosis, urinary tract infections, and prerenal
failure and therefore may not purely reflect an injury to the

kidney [46]. In a previous study, an increase from 25 to
500 pg/ml in urine IL18 at baseline predicted up to 5-fold
increased mortality risk [16]. Increased levels of serum IL18
are linked with dysfunction of cardiac myocytes, vascular
injury, and apoptosis [47]. In a prospective USA study of
hospitalised patients, Liangos et al. reported increased
mortality with increasing urine KIM1 levels [48]. KIM1 is a
membrane glycoprotein that is expressed by renal tubules
and reflects ischaemic and prolonged severe renal injury.
Despite its prognostic role, some previous studies have
reported urine KIM1 as a suboptimal marker for CIN [49],
similar to our study findings. Similar to previous studies
[16, 50], our study showed increased levels of serum IL18 in
the nonsurviving group.

'e strength of this study is that it was a prospective
case-controlled study that evaluated serum and urine

Table 4: Biomarker characteristics in surviving and nonsurviving participants.

Variable Death (n� 15) Survivors (n� 75) p value
sNGAL_p (ng/ml) 78.2 (37.0–105.1) 79.4 (57.2–131.5) 0.37
sNGAL_24 (ng/ml) 71.4 (32.8–108.8) 82.7 (58.3–119.3) 0.24
sNGAL_48 (ng/ml) 88.9 (51.3–115.8) 67.3 (41.0–100.7) 0.46
sNGAL_5 (ng/ml) 116.4 (74.4–143.8) 66.1 (43.5–96.2) 0.09
uNGAL_p (ng/ml) 62.9 (19.3–205.8) 36.1 (14.7–68.5) 0.17
uNGAL_24 (ng/ml) 104.7 (85.1–439.1) 36.7 (28.1–72.5) 0.01
uNGAL_48 (ng/ml) 87.6 (38.2–106.7) 44.5 (14.7–96.7) 0.48
sCystatin C_p (ng/ml) 767.38 (633.0–893.4) 670.40 (548.5–789.5) 0.20
sCystatin C_24 (ng/ml) 723.7 (358.9–811.3) 694.3 (569.1–870.3) 0.34
sCystatin C_48 (ng/ml) 764.3 (240.0–843.3) 603.76 (505.55–760.62) 0.45
sCystatin C_5 (ng/ml) 740.4 (706.2–816.6) 668.1 (550.3–724.6) 0.15
uCystatin C_p (ng/ml) 96.7 (19.0–172.5) 44.9 (13.9–186.5) 0.51
uCystatin C_24 (ng/ml) 163.1 (136.5–238.3) 91.4 (28.1–160.3) 0.10
uCystatin C_48 (ng/ml) 92.1 (44.7–901.5) 40.6 (17.1–134.8) 0.19
sIL18_p (pg/ml) 301.5 (211.1–461.3) 109.0 (64.5–165.5) <0.001
sIL18_24 (pg/ml) 203.3 (118.8–409.9) 125.2 (77.4–224.1) 0.09
sIL18_48 (pg/ml) 181.67 (86.40–331.40) 110.2 (77.0–156.9) 0.19
sIL18_5 (pg/ml) 356.5 (294.9–395.8) 122.3 (65.0–133.9) <0.01
uIL18_p (pg/ml) 106.4 (57.7–668.4) 73.5 (33.2–182.2) 0.19
uIL18_24 (pg/ml) 220.9 (49.6–421.2) 131.3 (50.4–256.3) 0.33
uIL18_48 (pg/ml) 163.4 (110.6–638.0) 114.0 (38.1–343.4) 0.06
sβ2M_p (μg/ml) 7.8 (3.7–9.7) 4.0 (3.2–5.4) 0.04
sβ2M_24 (μg/ml) 4.6 (3.8–7.4) 4.1 (3.3–5.2) 0.21
sβ2M_48 (μg/ml) 4.6 (3.0–6.7) 3.7 (2.8–5.0) 0.09
sβ2M_5 (μg/ml) 8.0 (5.5–16.4) 4.1 (3.1–5.0) 0.03
sTNFα_p (pg/ml) 8.2 (6.0–79.6) 4.2 (2.6–5.3) <0.001
sTNFα_24 (pg/ml) 7.40 (5.45–14.69) 4.8 (3.2–5.6) <0.001
sTNFα_48 (pg/ml) 6.31 (3.08–11.37) 4.5 (2.7–6.7) 0.11
sTNFα_5 (pg/ml) 8.9 (4.8–10.8) 4.6 (2.7–7.0) 0.02
sIL10_p (pg/ml) 4.9 (3.6–17.8) 4.5 (3.0–5.5) 0.47
sIL10_24 (pg/ml) 15.2 (4.2–33.4) 3.9 (2.9–5.0) 0.08
sIL10_48 (pg/ml) 3.9 (3.0–14.8) 3.6 (2.5–5.0) 0.43
sIL10_5 (pg/ml) 11.3 (3.2–19.4) 4.6 (3.9–9.5) 1.00
uKIM1_p (p/ml) 331.9 (131.6–1476.5) 39.9 (12.2–102.9) 0.01
uKIM1_24 (pg/ml) 712.7 (91.6–1343.0) 91.6 (12.2–183.6) 0.07
uKIM1_48 (pg/ml) 1261.9 (579.1–1605.3) 78.6 (12.2–205.1) 0.01
Base creatinine (μmol/l) 72 (44–96) 68 (55–85) 0.93
Post creatinine (μmol/l) 93 (45–126) 69 (54–91) 0.52
CIN− , CIN absent; CIN+, CIN present; sNGAL and uNGAL, serum and urine neutrophil gelatinase-associated lipocalin; sIL18 and uIL18, serum and urine
interleukin 18; sβ2M, serum beta 2 microglobulin; sTNFα, serum tumour necrosis factor alpha; sCystatin C and uCystatin C, serum and urine cystatin C;
uKIM1, urine kidney injury molecule 1; p, precontrast baseline; 24, 24 hours after contrast administration; 48, 48 hours after contrast administration; 5, 5 days
after contrast administration.
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Figure 3: Continued.
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Figure 3: Receiver operating characteristic (ROC) curves demonstrating the ability of serum biomarkers to predict mortality in patients
who developed CIN (CIN+; solid line) and those who did not (CIN− ; dashed line). Curves are shown for baseline (precontrast) and 24 hours
and 48 hours after radiocontrast administration. AUCs for both the CIN+ and CIN− curves are indicated.
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Figure 4: Receiver operating characteristic (ROC) curves demonstrating the ability of urine biomarkers to predict mortality in patients who
developed CIN (CIN+; solid line) and those who did not (CIN− ; dashed line). Curves are shown for baseline (precontrast) and 24 hours after
radiocontrast administration. AUCs for both the CIN+ and CIN− curves are indicated.
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biomarkers and also compared several biomarkers in dis-
criminating CIN diagnosis and patient outcomes. Addi-
tionally, our study population was heterogeneous unlike
previous homogeneous studies.

'e limitation of our study is that it was conducted at a
single-centre tertiary hospital. An additional limitation was
the inability to perform measurements within 2–6 hours
after contrast administration which remained a challenge in
our study cohort, and few patients in our study had intra-
arterial contrast media administration unlike previous
studies.

In conclusion, novel biomarkers have better diagnostic
discrimination for CIN and prediction of outcomes in pa-
tients with heterogeneous insults to the kidney. Serum
cystatin C at 24 h was the best biomarker for CIN diagnosis,
while baseline levels of serum IL18, β2M, and TNFα were
best for predicting prognosis. However, more studies are
needed to explore the impact of late biomarker measure-
ments on CIN and mortality.
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