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Abstract
Purpose Body weight is a crucial parameter for patient-specific treatments, particularly in the context of proper drug dosage.
Contactless weight estimation from visual sensor data constitutes a promising approach to overcome challenges arising in
emergency situations. Machine learning-based methods have recently been shown to perform accurate weight estimation from
point cloud data. The proposed methods, however, are designed for controlled conditions in terms of visibility and position of
the patient, which limits their practical applicability. In this work, we aim to decouple accurate weight estimation from such
specific conditions by predicting the weight of covered patients from voxelized point cloud data.
Methods We propose a novel deep learning framework, which comprises two 3D CNN modules solving the given task in
two separate steps. First, we train a 3D U-Net to virtually uncover the patient, i.e. to predict the patient’s volumetric surface
without a cover. Second, the patient’s weight is predicted from this 3D volume by means of a 3D CNN architecture, which
we optimized for weight regression.
Results Weevaluate our approachona lyingposedataset (SLP) under twodifferent cover conditions.Theproposed framework
considerably improves on the baseline model by up to 16% and reduces the gap between the accuracy of weight estimates for
covered and uncovered patients by up to 52%.
Conclusion We present a novel pipeline to estimate the weight of patients, which are covered by a blanket. Our approach
relaxes the specific conditions that were required for accurate weight estimates by previous contactless methods and thus
constitutes an important step towards fully automatic weight estimation in clinical practice.

Keywords Clinical weight estimation · Deep learning · 3D U-Net · Point clouds · Covered patients

Introduction

Medical treatments often require the precise knowledge of a
patient’s bodyweight, e.g. for patient-adapted drug dosing. In
emergency situations, however, a straightforward assessment
of the patient’s weight is often impossible. Unconsciousness
of patients prevents a proper anamnesis, immobility impedes
the usage of an ordinary scale, and bed scales are not always
available. As a consequence, weight is often estimated by
clinical staff although clinical studies have revealed the inac-
curacy of these estimates [10,21]. Several works suggest
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that there is a possibility to increase accuracy by inferring
weight estimates from biometric measurements [5,7,19], but
it is impractical to integrate the manual realization of these
measurements into clinical routine. Instead, it is desirable to
estimate the patient’s weight in a fully automatic and con-
tactless way based on visual sensor data.

Pfitzner et al. [28] and our prior work [4] already demon-
strated that machine learning-based methods are capable of
deriving precise weight estimates of lying patients on the
basis of point cloud data. Point clouds carry rich geomet-
ric information while preserving the patient’s data privacy
[34] and are thus particularly suitable for the given problem.
Whereas the proposedmethods predict weight estimateswith
a promising accuracy, they involve a critical drawback: the
methods are designed for and evaluated under highly con-
trolled conditions. Patients are expected to be uncovered and
in supine position in [4] and additionally even need to take a
specific pose in [28].
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In clinical practice, however, these specific demands are
not always fulfilled. Patients take arbitrary poses and might
be covered by a blanket. Especially the occlusion of the
patient by a blanket considerably complicates the weight
estimation problem and poses new challenges. First, it is no
longer possible to identify a clear boundary between patient
andmattress. Second, it is difficult to distinguish volume that
actually belongs to the patient from volume belonging to the
blanket and hollow space under the cover. As a consequence,
existing methods are either no longer applicable at all [28] or
suffer from a substantial degradation of accuracy [4]. Specif-
ically, we evaluated our prior work [4] under occlusions by
a blanket and observed an increase of the error of weight
estimates by up to 58%. In practice, the predicted weight
estimates will thus either be less accurate or clinical staff
needs to manually remove the cover. Both options are unsat-
isfactorywith regard to the intended fully automatic solution.
Instead, an idealweight estimation frameworkwould provide
reliable estimates independent of the presence of a cover. In
this work, we aim to bring vision-based weight assessment
closer to this level and address point cloud-based weight esti-
mation of patients which are covered by a blanket.

Related work

General-purpose weight estimation Body weight or body
mass index estimation from full-body RGB, depth or RGB-
D images has been addressed by numerous works, which
predominantly rely on handcrafted geometric or biomet-
ric features [3,13,14,16,24,37,38]. In a common approach,
the subject is segmented from the background, features
are subsequently extracted from the silhouette, and weight
regression is performed by a neural network or support vec-
tor regression [13,16,24,38]. End-to-end learning of weight
regression by means of deep convolutional neural networks
has only been proposed by Nahavandi et al. [23] and
Altinigne et al. [2], who utilize a U-Net [33] and a ResNet
[12] architecture, respectively.

Weight estimation in clinical settingsMost relevant to our
work is weight estimation of patients lying in bed in a clinical
environment. In an early work, Pirker et al. [29] generate a
merged point cloud from depth information of eight stereo
camera pairs, which are placed around the bed, and compute
body part-specific volumes by fitting a parametric human
3D model to the cloud. More recently, Pfitzner et al. [26–28]
predict theweight of a patient lying on a stretcher fromapoint
cloud of a top-view depth camera. The authors start from a
volume-based weight estimate in their initial work [26] and
gradually include PCA-based features in [27] and contour-
based features in [28], which are fed into a neural network for
weight regression. Contrary to these feature-based methods,
weproposed inour priorwork [4] to use basis point sets (BPS)

[30] for end-to-end learning of weight estimation from point
clouds. All of these methods assume the patient to be fully
visible and not to be covered by a blanket.

Occlusion by a blanket The occlusion of patients by a cover
has been addressed bymultipleworks in the context of in-bed
pose estimation. Achilles et al. [1] train and evaluate their
pose estimation framework on depth maps with simulated
blankets. Other approaches aim to see through the blanket
by means of particular sensors, namely thermal cameras [18]
or pressure mats [6]. In the context of weight estimation,
however, such sensors appear less suitable than depth sen-
sors, which capture richer geometric information. Multiple
recent works estimate the patient’s pose and 3D shape under
blanket occlusions from multi-modal input data by fitting
or predicting the parameters of a 3D human mesh model
[9,15,35,42,43]. Contrary to these works, our approach does
not rely on a parametric model but explicitly addresses the
occlusion problem in the input space.

Deep learning from point clouds Deep learning from
unstructured 3Dpoint cloud data has attractedmuch attention
in recent years [11]. In a pioneeringwork, the PointNet archi-
tecture [31] applies a shared multi-layer perceptron to each
input point individually and achieves a global permutation-
invariant representation by max pooling. Subsequent works,
such as PointNet++ [32] and Dynamic Graph CNNs [40],
incorporate the structure of local neighbourhoods by means
of hierarchical grouping and graph convolutions, respec-
tively. In another line of work, point clouds are represented
by 3D binary voxel grids, which are processed by 3D CNNs
for shape classification [20,41]. Beyond classification, the
voxelized representation has been applied in the context of
numerous other tasks, such as object detection [36] or pose
estimation [22].

Contribution

To our knowledge, this is the first work to learn weight
prediction of covered patients. In the light of the identified
challenges in this setting, we regard weight estimation and
occlusion by a blanket as two separate, independent problems
and consequently propose a two-step solution. In a first step,
we virtually remove the blanket by predicting the patient’s
shape without a blanket. For this purpose, we resort to a vox-
elized representation of point clouds and train a 3DU-Net [8]
to accomplish the task. This step is independent of the weight
estimation problem and can be used as a pre-processing step
for other tasks as well. In a second step, the actual weight
regression is performed by a customized 3D CNN, which no
longer needs to overcome the occlusion by a blanket. Thus,
our proposed method essentially simplifies the overall prob-
lem and, as a beneficial by-product, provides a high degree
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of interpretability owing to the intermediate visualization of
the uncovered patient.

The main contributions of this work can be summarized
as follows:

– We introduce a novel two-stage pipeline of two 3DCNNs
to predict the weight of covered patients from voxelized
point cloud data.

– We propose to virtually uncover the patients to simplify
the weight estimation problem and demonstrate the capa-
bility of a 3D U-Net to solve this task.

Methods

In this section, we present our approach for weight estima-
tion of covered patients from point cloud data. We initially
formalize the problem set-up, subsequently give an overview
of the proposed framework and finally present its individual
components in detail.

Problem set-up

Our goal is to develop a method that takes a 3D point
cloud Xc ∈ R

N×3, which shows a covered patient lying
in bed, as input and predicts the weight y of the patient.
For this purpose, we assume access to a training dataset
T = {(Xc

i , X
�c
i , yi )}i . It consists of pairwise point clouds

Xc
i , X

�c
i , which show a patient in unchanged pose with (Xc

i )
and without (X�c

i ) a cover, respectively, together with the
ground truth weight yi of the patient.

Framework

An overview of our proposed framework is visualized in
Fig. 1. The core idea of our approach is to decouple the
weight estimation problem itself from the occlusion problem
caused by the blanket. To this end, we break the overall task
down into two independent sub-problems, which are solved
in two successive steps. In step one, we virtually remove the
cover from the patient. By leveraging pairwise point clouds
from T , we learn to predict the patient’s shape without a
cover. This substantially simplifies the actual weight estima-
tion performed in step two. The weight estimation problem
is no longer complicated by a blanket and can thus be solved
as for an uncovered patient.

In step one, we formally aim to learn a mapping from Xc

to X�c. Due to the inherent lack of point correspondences
between two point clouds, however, it poses several techni-
cal challenges to properly define this problem for raw point
clouds. Therefore, we resort to a voxelized representation
such that two point clouds are naturally aligned. To voxelize

a point cloud X , a fixed-size cuboid volume around the cloud
is discretized into a set of equally sized voxels, and a voxel
is assigned the value 1 if it contains at least one point of the
cloud and 0 otherwise. The resulting representation consti-
tutes a binary 3D volume Xvox ∈ {0, 1}h×w×d , where h, w
and d denote the number of voxels in x-, y-, and z-direction,
respectively. For ease of notation,wewill omit the superscript
from now on, and X refers to the voxelized representation of
a point cloud.

This representation enables us to formalize the task in step
1. Specifically, we intend to learn a function f with param-
eters θ f that takes the volume of a covered patient Xc as
input and outputs the volume of the uncovered patient X�c,
i.e. f (Xc; θ f ) = X�c. In our pipeline, we implement f as
a 3D U-Net [8] as detailed in Sect. 3D U-Net and optimize
its parameters by minimizing the cross-entropy loss

L(θ f ; T ) =
∑

(Xc
i ,X

�c
i )∈T

CE( f (Xc
i ; θ f ), X

�c
i ) (1)

with respect to θ f . Here, CE(·, ·) denotes the element-wise
binary cross-entropy loss function.

Once we have learnt to uncover the patient in step 1, we
subsequently learn a function g with parameters θ g , which
takes the volume of the uncovered patient predicted by f ,
namely f (Xc; θ f ), as input and outputs the patient’s weight
y, i.e. y = g( f (Xc; θ f ); θ g). We implement g as a 3D CNN
introduced in Sect. 3D CNN for weight regression. The opti-
mization is performed byminimizing themean-squared error
loss

L(θ f , θ g; T ) =
∑

(Xc
i ,yi )∈T

[
g( f (Xc

i ; θ f ); θ g) − yi
]2

(2)

with respect to θ g while keeping θ f fixed.

3D U-Net

The architecture of the 3DU-Net strictly follows the original
implementation in [8]. In short, the 3D U-Net comprises a
contracting encoder path and an expanding decoder path,
both including four levels of different resolutions. In the
encoder path, features are extracted by means of 3D con-
volutions and downsampling is realized by max pooling
operations. In the decoder path, low-resolution features are
gradually upsampled by transposed convolutions and com-
bined with high-resolution features of equal resolution from
the encoder path. This is realized by skip connections and
subsequent 3D convolutions, which merge the features.
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Fig. 1 Overview of our
proposed two-stage pipeline for
weight estimation of covered
patients. Based on the voxelized
input point cloud, we virtually
uncover the patient with a 3D
U-Net and perform the actual
weight estimation based on the
uncovered volume with a 3D
CNN. Colour images are only
shown for better visualization
and are not used in the pipeline

Fig. 2 Visualization of our
proposed 3D CNN for weight
estimation from a 3D volume.
3D convolutions are
characterized by the number of
output feature channels f ,
kernel size k, stride s and
padding p. k, s and p are
identical in all spatial
dimensions

3D CNN for weight regression

The architecture of our proposed 3D CNN for weight
regression from 3D volumes is illustrated in Fig. 2. During
optimization of the architecture, we found it crucial to down-
sample the input volume to very low resolution before final
weight regressionwith the fully connected network heads. To
realize this, the architecture starts with a 3D convolutionwith
a kernel size of 5×5×5 and a stride of 2, followed by a max
pooling operation with kernel size 2 × 2 × 2. Subsequently,
the resulting feature map is alternatingly processed by 3D
convolutions with kernel size 3×3×3 and stride 1, and max
pooling operations with kernel size 2× 2× 2, which further
reduce the spatial resolution. That way, the input volume is
downsampled by a factor of 25 in each spatial dimension.
At the same time, the number of feature channels is gradu-
ally increased to 64. Each convolutional layer is followed by
a batch normalization layer and a ReLU nonlinearity. After
the last convolutional layer, the featuremaps are flattened and
forwarded by the fully connected network heads. These con-
sist of a fully connected layer with 128 neurons, followed by
ReLU nonlinearity, dropout (p = 0.8) and the output neuron
with linear activation.

Experiments and results

Dataset We evaluate our method on the SLP dataset [17].
The dataset consists of depth frames of 109 subjects, which

take 45 different poseswhile lying in bed in supine and lateral
(left and right) positions. For each pose, three nearly identical
depth frames are taken,which only differ in terms of the cover
condition (no cover, thin cover, thick cover) and are thus ideal
for learning the virtual removal of a blanket. Covers have a
thickness of around1 and3 mm, respectively. For each frame,
we detect all pixels belonging to bed and patient with the
help of depth thresholding and clustering and transform these
pixels to a point cloud using the internal camera parameters.
Body weights of the subjects range from 43.7 to 105.1 kg
and exhibit a mean of 68.0 kg and a standard deviation of
12.7 kg.

The dataset includes two different set-ups. One hundred
and two subjects were recorded in a laboratory setting, and
the remaining seven subjects were recorded in a simulated
hospital room. The two settings differ in terms of the used
beds, mattresses, sheets, blankets, and sensor-to-bed dis-
tances, resulting in a substantial domain shift.We conduct the
main experiments with the 102 subjects, training the model
on the first 60 subjects and reporting results for the remaining
42 subjects. The seven subjects recorded in the hospital room
are used for cross-domain evaluation. Generally, the model
is jointly trained under both cover conditions (thin cover,
thick cover) and positions (supine, lateral), while evaluation
is performed for each cover type and position separately.

ImplementationDetails Weimplement our proposed frame-
work in PyTorch [25]. Network parameters are optimized
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Table 1 Weight estimation results on the 42 subjects from the laboratory setting of the SLP dataset

Method No cover Thin cover Thick cover
Supine Lateral Supine Lateral Supine Lateral

PointNet [31] 4.66 ± 0.23 4.13 ± 0.25 5.97 ± 0.12 5.92 ± 0.06 6.14 ± 0.11 6.00 ± 0.04

BPS [4,30] 4.33 ± 0.18 4.07 ± 0.19 6.13 ± 0.11 6.34 ± 0.17 6.68 ± 0.13 6.64 ± 0.17

3D CNN 3.86± 0.12 3.80± 0.05 5.36 ± 0.06 5.28 ± 0.06 5.56 ± 0.07 5.45 ± 0.04

3D U-Net + 3D CNN
(weight regr. only e2e)

– – 5.25 ± 0.03 5.17 ± 0.04 5.44 ± 0.07 5.24 ± 0.05

3D U-Net + 3D CNN (ours) – – 4.61± 0.06 4.51± 0.04 4.71± 0.13 4.54± 0.10

We compare the MAE, measured in kg, of several baseline methods to our proposed framework

with the ADAM optimizer. The initial learning rate is set
to 0.001, and we use a batch size of 16. The 3D U-Net is
trained for 50 epochs, whereby the learning rate is divided
by 10 after 30 epochs. The 3D CNN for weight regres-
sion is trained for 120 epochs, whereby the learning rate
is divided by 10 at epoch 60 and 100. For voxelization of
the raw point clouds, we discretize a cuboid volume of size
1.7 m × 2.4 m × 0.7 m into 48 × 96 × 32 voxels with edge
lengths of 3.5 cm× 2.5 cm× 2.2 cm. The size of the cuboid
volume has been chosen such that it covers all mean-centred
clouds from the training set. When training the U-Net in step
1, we pre-process the target point cloud of the uncovered
patient before voxelization to segment the patient from the
bed [4].

Baseline Methods We consider two baseline methods for
weight estimation from covered patients. First, we train the
plain 3D CNN without preceding U-Net for weight regres-
sion. Second, for a fair comparison regarding the number
of model parameters, we train the composition of 3D U-Net
and 3D CNN for weight regression in an end-to-end fash-
ion without minimizing the intermediate loss in Eq. (1). As
an upper bound, we train the plain 3D CNN to predict the
weight of uncovered patients. To further investigate the effect
of occlusions by a blanket onweight estimation performance,
we additionally learn weight estimation of both covered and
uncovered patients with a PointNet architecture [31] and the
BPS-based fully connected network from [4], which operate
on raw point cloud data instead of a voxel-based representa-
tion.

Evaluation As error metric, we use the mean absolute error
(MAE) of the predicted weight estimates on the test set. Each
experiment is repeated 5 times, and we report mean and stan-
dard deviation of the MAE.

Fig. 3 Cumulative distribution of weight estimation errors for our
method and the 3D CNN baseline. Our method clearly improves on
the baseline model under both cover conditions and reduces the gap to
weight estimates from uncovered patients

Results

Quantitative results of our main experiments are presented
in Table 1 and reveal four major insights.

First, we note that weight estimates in supine and lateral
position have a similar accuracy under all cover conditions
and for all models, whereby estimates in lateral position are
in most cases slightly better.

Second, we observe that occlusions by both a thin and
a thick cover lead to a substantial degradation of the per-
formance of PointNet, BPS and 3D CNN. As expected, the
performance for the thick cover is consistently slightly worse
than for the thin cover. As an interesting side note, we notice
that the voxel-based 3D CNN clearly outperforms both point
cloud-based approaches under all three cover conditions. But
even for the 3D CNN, we observe a relative increase inMAE
of 39% for the thin cover and of 44% for the thick cover (aver-
aged over supine and lateral position). This confirms the need
forweight estimationmethods that explicitly address the spe-
cific challenges caused by a partial covering of the patient by
a blanket.

Third and most importantly, it can be seen that our pro-
posed method successfully addresses these challenges and
considerably outperforms the baseline models under both
cover conditions. Specifically, again averaged over supine

123



2084 International Journal of Computer Assisted Radiology and Surgery (2021) 16:2079–2087

Fig. 4 Qualitative results of the ablation study on three samples from
the SLP dataset. From left to right, each row shows RGB and depth
image of the corresponding input volume, the prediction by ourmethod,

ground truth and the RGB image of the ground-truth scene. RGB and
depth images are shown for better visualization, while our framework
processes and outputs volumetric representations

Table 2 Quantitative results of
the ablation experiment on the
42 subjects from the laboratory
setting of the SLP dataset

Method Metric Thin cover Thick cover
Supine Lateral Supine Lateral

Initial Dice 31.0 28.4 30.7 27.7

3D U-Net 76.1 ± 0.1 75.0 ± 0.2 76.1 ± 0.1 73.9 ± 0.1

Initial Surface distance 12.1 12.4 11.8 12.6

3D U-Net 5.0 ± 0.1 4.9 ± 0.1 5.0 ± 0.1 5.1 ± 0.1

We show the Dice overlap and the average surface distance in mm between the volume of the uncovered
patient predicted by the 3D U-Net and the corresponding ground truth. For reference, we report the initial
Dice overlap and surface distance between uncovered and covered patient volume

and lateral position, the MAE is reduced by 14.3% for the
thin cover and by 16.0% for the thick cover with respect to
the baseline 3D CNN. Moreover, the gap between weight
estimates with and without a cover achieved by the 3D CNN
is reduced by 51.0% for the thin cover and by 52.5% for the
thick cover.

Fourth, we observe that the composition of 3D U-Net and
3DCNN, exclusively trained for weight regression in an end-

to-end fashion, only slightly improves on the performance of
the plain 3D CNN. We deduce that the superiority of our
method is merely to a small extent due to increased model
capacity. Rather, it is crucial to explicitly learn to virtually
uncover the patient.

Finally, we provide a more detailed comparison of our
method and the 3D CNN by plotting the cumulative distribu-
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tions of absolute errors in Fig. 3. The observable trends are
in line with the findings discussed above.

Ablation experiment

In the ablation experiment, we intend to assess the capabil-
ity of the U-Net to uncover a patient in a more direct way.
For quantitative evaluation, we compute the average surface
distance from the target volumes X�c to the outputs of the
U-Net f (Xc) as well as the Dice overlap between both vol-
umes. For reference, we report the initial average surface
distance and the intial Dice overlap between X�c and Xc.
Results of the experiment are shown in Table 2. Under both
cover conditions and positions the U-Net more than doubles
the initial Dice overlap and more than halves the initial sur-
face distance. This demonstrates its capability to virtually
uncover the patient with an adequate accuracy.

Regarding theDice score, we observe a small gap between
supine and lateral positions. This gap is most likely not due
to less accurate predictions but due to the sensitivity of the
Dice score to the size of ground-truth volumes. Ground-truth
volumes in lateral positions are represented by less voxels
than in supine positions such that errors have a larger negative
impact on the Dice score. Referring to the average surface
distance, which is less sensitive to the size of objects, the
score is similar for both positions.

Qualitative results of the ablation study are presented in
Fig. 4 and demonstrate that the predictions by the 3D U-Net
are visually compelling as well. 3D volumes of the subjects
are precisely recovered under varying poses and even hollow
space under the blanket is largely correctly classified as not
being part of the human body.

Cover detection for full automation

In practical applications, it is desirable to estimate the weight
of both covered and uncovered patients with a single fully
automatic pipeline. For this purpose, we initially need to
classify whether patients are covered or uncovered. Subse-
quently, theweight of uncovered patients can be estimated by
the 3DCNN, while the weight of covered patients is assessed
by our entire framework of 3D U-Net and 3D CNN.

To automate cover detection, we train the baseline 3D
CNN as a binary classifier. The network is trained for 10
epochs with an initial learning rate of 0.001, which is divided
by 10 after 5 and 8 epochs. The 3DCNNachieves a classifica-
tion accuracyof 100.0%.Thus, subsequentweight estimation
of a patient is virtually always performed by the appropriate
framework and the accuracies reported in Table 1 remain
unchanged in a fully automatic pipeline.

Cross-domain evaluation

To examine the cross-domain robustness of our method, we
evaluate all models from Table 1 (trained on the 60 subjects
from the laboratory setting) on the seven subjects from the
simulated hospital room. Due to the substantial domain shift
between training and test data, this is a challenging setting.
Specifically, the varied sensor-to-bed distance leads to a dif-
ferent distribution of points in 3D space, the change of the bed
alters the geometry of the entire scene, andmattresses andbed
sheets might differ in terms of firmness and flexibility. Quan-
titative results of the experiment are shown in Table 3. On
the one hand, our proposed method outperforms all baseline
methods even in this more complicated setting. Compared to
the baseline 3D CNN, the MAE is reduced by 19.5% for the
thin cover and by 13.6% for the thick cover. This indicates
that our two-step solution is more robust than end-to-end
approaches. On the other hand, however, we observe that all
methods exhibit a severe performance drop under all cover
conditions compared to the in-domain evaluation (Table 1).
For instance, the baseline 3DCNNdeteriorates by 73%, 65%
and79%for no cover, thin cover and thick cover, respectively,
and our method degrades by 55% for the thin cover and by
84% for the thick cover. We conclude that the domain shift
is a serious problem that needs to be addressed by methods
from domain adaptation [39]. However, this is beyond the
scope of this work and is left to future research. Our results
constitute an initial baseline for such work.

Discussion and conclusion

We proposed a novel framework, consisting of a 3D U-Net
and a 3D CNN, for weight estimation of covered patients
from voxelized point clouds. In our experiments on the SLP
dataset, we demonstrated that the 3D U-Net is capable of
virtually uncovering a patient and to thus simplify the subse-
quent weight regression with the 3D CNN. Specifically, our
method improved the weight estimation performance com-
pared to baseline methods by up to 16% and reduced the gap
toweight estimates of uncovered patients by up to 52%. Even
in presence of a thick cover, our method achieves a higher
accuracy (MAE = 4.62 kg, corresponding to a mean relative
error (MRE) of 7.0%) than estimates by clinical staff, which
exhibit MREs of 8.1–8.4% in [10] and of 7.7–11.0% in [21].
The accuracy of our method can even further be improved to
an MAE of 3.8 kg and an MRE of 5.7% by statistical aver-
aging over multiple weight estimates for the same subject
from different frames with varying poses as in [4]. Alto-
gether, our work constitutes an important step towards fully
automatic weight estimation, which should ideally provide
reliable weight estimates independent of any specific condi-
tions. However, the occlusion of a patient by a cover is only
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Table 3 Results of the
cross-domain evaluation on the
7 subjects from the hospital
room of the SLP dataset. Bold
values highlight the best results
with the lowest MAE

Method No cover Thin cover Thick cover

PointNet [31] 6.99 ± 0.34 9.94 ± 0.80 10.91 ± 0.63

BPS [4,30] 6.69 ± 0.57 9.57 ± 1.21 12.41 ± 2.41

3D CNN 6.62± 0.39 8.76 ± 0.54 9.85 ± 0.47

3D U-Net + 3D CNN (weight regr. only e2e) – 8.93 ± 0.61 9.75 ± 0.40

3D U-Net + 3D CNN (ours) – 7.05± 0.20 8.51± 0.40

We compare the MAE, measured in kg and averaged over supine and lateral positions, of several baseline
methods to our proposed framework

one among multiple possible challenges, which might occur
in clinical practice. Another important problem, for instance,
consists in the presence of a domain shift between training
and test data, which lead to a substantial performance drop
in our cross-domain experiment. To improve generalization
to diverse settings (different room set-ups, beds, mattresses,
viewpoints, etc.), future work could incorporate techniques
from domain adaptation [39] or domain generalization [44]
into the weight estimation framework.

Beyond the specific task of weight estimation, we believe
that our approach to virtually uncover the patient constitutes
a valuable tool for medical computer vision in general. Since
the method is independent of the weight estimation problem,
it can be seen as a generic pre-processing step with the poten-
tial to simplify any task that needs to overcome occlusions by
a blanket. In particular, the integration of the approach into
existing frameworks for in-bed pose and shape estimation
[1,35] appears promising and is of high interest for future
work.
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