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New techniques are presented for Delaunay triangular mesh generation and element optimisation. Sample points
for triangulation are generated through mapping (a new approach). These sample points are later triangulated by
the conventional Delaunay method. Resulting triangular elements are optimised by addition, removal and relo-
cation of mapped sample points (element nodes). The proposed techniques (generation of sample points through
mapping for Delaunay triangulation and mesh optimisation) are demonstrated by using Mathematica software.
Simulation results show that the proposed techniques are able to form meshes that consist of triangular elements
with aspect ratio of less than 2 and minimum skewness of more than 45°.

1. Introduction

Mesh creation is one of the crucial steps in Finite Element Method
(FEM). There are various methods to create a triangular mesh, but
Delaunay is the most commonly used. Delaunay triangulation generates
triangular meshes without any overlap or void by connecting sample
points which are scattered within the problem domain. Connection of the
sample points is accomplished by first forming circles in which each
circle contains 3 sample points on its circumference and does not contain
any other point within the circle. These 3 sample points are then con-
nected to form a triangular element. Delaunay triangulation tends to
maximise the smallest angle which is formed within an element through
flipping technique [1].

Thus, sample points need to be generated within the problem domain
first in order to initiate the triangulation (mesh creation). Some of the
techniques to generate the sample points are described in the section 1.1.
These techniques generate initial sample points which require further
optimisation in order to obtain required distribution (uniform or adap-
tive), depending on the density/size functions. The optimisation can be
either carried out before or after triangulation. These two types of opti-
misation techniques are described in section 1.2.

In this work, sample points are generated for a problem domain
through mapping (a new approach) and the mapped sample points are
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later triangulated via conventional Delaunay method. The mapping is
accomplished by using generalised equation which was proposed for
numerical integration within finite element method (FEM) and extended
finite element method (XFEM) in earlier works [2, 3, 4]. Triangular el-
ements that are formed are later optimised by using a new optimisation
framework. The proposed techniques (generation of sample points
through mapping, triangulation and mesh optimisation) are demon-
strated by using Mathematica software. Modelling and execution of
mapping of sample points in Mathematica is simpler and faster, since the
mapping involves fully numerical algorithms (symbolic manipulation has
been eliminated entirely) [4]. The mapped sample points are later
triangulated by using programming function “DelaunayTriangulation”.
Optimisation of the triangular elements is done by addition, removal and
relocation of sample points. Corresponding Mathematica functions to
carry out the three tasks above are “Append”, “Delete” and “ReplacePart”,
respectively.

The new approach to generate sample points in the problem domain
is presented in section 2 while the framework for the element optimi-
sation is presented in section 3. Some examples are provided in section 4.
The paper is finally concluded in section 5, with some remarks on the
advantages and disadvantages of the proposed technique.
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Fig. 1. Examples of decomposed domains according to Fubini's theorem. From
left: a domain with 4 constant lines, a domain with 3 constant lines and 1 curve,
a domain with 2 constant lines and 1 curve, and a domain with 2 parallel
constant lines and 2 curves.

1.1. Techniques to generate sample points

There are various methods that can be used to generate sample points
within a problem domain for the purpose of triangular mesh generation.
Some of the techniques are:

. Poisson disk sampling [5]

. Spectra based sampling [6]

. Point insertion method [7]

. Bubble-packing method [8, 9]

. NURBS parametric equation [10]

. Initialisation tree [11]

. Point cloud [12]

. Artificial spot pattern [13]

. Atomic packing arrangements [14]

. Quadtree-like background mesh [15, 16]
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Brief descriptions about the listed techniques are provided below.

1.1.1. Poisson disk sampling

Poisson disk sampling technique can be implemented in various forms
or styles, which are given different names such as dart throwing, relax-
ation (relaxation dart throwing and Lloyd's relaxation), tiling (Penrose
tiling, Shade's Poisson disk tiles, tiled blue noise samples, recursive Wang
tiles and edge-based, template and corner-based Poisson disk tiles) and
importance sampling (hierarchical importance sampling) [5].

Dart throwing works by generating sample points within the problem
domain randomly. Upon substantial amount of time, the method would
create a dense distribution within the problem domain. The distribution
is maintained uniform by deleting sample points which do not meet the
minimum separation condition. The minimum separation condition (set
by the user) is simply the minimum distance between the already existing
sample point and the new sample point. The process will stop when there
is no empty space for the sample points to occupy while meeting the
minimum separation condition.

Relaxation schemes (Lloyd's) is often used to optimise the sample
points which are generated from the Poisson disk sampling methods.

Tiling is a method which generates sample points faster compared to
dart throwing (dart throwing generates one point at a time). This is made
possible by the use of a set of tiles with several preoccupied sample
points. These preoccupied sample points within a set of tiles (for example
8 tiles) is located such a way that they satisfy the minimum separation
condition (these preoccupied sample points can be generated by using
the dart throwing method). The problem domain is then fully covered
with duplicates of this set of tiles.
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Fig. 2. Reference square domains with sample points (a) SP13 (b) SP41 (c) ASP20 (d) ASP48.
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Fig. 3. Three combinations of intersections within a triangular element (a)
skewness corresponding to node 1 (b) skewness corresponding to node 2 (c)
skewness corresponding to node 3.

Importance sampling is a form of adaptive sampling. The method
works together with density/importance functions in order to generate
sample points which adapt to either to the geometry of the domain or to
the change of field variable within the domain. Density/importance
functions are used to locate regions which require higher number of el-
ements or denser meshes [17]. In some cases, the adaptive function is
also known as sizing function [7, 18].

1.1.2. Spectra based sampling

Spectra based sampling generates sample points that match a
particular Fourier spectrum function [6]. This technique enables gener-
ation of sample points with different noise patterns, as required by the
user (not limited to blue noise samples).

1.1.3. Point insertion method

In this method, sample points are inserted into the problem domain
continuously as meshes are created. The boundary of the problem
domain is discretised first to generate boundary sample points and then
interior sample points are inserted (one at a time) such a way that they
satisfy the Delaunay criterion as well as the density/sizing functions, if
present. This technique is also known as advancing front approach. Other
techniques have been proposed for the point insertion. Such approaches
are addition of points at the centre of existing triangles, at the centre of
element circumcircle, along a Voronoi segment and along edges [7].

1.1.4. Bubble-packing method

In this method, the sample points are in the form of bubble-like
spheres/circles which are randomly generated within the problem
domain. The triangulation is formed by connecting the centres of three
adjacent bubble-like spheres/circles through Delaunay method (the
centre of the bubbles act as sample points). The initial bubbles are placed
by subdivision of various dimensional geometries. For example, curves
are subdivided by using a binary tree, a surface by a quadtree and a
volume by an octree [8]. In another work, the initial bubbles are placed
randomly within the problem domain by following a relationship which
is in terms of the area of the surface and desired triangle area or edge
length [9]. However, gaps and overlap of bubbles might occur during the
initial bubble placement.

The initial bubbles are then made uniform and optimised by
restricting distance between two adjacent bubbles. This is done by
introducing an inter-bubble force between the two adjacent bubbles.
When two bubbles are very close to each other, a repulsive force is
generated. On the other hand, attractive force is produced when two
bubbles are far apart from each other. Force balance is reached when two
adjacent bubbles reached stable distance. This approach is similar to van
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der Waals force [8]. Stable configuration (force balance is achieved) for
the bubbles is obtained through dynamic simulation.

1.1.5. NURBS parametric equation

Non-Uniform Rational B-Splines (NURBS) is a modelling technique
which can represent arbitrary curve (or surface in 3D) by using para-
metric equation which is in terms of parameter u (NURBS curves are
defined within the range of uy;;; and upgy), control points, weights and B-
splines basis functions. The control points and weighs can be altered to
match the curve or surface being modelled.

In [10], the authors developed a method to form triangulations for 3D
surfaces by first parametrising the NURBS curves in physical domain.
NURBS hull is then formed through connection of control points (in rows
and columns) in the actual physical domain. These control points are
later mapped to a parameter domain. These control points in the
parameter domain act as initial sample points for triangulation. Distri-
bution of these initial sample points is made uniform or non-uniform (in
case of adaptive meshing) through physical simulation such as molecular
dynamics method. Once the distribution of the sample points has been
optimised in the parameter domain, these sample points are then
re-mapped to the physical domain. Finally triangulation takes place
based on Delaunay method.

In [19], the authors formed guide lines instead of mapping the control
points directly onto the parameter domain.

In another similar work [20], the authors first mapped the NURBS
boundary surfaces (boundary curves of trimmed surfaces) from the
physical surface onto the parameter domain and later generated the
initial sample points directly onto the parameter domain. The initial
uniform sample points are created based on distance function between
the sample points. Some of the sample points lie outside the problem
domain, which are later eliminated through Monte Carlo simulation.

1.1.6. Initialisation tree

This method (proposed in [11]) works by first forming a mesh con-
sisting of several quadrangles within the problem domain (background
mesh). The quadrangles are formed such a way that the density of the
quadrangles is according to the geometry segments. The resulting
quadrangles are called initialisation tree [11]. Initial sample points are
generated by inserting points into these quadrangles individually, either
by randomly or structured.

In case of random point distribution (within a quadrangle), the
sample points are generated by using a pseudo-random coordinate pair
within the quadrangle. On the other hand, the structured distribution is
generated by inserting one or more points into the quadrangle according
to specific patterns. Four patterns are described, which are insertion of:
one point at the centre of the quadrangle, four points which are equally
spaced to form a square, five points with combination of the first and the
second patterns (four points forming a square and a point at the centre),
and nine points which are equally spaced to form a 3 by 3 square.

The mesh of quadrangles is later removed, leaving behind the initial
sample points which are scattered within the problem domain. This
initial distribution of sample points is optimised by using physics based
simulation such as particle dynamics.

1.1.7. Point cloud

Point cloud is a collection of sample points in space (normally in 3D).
It is usually generated by using 3D scanners. Point clouds are used in
generating triangular elements (embedded in 3D) in image modelling.
The point cloud can be created through the technique known as Structure
from Motion or computed for the pixels of the region of interest [12].
Some of the software packages which enable generation of point cloud
(in other application areas) are Autocad [21], ArcGIS [22], Civil 3D [23]
and so on.

1.1.8. Artificial spot pattern
This technique uses grey-scale (bitmap) image to form initial sample
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Fig. 4. Framework for mesh optimisation.

points. A grey-scale image, which actually is the problem domain, con-
sists of different colour contours (such as black, dark grey, light grey, and
white) which form different coloured regions within the domain. Initial
sample points (known as artificial spots) are placed on the interface be-
tween (or boundary of) different coloured regions, including the
boundary of the problem domain.

These initial sample points are then fed into the Gray—Scott model to
generate more sample points in the interior of the domain (interior of the
different coloured regions). Gray-Scott model generates more sample
points by using finite difference method [13].

1.1.9. Atomic packing arrangements
The author in [14] created the initial sample points based on atomic
packing arrangements in a crystal lattice. Body-Centered Cubic (BCC)

and cubic lattice arrangements are mimicked for the positioning of the
initial sample points (also known as seed points). Some randomness in
the distribution of the sample points is introduced through imple-
mentation of randomness parameter f. Mimicry of Face-Centered Cubic
(FCC) and Hexagonal Close-Packed (HCP) arrangements were found to
produce dense sample points which were not supported by the software
utilised in their work.

1.1.10. Quadtree-like background mesh

This technique is an adaptation of strategies used for meshing and
detection of discontinuity in extended finite element method (XFEM) [2].
Utilisation of this technique to generate initial sample points can be seen
in [15].

The initial sample points are either randomly generated or generated
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Fig. 5. Determination of valid region. (a) defining initial boundaries based on isosceles triangles. (b) checking validity of sample points within the region bounded by
the initial boundaries (c) finalised valid region.
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Fig. 6. Optimisation of a flawed element through node relocation. (a) a mesh consisting of a flawed element 9-13-16. (b) formation of a polygonal structure based on
the selected node. (c) formation of final valid area (greyed) based on the intersections of individual valid regions. (d) mesh after the optimisation.
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Fig. 7. Optimisation of a flawed element through node insertion and relocation. (a) a mesh consisting of a flawed element 106-126-139. (b) insertion of a mid-node
291 along the longest edge of the element. (c) relocation of node 126.
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Fig. 8. Displacement of boundary node of a mesh system to the domain

boundary (a) inaccurate positioning of node 3 (b) optimised mesh.
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11 :

(a)

Fig. 9. Displacement of boundary node based on the second approach. (a)
inaccurate positioning of node 3 (b) optimised mesh.

according to the density function (adaptive meshing). Those sample
points which are located outside the problem domain are later detected
(based on the sign of level set function) and moved randomly to the
interior of problem domain for the former method, while the latter
generates the sample points within the problem domain directly, due to
the density functions (density functions are described for the regions
within the problem domain).

Sample points for the boundary of the problem domain are obtained
with the help of multi-resolution based nested hierarchical background
mesh consisting of grid blocks. This mesh is similar to adaptive quadtree
mesh and another similar application is seen in [11] (known as initiali-
sation tree, as described in section 1.1.6). Boundary of the problem
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domain cuts and passes through some of the grid blocks. These specific
grid blocks are known as cut cells. One sample point is inserted at the
centre of each cut cell. These sample points may not be located directly
onto the boundary curve. Therefore, these sample points inside the cut
cells are later moved onto the boundary of the problem domain through
mapping. Quadtree-like background mesh is also utilised by [16] to
generate sample points. The author used intersecting points of the
boundary of the problem domain with the cut cells as sample points. In
alternate case, corners of a block can also be taken as sample points.

1.2. Optimisation

There are two methods to generate optimised mesh. One is by opti-
mising the initial sample points which are generated based on the
methods described in section 1.1 and the other is to optimise the finite
elements which are formed as the result of meshing. These two optimi-
sation methods are briefly reviewed below.

The sample points which are generated from the methods listed above
are later optimised (improved uniformity of the initial sample point
distribution) based on sampling criterion. Some of the techniques used to
optimise the distribution are the centroidal Voronoi tessellations [24],
kernel-based sampling [25, 26], sequential sampling strategy [27], par-
ticle based approach (particle kernel) [15], smoothed particle hydrody-
namics [15], molecular dynamics, particle dynamics, Monte Carlo, other
physics-based simulations [11] and extrinsic methods [28]. In [29], the
authors used truss equilibrium model system to optimise distribution of
the sample points. Another interesting optimisation of the sample points

10 10

11 11

(a) (b)

Fig. 11. Triangulation by using SP13. (a) initial triangulation. (b) opti-
mised mesh.

(a)

(b)

(c)

Fig. 10. Sample point generation for quadrant of a circle. (a) problem domain. (b) Initial distribution of sample points by using SP13. (c) Initial distribution of sample
points by using SP41.
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Fig. 12. Triangulation by using SP41. (a) initial triangulation. (b) redundant triangles inside the mesh with AR>100. (c) optimised mesh.
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Fig. 13. Adaptive sample point generation for quadrant of a circle. (a) Initial distribution of sample points by using ASP20. (b) Initial distribution of sample points by

using ASP48.

can be seen in [30], in which the authors developed an Adaptive
Weighted Locally Optimal Projection (AWLOP) operator to distribute the
sample points based on the human visual perception.

Mesh optimisation is categorised into three [31], which are adap-
tivity, smoothing and swapping.

Adaptivity involves mesh refinement at certain regions within the
problem domain that require higher precision. The mesh refinement is
usually accomplished by replacing coarse mesh with finer mesh through
nested grid formation (similar to quadtree mesh) at selected regions,
while the rest of domain consist of coarse mesh. The coarse and fine
regions are connected by using transition elements. This technique is
usually implemented for quadrilateral and hexahedral meshes. Another
approach for adaptive mesh optimisation without nested grid formation
is presented in [32]. The authors implemented several operations such as
edge collapse and face split for the mesh optimisation near transition
regions. This approach is similar to swapping.

Smoothing involves relocation of sample points/nodes to improve the
mesh quality, without changing the connectivity. This technique can be

further categorised to three, which are Laplacian, optimisation-based and
physics-based approaches [33]. Laplacian approach improves a mesh by
relocating the nodes by arithmetic mean of connected nodes, which was
later improved by introducing quality metric and conditional updating
[33]. Optimisation approach uses certain algorithms to meet the pre-
defined standards that are related to mesh quality. Thus, smoothing
technique can be employed to achieve different optimisation goals,
depending on the parameter selected as the evaluation standard [31]. For
example, the authors in [34] selected triangle average quality as the
evaluation standard to achieve optimal mesh, with the help of Particle
Swarm Optimisation (PSO) technique. Other examples of evaluation
standards are minimum or maximum angle, aspect ratio and distortion
metrics. The last approach, that is physics-based approach assumes the
mesh as a deformable media and forces are applied to achieve the
optimal element shape [33].

Swapping improves mesh quality by changing shape of the elements,
through operations such as edge and face swapping. This technique
changes the mesh connectivity. Other optimisation works are available in
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(a)

(b)

Fig. 14. Adaptive mesh generation for quadrant of a circle. (a) Adaptive mesh by using ASP20. (b) Adaptive mesh by using ASP48.

AR

(a) (b)

Fig. 15. Decomposition of a problem domain according to Fubini's theorem. (a)
domain before decomposition (b) domain after decomposition into 2 sub-
domains R1 and R2.

the literature. For example in [35], the authors eliminated obtuse tri-
angles by addition and removal of nodes, followed by optimisation-based
mesh smoothing while optimisation of a mesh based on aspect ratio is

(a)

seen in [36]. Optimisation of elements in ANSYS is achieved by inserting
or removing nodes and swapping edge/face [37].

The technique presented in this work can be categorised as
optimisation-based mesh improvement via point insertion, deletion and
relocation. Evaluation standards chosen for the mesh optimisation are
the aspect ratio (should be less than 2) and skewness (minimum skewness
should be more than 45°). Point insertion and deletion changes the mesh
connectivity (similar to swapping), while relocation does not give any
impact to the connectivity (similar to smoothing) most of the time.
Adaptivity is attained by using different densities of sample points in the
reference domains (described in section 2) to form fine and coarse
meshes.

2. Design

Sample points for a problem domain can be generated through a
mapping technique. The mapping can be accomplished by using gener-
alised equation which was introduced in previous works [2, 3, 4]. The
generalised equation for 2 dimensional mapping is recalled here:

(b)

Fig. 16. Generation of sample points. (a) distribution of sample points for SP13 (b) distribution of sample points for SP41.
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b sx) are enclosed by either one of the following:
h= [ [ st dvas
A v v a. 4 constant lines.
or — / / F(mautcomy+c,)ymomydvdu b. 3 constant lines and 1 inclined line or curve.
b s0) S c. 2 constant lines and 1 inclined line or curve.
d. 2 parallel constant lines and 2 inclined lines or curves.
L= [ [ sty duay P
@) Examples of domains enclosed by the 4 options given above are
forly shown in Fig. 1.
a—b r(mau+c,) — s(mau+cy) (€] The next concept is to develop reference domains (bounded by U and
=TT ™ I—U ; L) with sample points (with fixed coordinates) that can be mapped to the
(bxL)—(axU) (s(matt+c.) X L) — (r(muu+¢;) x U) physical problem domain by using Eq. (1). Four types of reference do-
= I—U PG = L—U mains are presented here, which are bounded by U =1 and L = -1 (the
. domain is a square with coordinate range of -1 to 1). Each of the reference
fork: . . e
domain contains different number and distribution of reference sample
_r (myv+e) —s(myv+e) P —b, points, as shown in Fig. 2. SP13 and SP41 represent reference domains
X b v )
- - wi an sample points respectively, which are distributed uni-
L-U S L-U ith 13 and 41 le poi ively, which are distributed uni
~ (s(my+e,) xL) = (r(my+¢,) xU)  (bxL)—(axU) formly. The sample points are distributed uniformly within the reference
&= L—-U PO L—U domain, to enable uniform mesh generation. ASP20 and ASP48 represent

The left hand side of the Eq. (1) is Fubini's representation of a problem
domain that is bounded by constant lines (vertical or horizontal lines) a
and b, and inclined lines or curves described by polynomial functions r
and s. The right hand side of the equation represents a reference geom-
etry bounded by constant lines U and L. Mapping of reference geometry
to arbitrary domain in physical system can then be achieved by using
numerical transformations given by I; or I. The functions f (x, y) and f (u,
v) represent coordinates of entities in physical problem domain and
reference domain (sample points), respectively.

In order to perform the mapping, a problem domain needs to be
bounded by a, b, r and s, according to the Fubini's theorem. For that
reason, the domain needs to be decomposed into several regions which

10

reference domains with 20 and 48 sample points respectively, which are
distributed nonuniformly. ASP20 and ASP48 consist of a greater number
of sample points on the upper half of the reference domains compared to
their lower half. Nonuniform distribution of sample points enables
adaptive meshing, due to the different density of sample points within
the domain (region with higher number of sample points leads to finer/
denser mesh).

Once the problem domain is decomposed and the sample points are
mapped to the problem domain, triangulation can be initiated by
employing the conventional Delaunay method, by using the function
“DelaunayTriangulation”. The next section describes the optimisation
technique for the elements.



L. Perumal

194

Heliyon 5 (2019) e02319

201 20
2243
200 20
: 2 2
2211 P
0/ 2 25

Fig. 21. Initial mesh for the tip (close up view).

3. Methodology

Details of the techniques used for mesh optimisation are explained in
this section. Mesh quality is defined first and a framework for optimi-
sation is introduced. Subsequent subsections explain the methodologies
used to optimise the elements in a mesh.

3.1. Mesh quality and a framework for optimisation

Quality of a triangular element can be defined based on two param-
eters that are the aspect ratio and skewness. These two parameters are
selected among other parameters to determine the validity of an element,
since they play important role in providing reliable results. A valid
triangular element holds aspect ratio of less than 2 and minimum
skewness of more than 45°. Aspect ratio (AR) is calculated based on the
formulas below:

abc

AR == —0)

(2)

3

(a+b+c)

N =

a, b, and c represent length of each side of a triangular element. The
skewness is determined by calculating the lowest angle formed by

11

intersection of two lines within the triangle. The first line is drawn such a
way that it connects one of the triangular nodes to the midpoint of
opposite side. The second line connects midpoints of the other two sides.
Since there are 3 nodes for a triangular element, therefore total of three
combinations of such intersection can be obtained. These combinations
are shown in Fig. 3. Skewness for a particular triangular element is
represented by the smallest angle which is formed by the intersections in
the three configurations shown in Fig. 3.

Optimisation of the triangular elements is done by addition, removal
and relocation of sample points (or nodes) until all the elements meet the
desired quality (aspect ratio of less than 2 and minimum skewness of
more than 45°). Corresponding Mathematica functions to carry out the
three tasks above are “Append”, “Delete” and “ReplacePart”, respectively.
Framework for optimisation is shown in Fig. 4.

3.2. Initial mesh creation

Initial mesh is created through conventional Delaunay method, by
using the Mathematica function “DelaunayTriangulation”. This function
generates triangular meshes according to the distribution of sample
points in the domain. There is possibility for redundant triangles to be
formed outside the intended problem domain. These redundant triangles
can be removed based on two approaches, which are either by using
integration limit functions a, b r and s in Eq. (1) or by using Mathematica
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Fig. 22. Optimised mesh for the head.

functions “RegionMember” and “Polygon”.

The first approach requires parametric equations of the boundaries.
The outer redundant triangles can be detected (and later removed) by
using the following criteria:

Forli: a<x.<bandr(x.) <y. <s(x)

ForL: a<y.<bandr(y.) <x. <s(y.)

x. and y, are coordinates of centre of a triangular element. If coordinate
of the centre of a triangular element does not fall within the given range,
then it is identified as a redundant triangle.

The second approach is based on the boundary discretisation. This
approach can be used when equations of the boundaries (such as free
formed curves) are not available. Free formed curves can be approxi-
mated by using Bezier curves by altering position of the control points
until desired accuracy is obtained (Mathematica function for Bezier curve
is “BegierCurve”). Coordinates of the control points are later used to
compute sample points on the curves (boundary discretisation). The
problem domain is then classified as a polygon by assigning the co-
ordinates of boundary sample points to the Mathematica function
“Polygon”. External redundant triangles are detected when centre of the
triangular elements are not situated within the polygonalised problem
domain (corresponding Mathematica function is “RegionMember”).

3.3. Valid region and node relocation

Next, the Mathematica algorithm identifies all the flawed elements in
the mesh, according to the aspect ratio and skewness. If a flawed element
is located at the interior of the problem domain, then the element can be
adjusted to meet the required quality by moving one of the three nodes of
the triangular element. Therefore, a new approach is introduced here to
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identify the ideal position to relocate one of the nodes of a flawed
element such a way that it would satisfy the required criteria.

This is done by defining a valid region for the node relocation. An
edge of a triangular element (edge AB) with length of 1 unit is taken as
reference to define the valid region as shown in Fig. 5(a). Two isosceles
triangles (labelled as ABC and ABD) are formed, with minimum skewness
of 46° for triangle ABC and 45° for triangle ABD. Corresponding aspect
ratios are 1.70 and 1.75, respectively. Any lower positioning of point C
(vertically) or any upper positioning of point D (vertically) will cause the
minimum skewness to be lower than 45° for the triangle ABC or ABD,
respectively. Two constant horizontal lines are drawn (that pass-through
points C and D) as upper and lower boundaries for the reference valid
region. Afterward, two inclined lines that make an angle of 45° to the
horizontal line are drawn, to indicate the boundary for minimum skew-
ness of 45°. These boundaries are shown by dashed lines in Fig. 5(a).

Sample points are randomly placed inside the region bounded by the
four linear lines and later individually connected to points A and B to
form triangles. Minimum skewness of these triangles is checked and the
corresponding sample points are marked as a cross or circle, to indicate
suitability of the particular locations of the sample points as ideal relo-
cation for the flawed element's third node. Fig. 5(b) shows suitability of
some of sample points within region bounded by the four linear lines.
Circle indicates suitable position for relocation, while cross indicates
invalid position. The final reference valid region as shown in Fig. 5(c) is
obtained by connecting the circles in Fig. 5(b) by using linear lines and
merge with the initial boundaries in Fig. 5(a). The reference valid region
shown in Fig. 5(c) can be implemented for any arbitrary edges through
scaling, rotation and displacement of this reference region.

Therefore, in order to determine the ideal position for a node in
physical system, a polygonal structure is first formed based on the
triangular elements that share the particular node. The polygonal



L. Perumal

N/

=

s

Heliyon 5 (2019) e02319

5

5

.. k
Lih ol
eV

2

80

/M
o

7l

Fig. 23. Optimised mesh for the tip (close up view).

structure is formed by connecting edges (that are not connected to the
particular node) of these triangular elements. The ideal position for the
node will be anywhere within the area of valid region that is common for
all the edges of the polygonal structure. The common area within the
valid regions of all the edges of the polygonal structure is determined by
generating random sample points within the valid region corresponding
to each of the polygonal edges. Sample points which are common or
present in all the valid regions corresponding to all the polygonal edges
would be the ideal positions for the node. An example is shown in Fig. 6.
Flawed element (AR = 1.73 and minimum skewness = 41.73°) is the
triangular element with nodes labelled as 9-13-16 (node sequence is
according to local node numbering) in physical system as shown in
Fig. 6(a). The algorithm selects the first internal local node of the element
for evaluation, by default. The algorithm moves on to the next internal
local node of the element for evaluation, if optimal position is not found
for the former node. Boundary nodes are fixed and cannot be relocated.
In this example, the first local internal node 9 is selected for relocation,
and therefore a polygonal structure is formed based on the node 9 as
shown in Fig. 6(b). Valid region for each edge of the polygonal domain is
generated by scaling, rotation and displacement of the reference valid
region (Fig. 5(c)). Example of valid regions for edges 7-10 and 13-16 are
shown in Fig. 6(c). Similar regions are generated for the remaining edges
of the polygon and common area is determined, as shown by the grey
area in Fig. 6(c). Relocation of node 9 within the final valid region
(greyed area) is shown in Fig. 6(c) (labelled as 9'). It can be seen that
node 9’ makes new connection with node 4, thus changes the connec-
tivity. Optimised mesh is shown in Fig. 6(d).

3.4. Node insertion, relocation and deletion

However, not all the elements can be optimised merely by relocating
one of the element nodes based on this approach. This is due to sur-
rounding elements that share the same node would be affected by the
relocation of the node. When optimisation is not possible by node relo-
cation, an addition of a sample point/node can be done to the mesh. This
insertion can be done to the middle of the longest edge of the flawed
element. An example is shown in Fig. 7.

The greyed flawed element 106-126-139 in Fig. 7(a) is a boundary
element with aspect ratio of 3.24 (less than 100). Optimal position for the
internal node 126 is not found within the polygonal structure formed by
nodes: 106-139-138-137-125-116-106. Therefore a mid-node (node 291)
is added to the longest edge of the flawed element, which is edge
106-139 as shown in Fig. 7(b). Inclusion of the mid-node causes a new
flawed element 126-138-291 to be formed (greyed in Figure (b)). The
first internal local node for the new flawed element is 126, followed by
node 138. For this case, optimal position for the internal node 126 is
available within the polygonal structure formed by the nodes: 291-138-
137-125-116-106-291. Node 126 is then relocated to form optimised
elements as shown in Fig. 7(c). A particular internal node can be deleted,
if three continual additions of mid-nodes did not yield a valid element.

3.5. Relocation of boundary nodes

If the flawed element is a boundary element with aspect ratio of
greater than 100, then the particular element is initially skipped since
addition of mid-nodes can lead to unresolved loop/iteration. Once the
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Fig. 26. Preparation of a domain for mesh generation (a) domain with free formed curves and a linear boundary. (b) partitioning of the domain.

rest of the elements have been optimised, the skipped elements are
revisited. These flawed boundary elements are dealt with by moving the
element nodes to the domain boundary. Boundary nodes of a mesh are
identified by first finding element edges that are not shared by any other
element (boundary edges). Nodes of these edges are then classified as
boundary nodes of the mesh system. There are two approaches to move
the boundary nodes of a mesh to the domain boundary.

The first approach is to find a point/location on the boundary of the
problem domain which yields minimum distance between a particular
boundary node of a mesh system to one of the integration limit functions
a,brandsin Eq. (1). The boundary node of the mesh system can then be
moved to the nearest point on the boundary. An example is shown in
Fig. 8.

Node 3 of the mesh in Fig. 8(a) is inaccurately positioned and leads to
poor boundary representation. This error is eliminated by moving the
node 3 to the boundary, as shown in Fig. 8(b). Correct location of node 3
on the domain boundary is obtained by calculating minimum distance
from the original node 3 (node 3 in Fig. 8(a)) to the lines/curves
enclosing the domain, that is the integration limits of Eq. (1): @, b, r and s.
Total of four minimum distances and corresponding points on the lines/
curves enclosing the domain would be calculated (due to the four inte-
gration limits). These four points are shown in Fig. 8(a) by using dark
filled circles, for enclosure based on I;in Eq. (1). Minimum of these four
distances and the corresponding point would be the correct location for
node 3 on the boundary of the domain.

The other approach to move the boundary nodes of the mesh to the
domain boundary is by using minimum distance between the boundary
nodes of a mesh system to the discretised boundary sample points which
are obtained through Bezier curves (function “BezierCurve” as described
earlier). This approach can be used when equations of the boundaries
(such as free formed curves) are not available. A particular boundary
node of a mesh system is then moved to the location of a boundary
sample point which is nearest to it. An example is shown in Fig. 9.

Fig. 9 shows similar problem domain as the previous example, which
is quadrant of a circle. Assuming that the equation of the arc is unknown,
the arc is discretised by using Bezier curve and the boundary sample
points are shown in Fig. 9(a). The boundary node 3 is moved to the
domain boundary (by replacing the respective boundary sample point)
based on the minimum distance obtained. Fig. 9(b) shows the final
optimised mesh.

Once the boundary nodes are moved to the domain boundary, the
algorithm checks for any remaining flawed elements in the mesh. This
step is crucial in order to make minor adjustments if flaws occur due to
the displacement of nodes to the domain boundary. The optimisation is
terminated once there is no more flawed element in the mesh system.

4. Results and discussion

Examples of mesh generation by using the proposed techniques are
presented here. Total of four examples are shown, involving geometries
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with linear lines and curves. The optimisation is carried out based on the
framework in Fig. 4.

4.1. Example 1: meshing of quadrant of a circle

The problem domain is bounded by two constant lines and one curve,
as shown in Fig. 10(a). The Fubini's criterion is satisfied and domain
decomposition is not required. The sample points are generated by letting
U=1,L=-1,a=0,b=1,r() =0and s(y) = \/1 — y2 into Eq. (1).
Distribution of sample points by using SP13 and SP41 are shown in
Fig. 10 (b) and (c), respectively. It can be seen that the sample points are
uniformly distributed within the domain. Resultant triangulations are
shown in Figs. 11 and 12, respectively. Flaws within the mesh are either
circled or highlighted by grey colour.

Initial mesh using SP13 is shown in Fig. 11(a). Redundant triangles
are not formed. The mesh consists of a flawed element 10-4-3 and node 3
is found to be not on the problem boundary. Flawed element 10-4-3 is
optimised by relocating internal node 4. No further flawed element is
detected in the mesh. Node 3 is later moved to the domain boundary
based on the first approach described in previous section. Final optimised
mesh is shown in Fig. 11(b).

As for fine mesh using SP41, initial triangulation produces highly
skewed elements near the top and flawed elements at the curved
boundary, as shown in Fig. 12(a). Triangular elements with aspect ratio
of greater than 100 are skipped and the rest of the elements are optimised
as shown in Fig. 12(b). The skipped elements (circled in Fig. 12(b)) are
later revisited and dealt with by moving the boundary nodes of the mesh
(nodes 13, 38 and 44) onto the domain boundary. It can be also seen that
movement of nodes 39 and 40 onto the domain boundary improves ac-
curacy of the geometry representation. These two nodes are mid-nodes
which were added to the mesh during optimisation.

Meshes in Fig. 12 show more elements are required at the top in order
to capture the narrowing shape of the domain. Therefore, ASP20 and
ASP48 can be used to adapt to the change. These two reference domains
consist of sample points which are distributed non-uniformly. More
sample points are located on the upper half of the domain compared to
the lower half. Fig. 13 shows adaptive sample point generation for the
quadrant of a circle by using ASP20 and ASP48. Resultant optimised
meshes are shown in Fig. 14.

4.2. Example 2: meshing of quadrant of hollow cylinder

Quadrant of a hollow cylinder as shown in Fig. 15(a) is taken as the
problem domain to be meshed. The domain is enclosed by two constant
lines and 2 curves, which does not fulfil the requirements of Fubini's
theorem as mentioned in previous section 2. Therefore, the domain is
decomposed into two regions, named R1 and R2 as shown in Fig. 15(b).

Sample points for the problem domain are generated by mapping
reference sample points to R1 and R2, independently. Resultant
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Fig. 28. Parameterisation of free formed curves (a) approximation of the curves by using Bezier curves. (b) resultant discretisation based on Bezier curves.

distribution of the sample points for the entire domain by using SP13 and
SP41 (separately) are as shown in Fig. 16(a) and (b), respectively.
Figs. 17(a) and 18(a) show the triangulation of the mapped sample points
and elements of poor quality are greyed. Some redundant triangles which
are generated during the initial mesh creation are deleted during opti-
misation. The coarse mesh is optimised by relocating nodes 9 and 20.
Optimised mesh is shown in Fig. 17(b). The optimised fine mesh as
shown in Fig. 18(b) is obtained through relocation of 10 nodes and
addition of 9 nodes. The mesh is further improved by moving the
boundary nodes of the mesh system to the domain boundary.

4.3. Example 3: meshing of a wrench

Problem domain is first decomposed into several regions according to
the Fubini's theorem as shown in Fig. 19. These regions are later mapped
with sample points via SP13 and SP41. Both SP13 and SP41 are used
together in order to obtain uniform distribution of the sample points. The
tip of the head needs to be triangulated by using small elements with
higher density in order to accurately represent the geometry accurately.
Initial mesh with flawed elements (greyed) for the head is shown in
Fig. 20. Close up view of the tip is shown in Fig. 21. Corresponding
optimised meshes are shown in Figs. 22 and 23, respectively. Similarly,
initial and optimised meshes for the socket are shown in Figs. 24 and 25,
respectively.

4.4. Example 4: meshing of a free formed curve

In this example, a domain with free formed curves and linear side is
used to demonstrate application of the proposed techniques. The domain
is as shown in Fig. 26(a). Parametric equations for the curves are not
available by default. Quadrangles are formed at the background to
decompose the problem domain according to the Fubini's requirements,
as shown in Fig. 26(b). This technique is similar to initialisation tree and
quadtree-like background mesh (techniques described in sections 1.1.6
and 1.1.10). There are two ways to generate sample points for the
boundaries. One is by assuming the curves as linear lines and later the
sample points are either moved or added to the boundaries, or parametric
equations for the curve can be obtained by using Bezier curves and data
fitting. The parametric equations can then be used in Eq. (1) to place the
sample points onto the curve boundaries. The first method is presented
here, while the second method is briefly described at the end of this
section. Initial mesh generation is shown in Fig. 27(a) and corresponding
optimised mesh is shown in Fig. 27(b).

Parameterisation of the free formed curves can be done by using
Bezier curves and data fitting. Free formed curves can be approximated
by using Bezier curves by altering position of the control points until
desired accuracy is obtained, as shown in Fig. 28(a) (Mathematica
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function for Bezier curve is “BegierCurve”). Total of 4 Bezier curves (each
with four control points) are used to represent the curves. Coordinates of
the control points are later used to compute sample points on the curves
(discretisation). Resultant discretisation (sample points on the curves) is
shown in Fig. 28(b). Coordinates of these boundary sample points can
then be parameterised by using nonlinear data fitting function in Math-
ematica, called “NonlinearModelFit”.

5. Conclusions

New techniques for generation of sample points and optimisation of
resultant meshes have been successfully tested and validated in this
work. The techniques presented in this work have advantages and dis-
advantages as compared to other existing techniques. Advantages of the
techniques proposed in this work are:

a. The elements in the mesh is guaranteed to be within the specified
range (aspect ratio of less than 2 and minimum skewness of more than
45°), since optimisation is carried out onto the triangular elements
directly and not onto the distribution of the sample points.

b. Sample points can be located directly onto the domain boundaries,
with the help of surface parameterisation.

c. Modelling and execution of Eq. (1) in Mathematica is simpler and
faster, since the mapping involves fully numerical algorithms (sym-
bolic manipulation has been eliminated entirely) [4].

d. Complex density functions are not required, since adaptive mesh
generation can be formed through background octree mesh or by
altering distribution of sample points in the reference domain (such as
ASP20 and ASP48).

e. Complex optimisation algorithms such as molecular dynamics, par-
ticle dynamics, Monte Carlo and other physics based optimisations
are avoided.

Disadvantages of the techniques are:

a. Iterative optimisation.
b. Requires partitioning of the problem domain based on Fubini's
theorem.

Further work can be done based on the following:

a. Distribution and number of sample points in the reference domains
can be altered to obtain different results.

b. Orientation of ASP20 and ASP48 can be changed through rotations
(multiples of 90°), in order to obtain adaptive mesh at different re-
gions within a domain.
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