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Abstract 

Background: Ferula L. is one of the largest and most taxonomically complicated genera as well as being an impor‑
tant medicinal plant resource in the family Apiaceae. To investigate the plastome features and phylogenetic relation‑
ships of Ferula and its neighboring genera Soranthus Ledeb., Schumannia Kuntze., and Talassia Korovin, we sequenced 
14 complete plastomes of 12 species. 

Results: The size of the 14 complete chloroplast genomes ranged from 165,607 to 167,013 base pairs (bp) encoding 
132 distinct genes (87 protein‑coding, 37 tRNA, and 8 rRNA genes), and showed a typical quadripartite structure with 
a pair of inverted repeats (IR) regions. Based on comparative analysis, we found that the 14 plastomes were similar in 
codon usage, repeat sequence, simple sequence repeats (SSRs), and IR borders, and had significant collinearity. Based 
on our phylogenetic analyses, Soranthus, Schumannia, and Talassia should be considered synonymous with Ferula. Six 
highly divergent regions (rps16/trnQ-UUG , trnS-UGA /psbZ, psbH/petB, ycf1/ndhF, rpl32, and ycf1) were also detected, 
which may represent potential molecular markers, and combined with selective pressure analysis, the weak positive 
selection gene ccsA may be a discriminating DNA barcode for Ferula species.

Conclusion: Plastids contain abundant informative sites for resolving phylogenetic relationships. Combined with 
previous studies, we suggest that there is still much room for improvement in the classification of Ferula. Overall, our 
study provides new insights into the plastome evolution, phylogeny, and taxonomy of this genus.
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Background
Ferula L., a perennial single- or multi-bearing herb in 
the family Apiaceae, contains approximately 170 species 
mainly distributed in the Mediterranean region of south-
ern Europe, northern Africa, Iran, Afghanistan, Cen-
tral Asia, Siberia, Russia, India, and Pakistan [1]. Some 

Ferula species can secrete aromatic resins that have the 
aroma of onions and garlic, and these aromatic resins 
have insecticidal and fatigue-reducing properties, can be 
used to treat stomach diseases, dyspepsia, and abdominal 
pain, and is a plant resource with potentially important 
medicinal value [2–5].

Due to the similar morphologies and wide distribution 
of its constituent species, Ferula is recognized as one of 
the most taxonomically complicated genera within the 
Apiaceae [5–8]. Ferula was originally divided into three 
sections, Euferula Boiss., Peucedanoides Boiss., and 
Scorodosma Bunge [9], and later into four subgenera, 
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Scorodosma (Bunge) Boiss., Narthex (Falc.) Drude, 
Soranthus Ledeb., and Euryangium (Kauffm.) Drude [10]. 
Fifty years later, Korovin [11] systematically divided the 
genus into six subgenera according to fruit, inflorescence, 
petals, and the number of vitta in fruits, namely Scoro-
dosma (Bunge) Drude, Merwia (B. Fedtsch.) Korovin 
(including the sections Saprosmia Korovin, Phaco-
carpa Korovin, and Discicarpa Korovin), Narthex (Falc.) 
Drude (including the sections Paleonarthex Korovin 
and Neonarthex Korovin), Euferula (Boiss.) Korovin 
(including the sections Phyllites Korovin and Anatri-
ches Korovin), Peucedanoides (Boiss.) Korovin (includ-
ing the sections Xeronarthex Korovin and Macrorrhiza 
Korovin), and Dorematoides (Rgl. et Schmalh.) Korovin 
[11]. This arrangement was met with both approval [12] 
and opposition [13–15]. Safina and Pimenov [8] sug-
gested that the genus Merwia was not naturally mono-
phyletic and should be reduced as a section. Integrating 
the available research, a new classification system was 
subsequently proposed based on the nuclear ribosomal 
(nr) DNA internal transcribed spacer (ITS) and three 
plastid regions (rps16 intron, rpoC1 intron, and rpoB-
trnC) with a total of four subgenera, namely Sinoferula 
Spalik, Puchałka & M.Panahi, Safinia Spalik, M.Panahi 
& Puchałka, Ferula (including the sections Ferula and 
Stenocarpa Puchałka & Spalik), and Narthex (Falc.) 
Drude (including the sections Glaucoselinum (Schis-
chk.) Pimenov, Macrorrhiza Korovin, Soranthus (Ledeb.) 
Pimenov, Peucedanoides Boiss., Pachycarpa (Korovin) 
Banasiak, Euryangium (Kauffm.) Pimenov, Scorodosma 
(Bunge) Boiss., and Merwia (B. Fedtsch.) Koso-Pol.) [16]. 
However, this system still has many problems, such as the 
incongruence between nrDNA and plastid DNA as well 
as the chaotic interspecific relationship within the sec-
tions Merwia, Scorodosma, and Peucedanoides.

Moreover, the relationship between Ferula and some 
neighboring genera has been debated frequently, espe-
cially in the cases of Soranthus Ledeb., Schumannia 
Kuntz., and Talassia Korovin. Soranthus was established 
as a monotypic genus by Ledebour [17], with S. sibiricus 
(Willd.) Koso-Pol. considered a combination based on F. 
sibirica Willd. as published in 1798. However, this taxo-
nomic treatment was not accepted, and Soranthus was 
subsequently merged into Ferula by Bunge [18], Drude 
[10], Safina and Pimenov [14], and Piminov [1]. Of specific 
note, Soranthus is recognized as a separate genus in the 
Flora of the Soviet Union [19], the Flora of China [20], and 
the Flora Xinjiangensis [21]. The same situation occurs in 
Schumannia, which was established as a monotypic genus 
with the type S. turcomanica Kuntz. [22]. S. turcomanica 
is a later homonym of Ferula karelinii Bunge, published 
by Bunge in 1851. In 1947, Korovin described the replace-
ment Schumannia karelinii (Bunge) Korovin; however, 

Ferula karelinii was also listed within Ferula by Bunge 
[18], Drude [10], Safina and Pimenov [14], Piminov [1], 
and Tojibaev et al. [23], but not in the Flora of the Soviet 
Union [19], the Flora of China [20], or the Flora Xinjian-
gensis [21]. Talassia renardii (Regel & Schmalh.) Korovin 
and T. transiliensis (Herder) Korovin, which were isolated 
from Peucedanum transiliensis Regel & Herder from the 
genus Peucedanum L. [24], were recorded in the Flora 
of Kazakhstan and subsequently transferred to Ferula 
by Pimenov [25] and admitted by Govaerts et  al. [26]. 
However, Talassia has also been listed as an independ-
ent genus in some Chinese floras [20, 21]. In addition, 
some studies have suggested that Schumannia should be 
merged with Soranthus based on their fruit, pollen mor-
phology, and serological investigations [27, 28]. Recentlly, 
some molecular phylogeny based on the relatively limited 
number of nrDNA and cpDNA sequences indicated that 
Soranthus, Schumannia, and Talassia were embedded in 
Ferula, but show low support values [7, 16, 29].

Chloroplasts are independent organelles in plant cells 
that have their own complete set of genomes and typi-
cally covalently closed circular DNA, which exists in 
cells as multiple copies [30]. The chloroplast genomes of 
higher plants have a highly conserved tetrad structure 
involving inverted repeat sequences (IRs) and large sin-
gle-copy (LSC) and small single-copy (SSC) regions [31]. 
Chloroplast genomes are relatively conserved in terms 
of gene number and sequence in terrestrial plants [32]. 
The sizes of chloroplast genomes are generally within 
the range of 115–165  kb, and genome size variation is 
mainly affected by reverse repeat length variation. Addi-
tionally, chloroplast genomes usually exhibit uniparental 
inheritance and low nucleotide substitution rates [33]. 
At present, chloroplast genome sequences and nuclear 
genome sequences can be obtained using shallow whole 
genome sequencing technology. This is considered an 
effective means of improving the rate of species identifi-
cation and has been developed as a tool for plant phylo-
genetic studies at different taxonomic levels [34–42]. For 
example, the complete plastomes and nrDNA sequences 
obtained based on shallow genome sequencing have 
greatly improved the species identification rate of Rhodo-
dendron, which is also difficult to classify [43]. Thus, the 
complete plastomes might insight into the phylogenetic 
relationships of Ferula and its neighboring genera.

Here, we used plastomes to infer the phylogenetic 
relationships between Ferula and its confused neigh-
boring genera. Fourteen newly sequenced plastomes 
of Ferula (including Soranthus, Schumannia, and 
Talassia) were analyzed to (1) conduct comprehensive 
research on the Ferula chloroplast genome; (2) identify 
hotspot regions, microsatellite types, and compara-
tive genomic divergence; (3) analyze the relationships 
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between Ferula, Soranthus, Schumannia, and Talas-
sia based on their complete chloroplast genomes; and 
(4) serve as a reference for subsequent phylogenomic 
studies of the genus Ferula.

Results
Chloroplast genome features
The 14 complete cp genomes ranged from 165,607 to 
167,013 bp. Newly sequenced Ferula chloroplast genome 

maps are shown in Fig. 1. All cp genomes possessed the 
typical quadripartite structure of angiosperms, consist-
ing of a pair of inverted repeat regions (IRs: 31,392–
31,880  bp) and a circular molecular structure (Fig.  1; 
Table  1). All 14 cp genomes possessed 133 distinct 
genes arranged in the same order, including 87 protein-
coding genes, 37 tRNA genes, and eight rRNA genes. 
Of these, 14 protein-coding genes and eight tRNAs 
contained at least one intron. The genes were classified 
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into the following four groups based on their functions: 
(1) 74 self-replication genes; (2) 45 photosynthesis-
related genes (in Rubisco, ATP synthase, Photosystem 
I, cytochrome b/f complex, photosystem II, and NADH 
dehydrogenase groups); and 13 other genes including 
(3) six genes with known functions (matK, cemA, accD, 
ccsA, infA, and clpP) and (4) seven genes with unknown 
functions (ycf1(2), ycf2(2), ycf3, ycf4, and ycf15) (Table 2). 
The total GC content for 12 sequenced species was 37.8–
38.0% (Table 1).

Codon usage
The RSCU values of all codons are shown in Fig. 2 in the 
form of a heatmap; the red values indicate higher RSCU 
values, and the blue values indicate lower RSCU values. 
For Ferula species, the most commonly used transcrip-
tion initiation codon was AUG, the most commonly used 
termination codon was UAA, and the initiation codon 
AUU only existed in F. olivacea. Except for the initiation 
codon and termination codon, the most used transcrip-
tion codon was UTA, and AGC showed the lowest RSCU 
values; the most abundant amino acid (AA) was leucine, 
while cysteine was the lowest frequency AA. Except for 
tryptophan, all AAs had more than one synonymous 
codon, and three AAs (leucine, serine, and arginine) 
had the most (six) synonymous codons. The use of one 
codon, UGG, showed no bias (RSCU = 1) (Table S2).

Repeat structure analysis
Forward, palindromic, reverse, and complementary 
repeats were detected in 14 Ferula plastomes. Except 
for IR repeats, 837 repeats were identified in total; the 

numbers of forward repeats (398) and palindromic 
repeats (421) were much higher than the complement 
repeats (7) and reverse repeats (11). Reverse and comple-
mentary repeats were missing in four samples (F. sibirica 
1, F. kelifi, F. ovina, and F. karelinii 3). F. kelifi contained 
the maximum number of repeats (94), whereas F. equise-
tacea and F. olivacea contained the least (46) (Table S3). 
A total of 1,061 SSRs were identified in the 14 species, 
six of which did not have pentanucleotides, and hexa-
nucleotides were only found in F. olivacea. Additionally, 
mononucleotides were most frequent followed by dinu-
cleotides, tetranucleotides, trinucleotides, pentanucleo-
tides, and hexanucleotides. F. transiliensis-1 contained 
the highest number of SSRs (82), whereas F. oopoda con-
tained the least (69). Poly (A/T) SSRs were typically most 
common, while poly (C/G) repeats were extremely rare 
(Table S4).

Comparisons of border and sequence identity
Single-copy and inverted repeat borders were exam-
ined; F. kelifi and F. equisetacea harbored the longest 
(31,880 bp) and shortest (31,392 bp) IR regions, respec-
tively. Among all 14 Ferula species, rps19 is embedded in 
the LSC/IRb junction region and only 81 bp with the IRb 
overlap; ycf1 spans SSC/IRa and occupies a long section 
in both regions; and trnH occurs in the LSC region and is 
only 5 bp away from IRa, except for F. sibirica 3 (11 bp). 
The variety of IRb/SSC is relatively high, most (or all) of 
which occur in the SSC region, and the overlap with the 
IRb region varied from -18 to 16 bp (Fig. 3).

According to the sequence identity plots, the 14 
sequences were almost identical in their genetic 
structure and showed a very high degree of 

Table 1 Newly sequenced and complete chloroplast genomes of Ferula species

Sample ID Species Genome size (bp) GC content (%) LSC (bp) SSC (bp) IR (bp)

L‑6 F. gigantea 166,222 37.9 85,383 17,563 31,638

L‑12 F. equisetacea 165,607 37.9 85,231 17,592 31,392

L‑14 F. sibirica 1 166,648 37.9 85,346 17,632 31,835

L‑15 F. litwinowiana 166,554 38 85,226 17,614 31,857

L‑23 F. kelifi 166,712 38 85,323 17,629 31,880

L‑29 F. transiliensis 1 166,547 38 85,306 17,599 31,821

L‑58 F. renardii 166,520 38 85,317 17,559 31,822

L‑59 F. oopoda 166,565 38 85,328 17,595 31,821

L‑60 F. fedtschenkoana 166,445 38 85,205 17,568 31,836

L‑88 F. ovina 166,450 38 85,341 17,561 31,774

L‑101 F. olivacea 167,013 37.8 85,598 17,687 31,864

L‑108 F. transiliensis 3 166,520 38 85,293 17,585 31,821

L‑109 F. sibirica 3 166,644 37.9 85,348 17,626 31,835

L‑111 F. karelinii 166,037 37.9 84,839 17,592 31,803
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conservation (Fig.  4). To determine divergent hot-
spots, nucleotide diversity (Pi) values were calcu-
lated (Fig. 5, Table S5), yielding a maximum value of 
0.01019 in ycf1. The SSC area showed the maximum 
nucleotide diversity followed by the LSC region, and 
the IR regions had the lowest Pi value. Additionally, 
six highly divergent regions (> 0.006) were detected 
in the LSC region (rps16/trnQ-UUG , trnS-UGA 
/psbZ, psbH/petB), SSC region (ycf1/ndhF, rpl32, 
ycf1), and IR region (0).

We calculated the Ka/Ks ratios of the 79 common 
protein-coding genes to reveal selection patterns 
among the protein-coding genes. The Ka/Ks ratios of 
most of the genes were less than 0.5 or could not be 
computed because either the Ka or Ks value was zero; 
three genes (ccsA, ndhC, and ycf2) had values greater 
than 1; and the total Ka/Ks ratio of all genes was 0.5331 
(Table S6). In addition, we found several annotation 
errors (ndhH and ccsA) in the previously reported 
sequences of F. sinkiangensis (MW411057).

Phylogenetic analyses
To determine the phylogenetic relationship of Soran-
thus Ledeb., Schumannia Kuntz., Talassia Korovin, and 
Ferula L., 25 chloroplast genomes were used to con-
struct maximum likelihood (ML) and Bayesian infer-
ence (BI) phylogenetic trees. These included 10 samples 
of 10 Ferula species (including F. sinkiangensis, GenBank 
accession no. MW411057), two samples of Soranthus, 
two samples of Schumannia, one sample of Talassia, and 
nine other Apiaceae genera, i.e., Caucalis L., Daucus L., 
Cuminum L., Anthriscus Pers., Aegopodium L., Cyclosper-
mum Lag., Apium L., Cryptotaenia DC., and Oenanthe 
L. with an outgroup of Diplopanax stachyanthus Hand.-
Mazz (Fig. 6).

The ML and BI topologies were highly supported. 
Ten selected genera formed 10 monophyletic groups, 
all of which had support values of 100 or 1 in the ML 
and BI trees, respectively. Ferula was divided into three 
main lineages (A, B and C) with maximal support 
(PP = 1, BS ≥ 97%), and three genera (Soranthus meyeri, 

Table 2 List of genes in the chloroplast genomes of the examined Ferula species

Notes:  Genea: Gene with one intron

Geneb: Gene with two introns
c Gene: Pseudo gene

Gened: Number of copies of multi-copy genes

Category Gene group Gene name

Photosynthesis Subunits of photosystem I psaA, psaB, psaC, psaI, psaJ

Subunits of photosystem II psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbJ, psbK, psbL, psbM, psbN, 
psbT, psbZ

Subunits of NADH dehydrogenase ndhAa,  ndhBad, ndhC, ndhD, ndhE, ndhF, ndhG, ndhH, ndhI, ndhJ, ndhK

Subunits of cytochrome b/f complex petA,  petBa, petD, petG, petL, petN

Subunits of ATP synthase atpA, atpB, atpE,  atpFa, atpH, atpI

Large subunit of rubisco rbcL

Subunits photochlorophyllide reductase ‑

Self‑replication Proteins of large ribosomal subunit rpl14,  rpl16a,  rpl2ad, rpl20, rpl22,  rpl23d, rpl32, rpl33, rpl36

Proteins of small ribosomal subunit rps11,  rps12bd, rps14, rps15,  rps16a, rps18, rps19, rps2, rps3, rps4,  rps7d, rps8

Subunits of RNA polymerase rpoA, rpoB,  rpoC1a, rpoC2

Ribosomal RNAs rrn16d,  rrn23d, rrn4.5d,  rrn5d

Transfer RNAs trnA‑UGC ad, trnC‑GCA, trnD‑GUC, trnE‑UUC, trnF‑GAA, trnG‑GCC, trnG‑UCC a, 
trnH‑GUG, trnI‑CAU d, trnI‑GAU ad, trnK‑UUU a, trnL‑CAA d, trnL‑UAA a, trnL‑UAG, 
trnM‑CAU, trnN‑GUU d, trnP‑UGG, trnQ‑UUG, trnR‑ACG d, trnR‑UCU, trnS‑GCU, 
trnS‑GGA, trnS‑UGA, trnT‑GGU, trnT‑UGU, trnV‑GAC d, trnV‑UAC a, trnW‑CCA, 
trnY‑GUA, trnfM‑CAU 

Other genes Maturase matK

Protease clpPb

Envelope membrane protein cemA

Acetyl‑CoA carboxylase accD

c‑type cytochrome synthesis gene ccsA

Translation initiation factor infA

other ‑

Genes of unknown function Conserved hypothetical chloroplast ORF ycf1, cycf1,  ycf15d,  ycf2d,  ycf3b, ycf4
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Schumannia karelinii, Talassia transiliensis) were clus-
tered into Ferula. Lineage A contained 11 Ferula spe-
cies, S. meyeri, T. transiliensis, and S. karelinii. Within 
this lineage, S. sibirica and S. karelinii are sister species, 
and F. sinkiangensis and F. litwinowiana are sister species. 
Lineages B and C contained only F. equisetacea and F. oli-
vacea, respectively. Moreover, Ferula and four genera of 
Apiaceae formed a monophyletic group.

Discussion
Comparison of Ferula plastid genome
Plastomes are considered an effective means used in 
taxonomic and evolutionary studies to assess evolu-
tionary relationships and compare genome structure at 
different taxonomic levels [34–42]. Generally, the plas-
tomes are highly conserved in genome structure, gene 
order, and gene content [32]. In this study, all 14 plasto-
mes are divided into four regions consisting of an LSC 
(84,839–85,598 bp), an SSC (17,559–17,687 bp), and two 
IRs (31,392–31,880 bp). The comparative analysis of 14 
complete plastomes showed great similarities in terms 
of genome length (165,607–167,013  bp), structure, IR/
SC borders and GC content (37.8–38.0), the equal num-
ber of CDs, rRNA, and tRNA genes, and no rearrange-
ment or a good collinearity relationship among them 
(Fig. 1; Table S1), indicated that the Ferula are relatively 
conserved.

Although the IR region is thought to be the most con-
served region in the chloroplast genome, contraction 
and expansion of the IR region is common, and is the 
main reason for the variation in chloroplast genome size 
[44–46]. The junction of IRb/LSC located at ycf2 gene is 
defined as the type without any expansion or contrac-
tion [47]. In this study, we observed that 14 sequenced 
complete plastomes exhibited significant IR expansion 
(Fig. 3). All the species expanded into rps19 at the IRb/
LSC junction region, contributing to rps19 fragment in 
the IRa/LSC region, and they also expanded into ycf1 
at the IRb/SSC junction region, leading to an overlap 
between the ycf1 pseudo-gene and ndhF. This was con-
sistent with previous studies, in which the pseudogenes 
ycf1 and rps19 were produced by contraction and expan-
sion of the IR region in angiosperms [48–50].

RSCU value is the ratio of specific codon usage fre-
quency to desired frequency, which can eradicate the 
influence of amino acid composition on codon usage and 
promotes the detection of synonymous codons [51, 52]. 
Generally, the content of A/T was higher than that of G/C 
in plastomes codons and A/T is preferred in the third 
codon position [53], the bias also showed in the Ferula 
plastomes (Fig. 2). Leucine was encoded by 6 codons, the 
order of codon preference was UTA > CUT > UTG > CUA 
> CUC > CUG, which following previous studies [54, 55]. 
The analysis of RSCU can provide a basis for studying the 
specific mechanism of synonymous codon bias preference 

Fig. 2 Relative synonymous codon usage (RSCU) values of all merged protein‑coding genes for 14 Ferula plastomes. Color key: red values indicate 
higher RSCU values, and blue values indicate lower RSCU values. M = initiation codon, * = termination codon, I = l‑isoleucine codon, and V = Valine 
codon
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in different species, which plays a crucial role in molecu-
lar biology basis research [56, 57].

As a primary source of molecular markers, SSRs have 
been widely used in Ferula genetic diversity studies 
because of their high polymorphism rate and abundant 
variation at the species level [58, 59]. In our study, we 

identified 837 repeats (Table S3) and 1,061 SSRs (Table 
S4) in the 14 Ferula samples. In which, the single nucleo-
tide and dinucleotide repeats were common, which is 
consistent with the results of previous studies [55, 60]. In 
general, during the evolutionary process of species, most 
repeated sequences in the genome are distributed in the 

Fig. 3 Comparison of the border regions of the 14 studied Ferula plastomes
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non-coding region and retain as little genetic information 
as possible to improve its genetic efficiency. Therefore, 
repeat sequences play an important role in species evolu-
tion [61–63]. The repeats found in the 12 analyzed spe-
cies indicate genetic variation among the Ferula species. 
In addition, we also observed that the poly (A/T) SSRs 
were typically most common, while poly (C/G) repeats 
were extremely rare. These results are consistent with 
those of a previous study and verify the hypothesis that 
cpSSRs generally consist of short polyadenine (polyA) or 
polythymine (polyT) repeats and rarely contain tandem 
guanine (G) or cytosine (C) repeats [64–66].

Divergent hotspots play a significant role in species 
identification and phylogenetic information. Moreover, 
IR regions often show lower sequence divergence than 
SSC and LSC regions [67], this probably due to higher 
mutation rates lead to rapid genome evolution compared 
to other regions [68]. In our study, this phenomenon 

was evident that the SSC area showed the maximum 
nucleotide diversity followed by the LSC region, and 
the IR regions had the lowest Pi value (Fig. 5, Table S5). 
And rps16/trnQ-UUG , trnS-UGA /psbZ, psbH/petB, 
ycf1/ndhF, rpl32, ycf1 were detected as the most diver-
gent regions (Pi > 0.006) across all tested plastomes, sug-
gesting that these variable loci can be used as important 
references and potential molecular markers for future 
studies on the evolution and diversity in Ferula. Gen-
erally, the Ka/Ks ratio is used to divide genes into posi-
tive selection, neutral evolution, and purification, with 
a limit of one [69]. Previously studies indicated that Ka/
Ks ratios mostly are lower due to synonymous nucleo-
tide substitutions rates that occur more often compared 
to nonsynonymous substitutions rates [70]. The genes 
with the highest Ka/Ks variability can be used as candi-
date barcodes to diferentiate species and in the future 
applied to perform phylogenetic and phylogeographic 

Fig. 4 Sequence identity plots of the newly sequenced chloroplast genomes
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Fig. 5 Sliding window analysis of the newly sequenced chloroplast genomes of Ferula species

Fig. 6 a Branch length diagram of the phylogenetic tree. b Phylogenetic tree of the 25 species inferred from maximum likelihood (ML) and 
Bayesian inference (BI) analyses based on the complete plastomes. The Shimodaira‑Hasegawa‑like support values approximate the likelihood ratio 
test (only F. oopoda and F. gigantea had SH‑aLRT values below 80 in the terminal branch), and ultrafast bootstrap values (UFBS ≥ 95%, on the right) 
are shown on the branches. Green indicates two sequences of S. meyeri (F. sibiraca), blue indicates one sequence of S. karelinii (F. karelinii), and red 
indicates two sequences of T. transiliensis (F. transiliensis)
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analyses [71]. Our study suggests that 76 common pro-
tein-coding genes were under purifying selection, which 
indicates the typical evolutionary conservation of plant 
plastid genes [55, 72, 73], and three genes (ccsA, ndhC, 
ycf2) were under weak positive selection (Table S6), ycf2 
have been proved to be pseudogenized in many studies 
[74] and ccsA was located in one of the most divergent 
regions, possibly as a discriminating DNA barcode for 
Ferula species.

The relationships between Soranthus, Schumannia, Talassia 
and Ferula
Based on the anatomical morphological characteristics of 
sclerosing cell layers in the mesocarp, the genera Soran-
thus, Schumannia and Talassia have been proposed to be 
located under the genus Ferula [25, 75], all of which are 
recognized in the Flora of China [76]. It is easily distin-
guished Ferula from Soranthus and Schumannia by gross 
morphology and inflorescence structure, combined with 
the presence of luteolin 7-glycosides in the leaves, that 
seems reasonable to combine the two genera into Soran-
thus [77]. Also, Talassia tends to be incorporated into 
Ferula because insignificant morphological differences, 
although a large extent similarity between T. transilien-
sis and F. conocaula in the spectrum of leaf flavonoids 
[77]. Through a comparative study of plant external mor-
phology, fruit anatomy, and pollen morphology, Qin and 
Shen [27] suggest that Talassia should be an independent 
genus and agreed to combine the other two monotypic 
genera. However, the above four genera have been sug-
gested to merge into one genus according to the presence 
or absence of coumarins [78]. Recentlly, the molecular 
phylogeny of Ferula constructed Kurzyna-Młynik et  al. 
[7] and Panahi et  al. [16, 29] based on nrDNA ITS and 
cpDNA sequences (the rps16 intron, the rpoC1 intron 
and the rpoB-trnC) indicated that Soranthus, Schu-
mannia, and Talassia were embedded in Ferula with 
low support values. In our study, 15 sequences (includ-
ing S. meyeri, S. karelinii and T. transiliensis) covered 
all of the branches except the subgenera Ferula (includ-
ing section Ferula and section Stenocarpa) according 
to the latest Ferula phylogenetic tree [16]. Our results 
show that all those three species representing the genera 
Soranthus, Schumannia and Talassia were embedded in 
Ferula based on phylogenetic trees with high bootstrap 
values (Fig. 6). The species S. meyeri and S. karelinii were 
clustered into section Soranthus (PP = 1, BS = 100%), 
and T. transiliensis and F. renardii clustered into section 
Glaucoselinum (PP = 1, BS = 100%), which was coinci-
dent with Panahi [16] while with higher support values. 
Therefore, we support the standpoint of sinking Soran-
thus Ledeb., Schumannia Kuntz., Talassia Korovin into 
synonymy of Ferula L.

Plastomes might provide new insight on phylogenetic 
relationships in Ferula
As one of a complex taxonomic genus within Apiaceae, 
the system of Ferula is paid attention at the morpho-
logical and molecular levels [7, 9–11, 13–16]. All those 
efforts on taxonomic systems have contributed greatly to 
understanding of the genus Ferula. Kurzyna-Młynik et al. 
[7] published the first molecular phylogeny for Ferula to 
solve the relationship among Dorema, Ferula and Leutea, 
in which nrDNA ITS sequences were used to construct a 
phylogenetic tree revising Dorema and Leutea to Ferula 
and transferring Ferula to Scandiceae from Peucedaneae. 
Later, nrDNA ITS sequences and three fragments of 
cpDNA (the rps16 intron, the rpoC1 intron and the rpoB-
trnC) were used to explore the relationship among the 
three genera, and it was found that Dorema was incor-
porated into Ferula and Leutea independently [16, 29]. 
Although these results provide an important foundation 
for the identification and classification of Ferula species, 
all previous studies have been based on relatively short 
sequences with low support values owing to the relatively 
limited number of nuclear/chloroplast genes. In addition, 
nrDNA and plastid DNA are highly incongruent, and 
intense reticulate evolution in Ferula means that propos-
ing an unambiguous hierarchical classification system 
is almost impossible [16]. Furthermore, many species of 
Ferula have not been specifically addressed, and many 
only broadly grouped into branches.

Notably, studies based on plastomes can provide new 
insights into the phylogenetic relationships between spe-
cies. For example, Clerodendranthus spicatus is closely 
related to two Lamiacea species, Tectona grandis L.f. and 
Glechoma longituba (Nakai) Kuprian. [79]; Juglandaceae 
is monophyletic, and Carya cathayensis Sarg. is a sister 
to C. kweichowensis Kuang & A.M.Lu and C. illinoinensis 
(Wangenh.) K.Koch [66]; and Fagus longipetiolata See-
men and F. engleriana Seemen ex Diels form a close rela-
tionship [41]. Here, we performed phylogenetic analyses 
for Ferula and other genera of Apiaceae using complete 
plastomes, and we recognized Ferula as a monophyletic 
group with the integration of Soranthus, Schumannia, 
Talassia (PP = 1, BS = 100%). Within Ferula, we recov-
ered three main lineages in agreement with Panahi et al. 
[16], who proposed a new classification based on mor-
phological characteristics and sequence data (nrDNA 
ITS sequences and three cpDNA fragments). This clas-
sification divides Ferula into four subgenera and 10 sec-
tions. In addition, Caucalis, Daucus, Cuminum, and 
Anthriscus were all typical of Scandiceae and formed a 
monophyletic system with Ferula. This provides strong 
evidence and support for the transfer of Ferula from the 
Peucedaneae to the Scandiceae [7]. However, we also 
observed some differences. When added into Panahi 
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et  al.’s phylogenetic tree, F. sinkiangensis was clustered 
into the Scorodosma branch with the sister species F. 
kelifi. Based on our results, F. sinkiangensis is separated 
from F. kelifi, being clustered with F. litwinowiana in the 
Merwia branch. Further research is needed to confirm 
this phenomenon. Overall, our work demonstrates that 
plastome studies can provide highly useful information 
for future phylogenetic, taxonomic, and evolutionary 
studies of Ferula.

Conclusion
We obtained 14 complete cp genome sequences from 12 
Ferula species (including Soranthus, Schumannia, and 
Talassia) and compared them based on genome struc-
ture, gene content, and gene sequences. Some hotspots in 
the LSC and SSC regions were identified, which may pro-
vide useful markers for phylogenetic analysis. Notably, 
the Gene ccsA can be used as a DNA barcode for Ferula 
species. Our phylogenetic analysis showed a tight con-
nection between Soranthus Ledb., Schumannia Kuntz., 
Talassia Korov., and Ferula L., indicating that treatment 
as separate genera is unreasonable. Instead, their phylo-
genetic relationship, which is now well resolved, strongly 
supports that they can be considered synonymous with 
Ferula. This new genomic information not only contrib-
utes to the better development and utilization of Ferula 
but also provides a basis for further understanding the 
evolutionary, genetic, and phylogenetic relationships of 
this important genera.

Materials and methods
Plant materials and DNA extraction
Fourteen samples were collected from the field and her-
baria (Table S1). Of these, five specimens were taken 
from the specimen museum of the Xinjiang Institute of 
Ecology and Geography, Chinese Academy of Sciences 
(XJBI), one was obtained from the Komarov Botanical 
Institute of RAS (LE), five specimens were taken from the 
National Herbarium of Uzbekistan (TASH), and three 
were collected from the field in Tajikistan. Leaf samples 
were dried in silica gel and stored at -20  °C for DNA 
extraction. DNA extraction was performed using a plant 
genome extraction kit (DP320) from Tiangen Biochemi-
cal Technology (Beijing) according to the manufacturer’s 
instructions.

DNA sequencing and genome assembly and annotation
The extracted DNA was sent to a sequencing company 
for automatic sequencing using the NEBNext Ultra II 
DNA Library Prep Kit for Illumina (New England BIo-
labs) [80]. DNA extracts were quantified and sheared 
into approximately 500 base pair (bp) fragments for 
library construction using standard protocols (NEBNext 

Ultra IITMDNA Library Prep Kit for Illumina). Paired-
end sequencing from both ends of 150 bp fragments was 
performed on the Illumina HiSeq X Ten platform at the 
Molecular Biology Experiment Center, Germplasm Bank 
of Wild Species in Southwest China, to generate no less 
than 2 GB data for each individual.

The paired-end reads were filtered using the GetOr-
ganelle pipeline (https:// github. com/ Kingg erm/ GetOr 
ganel le) to obtain plastid-like reads [81] and then 
assembled using SPAdes version 3.10 [82]. A com-
plete circular assembly graph was checked and fur-
ther extracted using Bandage version 0.8.1 [83]. The 
genomes were automatically annotated using CpGA-
VAS [84], PGA (https:// github. com/ quxia ojian/ PGA), 
and then manually adjusted using Geneious version 
9.1.7 [85]. The chloroplast sequences generated in 
this study have been submitted to GenBank (Table 
S1). Circular genome maps of all 14 plastomes were 
also obtained using the Organellar Genome DRAW 
(OGDRAW) tool [86].

Codons, repeat sequences, and simple sequences repeat 
analysis
The protein-coding genes were extracted for codon anal-
ysis. The final dataset included 86 protein-coding genes 
from each species. Codon usage and relative synonymous 
codon usage (RSCU) values were calculated using JSHY-
Cloud  (http:// cloud. genep ioneer. com: 9929). A heatmap 
of all the RSCU values of the 14 plastomes was produced 
using ClustVis [87]. Using the parameters of a Hamming 
distance of 3, a minimum repeat size of 30 bp, and a max-
imum repeat size of 5,000 bp, REPuter was used to iden-
tify the size and location of four types of repeat sequences 
(i.e., forward, palindromic, reverse, and complement) 
[88]. Simple sequence repeats (SSRs) were detected using 
the online MISA software (http:// pgrc. ipkga tersl eben. de/ 
misa/ misa. html) with minimum repeat number settings 
of 10, 5, 4, 3, 3, and 3 for mononucleotides, dinucleotides, 
trinucleotides, tetranucleotides, pentanucleotides, and 
hexanucleotides, respectively.

Genome comparison with other Ferula species 
and selective pressure analysis
Sequence divergence among the 14 chloroplast (cp) 
genomes was compared using Mafft (version 7.0) [89], 
IRscope (https:// irsco pe. shiny apps. io/ irapp/) and Mauve 
[90]. DnaSP [91] was used to calculate nucleotide diver-
gence values using the sliding window method, with a 
window length of 800 bp and a step size of 200 bp. Selec-
tive pressures were analyzed for 79 common protein-
coding genes among 15 Ferula species (including one 
published plastome). The ratio of nonsynonymous to 

https://github.com/Kinggerm/GetOrganelle
https://github.com/Kinggerm/GetOrganelle
https://github.com/quxiaojian/PGA
http://cloud.genepioneer.com:9929
http://pgrc.ipkgatersleben.de/misa/misa.html
http://pgrc.ipkgatersleben.de/misa/misa.html
https://irscope.shinyapps.io/irapp/
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synonymous nucleotide substitution rates (Ka/Ks) was 
calculated using DnaSP.

Phylogenetic analysis
We used 25 complete plastome sequences to infer the 
phylogenetic relationships of Ferula. After compari-
son with Mafft, Trimal [92], and Phylosuite [93] were 
used to trim areas with poor quality. The phylogenetic 
tree was then constructed using RaxML-HPC v.8 [94] 
and the maximum likelihood method with 1,000 rep-
licates and the GTRGAMMA model. After screening 
for the best model using jModelTest2 [95], MrBayes 
3.2.7a [96] was used to construct a Bayes tree, and the 
selected models for the complete plastome sequences 
in BI analyses were TPM1uf + I + G, and iTOL [97] 
and FigTree 1.4.2 [98] were used to construct the phy-
logenetic tree.
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