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Abstract 

Background:  Our aim was to extend traditional parametric models used to extrapolate survival in cost-effectiveness 
analyses (CEAs) by integrating individual-level patient data (IPD) from a clinical trial with estimates from experts 
regarding long-term survival. This was illustrated using a case study evaluating survival of patients with triple-class 
exposed relapsed/refractory multiple myeloma treated with the chimeric antigen receptor (CAR) T cell therapy ide-
cabtagene vicleucel (ide-cel, bb2121) in KarMMa (a phase 2, single-arm trial).

Methods:  The distribution of patients expected to be alive at 3, 5, and 10 years given the observed survival from 
KarMMa (13.3 months of follow-up) was elicited from 6 experts using the SHeffield ELicitation Framework. Quantities 
of interest were elicited from each expert individually, which informed the consensus elicitation including all experts. 
Estimates for each time point were assumed to follow a truncated normal distribution. These distributions were 
incorporated into survival models, which constrained the expected survival based on standard survival distributions 
informed by IPD from KarMMa.

Results:  Models for ide-cel that combined KarMMa data with expert opinion were more consistent in terms of sur-
vival as well as mean survival at 10 years (survival point estimates under different parametric models were 29–33% at 
3 years, 5–17% at 5 years, and 0–6% at 10 years) versus models with KarMMa data alone (11–39% at 3 years, 0–25% at 
5 years, and 0–11% at 10 years).

Conclusion:  This case study demonstrates a transparent approach to integrate IPD from trials with expert opinion 
using traditional parametric distributions to ensure long-term survival extrapolations are clinically plausible.
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Background
Health technology assessment (HTA) agencies commonly 
evaluate the cost-effectiveness of new interventions over 
a lifetime horizon. However, the follow-up data avail-
able in clinical trials for new interventions at the time 
of the evaluation are often limited. In this context, The 
National Institute for Health and Care Excellence (NICE) 
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recommends fitting alternative parametric models to 
extrapolate survival, where model selection is informed 
by visual assessment, log-hazard plots, goodness-of-fit 
statistics, and an evaluation of plausibility of the extrapo-
lations in terms of clinical validity [1, 2]. Recently, more 
flexible parametric models have been recommended for 
complex survival data [3], which are increasingly being 
proposed to assess the expected survival for new inter-
ventions, such as immunotherapies [4–6] and chimeric 
antigen receptor (CAR) T cell therapy [7]. As more flex-
ible methods are used, the need to consider the plausi-
bility of extrapolations is even more important given that 
these methods may yield less realistic shapes in terms of 
long-term hazard [3].

Jackson et al. identified the potential to integrate expert 
opinion regarding long-term survival estimates in 2017 
[8]. However, this approach has rarely [9–11] been incor-
porated in cost-effectiveness analyses (CEAs), and there 
are very few published expert elicitation studies regard-
ing time-to-event outcomes [12, 13]. Previous studies 
have elicited conditional probabilities at specific time 
points in terms of the proportion of patients who have 
experienced an event, rather than estimating survival in 
a more flexible survival model with multiple parameters 
[14, 15]. NICE has recently developed formal guidance 
regarding expert elicitation methods, including a ref-
erence protocol by Bojke et  al. (2021) regarding how to 
design, elicit, and integrate feedback from experts [13]. 
While this highlights the growing recognition regarding 
the increasing role of expert elicitation as a tool to sup-
port decision-making, there are no recommendations 
specific to survival, which is likely to be a key model 
driver.

Standard practice often involves an informal consul-
tation with experts (often 1 or more) who are presented 
with alternative survival extrapolations and asked to 
identify the most plausible model; however, this approach 
may be ‘misleading’ [16] and prone to bias [3]. In con-
trast, Cope et  al. proposed to elicit estimates of long-
term survival at multiple time points using the SHeffield 
ELicitation Framework (SHELF) [17]. This study demon-
strated the feasibility of systematically integrating long-
term survival estimates obtained from a formal expert 
elicitation study (2, 3, 4, and 5 years) with empirical clini-
cal trial data (1.5 years of follow-up) through a case study 
evaluating a CAR T cell therapy for children and young 
adults with relapsed or refractory acute lymphoblastic 
leukemia [18]. This illustrated how expert opinion could 
be incorporated using a transparent, robust, and repro-
ducible method to improve the understanding and clini-
cal plausibility of long-term survival extrapolations. To 
our knowledge, this method has only been applied in one 
NICE technology appraisal for cemiplimab for treatment 

of metastatic or locally advanced cutaneous squamous 
cell carcinoma [ID1367], where the committee identified 
that the study was ‘clearly reported and appears to have 
been well-conducted’.1

To ensure the broader application of these methods, 
additional research is required to improve their ease 
of use. Cope et  al. used fractional polynomial models 
assuming a binomial likelihood to combine the discrete 
hazards from each interval of the observed survival data 
from the clinical trial [17]. Rather than defining time 
intervals and calculating discrete hazards, using the exact 
event and censor times from the individual-level patient 
data (IPD) may improve the accuracy and align more 
closely with standard practice as suggested by Latimer 
et  al. [2]. There is also a need to expand these models 
beyond first- and second-order fractional polynomial 
models to include the parametric distributions most 
often used for extrapolation of survival in CEAs: Weibull, 
Gompertz, lognormal, log-logistic, exponential, gamma, 
and generalized gamma [18]. Therefore, the aim of this 
study was to extend the traditional parametric models 
used to extrapolate survival for CEAs by integrating IPD 
from a clinical trial with estimates from experts regarding 
long-term survival. Here, we model survival in a Bayes-
ian framework, using standard time-to-event data from a 
trial and subject the estimation to constraints determined 
by expert opinion as estimated through a structured elici-
tation exercise.

Case study
Despite improvements in earlier lines of therapy, patients 
with relapsed/refractory multiple myeloma (RRMM) 
who have received at least 3 prior therapies, including an 
immunomodulatory agent, a proteasome inhibitor, and 
an anti-CD38 antibody (i.e. triple-class exposed [TCE]) 
often relapse and have limited survival [19], which has 
driven the development of several new therapies. Ide-
cabtagene vicleucel (ide-cel, bb2121) reflects the first 
B-cell maturation antigen (BCMA)-directed CAR T cell 
therapy approved by the US Food and Drug Administra-
tion (FDA) for the treatment of TCE patients with RRMM 
who have received 4 or more prior lines of therapy [20]. 
Ide-cel has also been approved by the European Commis-
sion for the treatment of adult patients with TCE RRMM 
who have received at least 3 prior therapies, and have 
demonstrated disease progression on the last therapy 
[21]. Ide-cel demonstrated frequent, deep, and durable 
responses in TCE patients with RRMM based on the piv-
otal, phase 2, single-arm KarMMa trial (NCT03361748) 
[22]. However, at the time of HTA evaluations, the 

1  https://​www.​nice.​org.​uk/​guida​nce/​ta592/​docum​ents/​commi​ttee-​papers

https://www.nice.org.uk/guidance/ta592/documents/committee-papers
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long-term survival estimate from KarMMa was limited 
to less than 24 months of follow-up (median follow-up of 
13.3 months). This evidence is representative of the lim-
ited follow-up often available for many new interventions 
in oncology, where a novel mechanism of action makes 
it challenging to integrate external evidence regarding 
long-term survival. Therefore, this case study was used 
to illustrate how estimates from experts regarding long-
term survival can be integrated into parametric models 
that would otherwise be limited to the IPD from a clinical 
trial.

Methods
Expert elicitation
A prospective, qualitative, research study was performed 
incorporating semi-structured interviews, adapted from 
SHELF [23]. This study was conducted in accordance 
with the International Society for Pharmacoepidemi-
ology (ISPE) Guidelines for Good Epidemiology Prac-
tices. We summarize the elicitation process in Fig.  1, 
with additional details in Additional File 1. Oncologists 
and hematologists with clinical experience treating TCE 
patients with RRMM with BCMA-directed therapy were 
recruited. An evidence dossier, containing relevant evi-
dence regarding the patient population and outcomes 
was created to provide a common basis for expert judg-
ments. Facilitators guided each expert through a web-
based application for the elicitation of overall survival 
(OS), which illustrated the Kaplan–Meier (KM) curve 
from KarMMa, as well as the expert estimates at 3, 5, and 
10 years, iteratively. At each time point, experts were first 
asked to estimate lower and upper plausible limits (LPLs 
and UPLs) and then the most likely value (MLV) for OS. 
During a follow-up consensus meeting, experts were pre-
sented with the (anonymized) individual estimates from 

each expert, and then were given the opportunity to dis-
cuss and provide rationale for divergent estimates. The 
experts collectively provided consensus estimates (UPL, 
LPL, and MLV) for OS at each time point from the per-
spective of a ‘rationale impartial observer’.

Model parameterization
Parametric survival analysis defines the survival function, 
S(t) as the probability of surviving beyond a given time 
t. This is characterized as the complement of a cumu-
lative distribution function for any arbitrary survival 
distribution:

Integration of expert opinion
Expert consensus MLVs and plausible limits for OS were 
used to define a distribution of expected survival at each 
time point. Conceptually, the MLV corresponds to the 
mode, which is operationalized as the mean in the con-
text of a normal distribution. A truncated normal distri-
bution was used to define the consensus distribution at 
each time point to align with the following constraints: 
1) survival be bounded by 0 and 1; and 2) plausible lim-
its and MLVs can coincide (i.e. survival at 10  years is 
expected to be 0, thus the MLV and the lower limit are 
both 0). To accommodate both constraints, the distribu-
tion of plausible survival probabilities, Y, at each elicita-
tion time point j was therefore defined as:

where µj is the mean (and mode) of the distribution 
before truncation, and the variance, σ2j  , is based on the 
width of the interval provided by the UPL and LPL for 

(1)S(t, θ) = P(T > t|θ) = 1− F(t, θ)

(2)Yj ∼ N µj , σ
2
j I 0 < Yj < 1

Fig. 1  Overview of elicitation process
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the expert estimates, which were assumed to reflect the 
99th and 1st percentiles. For each survival estimate pro-
vided by experts, µj is related to the survival distribution 
by setting µj to the expected survival based on the sur-
vival model:

Tying the survival function S(t) to the mean of the 
experts’ probability distribution of Y effectively added 
constraints to the possible values of the parameters. The 
strength of these constraints was determined by the con-
fidence of the experts, as measured by the variance of the 
distribution.

For the i = 1,…,N subjects in the trial, Ti is the time 
of event or censoring, and δi is an indicator (δi = 1 if 
the event is observed and δi = 0 for censored observa-
tions). The survival distribution is defined with a density 
f(ti|θ) and a cumulative distribution function F(ti|θ) with 
parameters θ. The estimates of the experts’ MLV, Yj, was 
obtained at M time points {tE,1,…tE,M}, and have a density 
of d(Yj|θ), the truncated normal distribution defined by 
Eqs. (2) and (3).

The full Bayesian model specifies the following joint 
probability:

Analysis
Separate parametric models were evaluated based on: 1) 
observed OS from KarMMa (without expert opinion); 
and 2) observed OS from KarMMa in combination with 
the expert consensus estimates of OS at 3, 5, and 10 years. 
The following parametric models were evaluated: 
Weibull, Gompertz, lognormal, log-logistic, exponential, 
gamma, and generalized gamma. Specific parameteriza-
tions are shown in Supplementary Table  2, Additional 
File 2. Individuals who did not experience death were 
censored as outlined by Qi et al. [24]. Analyses were per-
formed in the Bayesian framework with approximately 
non-informative prior distributions, assuming a gamma 
distribution (1.0 × 10–3, 1.0 × 10–3) for parameters that 
were strictly positive, and a Normal (0,τ = 0.001) distri-
bution for real-valued parameters taking values on the 
real number line (Additional File 3 presents the analysis 
and JAGS code).

The R SHELF package was used to obtain the mean 
and variance of the probability distributions estimated 
by experts from the consensus meeting. The parame-
ters were estimated using a Markov Chain Monte Carlo 
(MCMC) method as implemented in Just Another Gibbs 

(3)µj = S
(

tEj , θ
)

(4)Pr(θ |T , δ,Y ) ∝ Pr(T , δ,Y |θ)Pr(θ) =

�

N
�

i=1

f (Ti|θ)
δi(1− F(Ti|θ))

(1−δi)

�





M
�

j=1

d(Yj|θ)



p(θ)

Sampler (JAGS) (version 4.3.0) (https://​sourc​eforge.​net/​
proje​cts/​mcmc-​jags/​files/) and R (version 4.0.4) (http://​
www.r-​proje​ct.​org) software packages. For distributions 
with built-in functions in JAGS, the observed event times 
were used to estimate the parameters of the selected dis-
tribution. In the absence of simple specifications for log-
logistic and Gompertz distributions in JAGS, we used 
the zeros trick to specify the likelihoods directly. A first 
series of 20,000 iterations from the JAGS sampler was 
discarded as ‘burn-in’ and the inferences were based on 
50,000 additional iterations using 2 chains. Convergence 
of the chains were confirmed by the Gelman-Rubin sta-
tistic. Deviance information criterion (DIC) was used to 
compare to the goodness of fit to the data (with or with-
out expert information). Results were illustrated in terms 
of survival curves with 95% credible intervals (CrIs) and 
the area under the curves (up to 10 years).

Results
Expert elicitation
Experts (n = 6) had extensive experience treating the pop-
ulation of interest (Supplementary Table  1, Additional 
File 1). Survival estimates from experts given KarMMa 
patients treated with ide-cel for the MLV ranged from 

25 to 35% at 3 years, 5 to 20% at 5 years, and 0 to 5% at 
10 years (Fig. 2). There was more variation across experts 
at earlier, as compared to later, time points, although 
estimates did not vary substantially overall. Survival 
tended to decline gradually from 3 to 10  years in most 
cases, whereas Expert 1 suggested a sharper reduction at 
10 years. Some experts were more optimistic (Expert 1) 
as compared to others (Experts 2 and 6) and some were 
more certain (Experts 4 and 6) as compared to others.

Within the range of the observed KarMMa data 
(median follow-up of 11.3  months; maximum 
22.6  months), the alternative parametric models were 
reasonably similar. At extrapolated time points, how-
ever, the models diverged. Point estimates ranged from 
11 to 39% at 3 years, 0 to 25% at 5 years, and 0 to 11% at 
10 years (Fig. 3).

When the models combined the observed OS data 
from KarMMa with expert opinion, the expert infor-
mation led to more consistent estimates across the 
parametric models as compared to the models without 
expert information (Fig.  4). OS point estimates ranged 
from 29 to 33% at 3 years, 5 to 17% at 5 years, and 0 to 
6% at 10 years. Supplementary Figs. 3 and 4, Additional 

https://sourceforge.net/projects/mcmc-jags/files/
https://sourceforge.net/projects/mcmc-jags/files/
http://www.r-project.org
http://www.r-project.org
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File 4, present 95% CrIs for the survival extrapolations in 
Figs. 3 and 4, respectively. Figure 5 illustrates the mean 
survival at 10 years, which reinforces how the point esti-
mates across parametric distributions align more closely 
following integration of expert information and esti-
mates of uncertainty were reduced. Model selection can 
be based on the DIC values presented in Table 1. Based 

on the trial data alone, the Gompertz model resulted in 
the lowest DIC, although there was only a 5-point dif-
ference across the models. When expert opinion was 
considered along with the trial data, the Weibull and 
Generalized Gamma models had the lowest DICs and 
the estimates differed more (14 points), helping to dif-
ferentiate which models aligned most closely with expert 

Fig. 2  Expert-specific and consensus survival estimates at each time point of interest based on KarMMa for patients treated with ide-cel. Observed 
data includes OS curve (solid line) and associated 99% CI (dashed lines). Dots represent most likely values, and vertical bars show the plausible 
range. Abbreviations: CI, confidence interval; ide-cel, idecabtagene vicleucel; OS, overall survival

Fig. 3  Long-term survival estimates based on observed KarMMa data (without expert opinion). Observed data includes OS curve (solid line) 
and associated 99% CI (dashed lines). Dots represent consensus most likely values, and vertical bars show the plausible range. Abbreviations: CI, 
confidence interval; OS, overall survival
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opinion. This can be used as a rationale to support the 
selected models without expert information, or alter-
natively the estimates that integrate expert opinion can 
be used directly. The Gompertz and Weibull models 
emphasize how the effect of expert opinion can differ 
depending on the underlying distribution. Beyond the 
range of the trial data, the Gompertz predicts very low 
survival when using observed OS data alone. Notably, 
the upper bound of the model without expert opinion 

was near the consensus MLV at 3 years and excludes it 
at 5  years, demonstrating that this model was not con-
sistent with expert opinion. Consequently, incorporat-
ing expert opinion for this model led to a substantial 
increase in survival at the 3- and 5-year time points. 
Using the Weibull distribution resulted in similar 
changes, although the model without expert information 
was more consistent with expert estimates and there-
fore led to less change when expert information was 

Fig. 4  Long-term survival estimates based on observed KarMMa data and consensus expert opinion. Observed data includes OS curve (solid line) 
and associated 99% CI (dashed lines). Dots represent consensus most likely values, and vertical bars show the plausible range. Abbreviations: CI, 
confidence interval; OS, overall survival

Fig. 5  Mean survival (AUC) at 10 years for patients treated with ide-cel based on KarMMa using trial data only or combining trial data with expert 
information. Abbreviations: AUC, area under the curve; ide-cel; idecabtagene vicleucel
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incorporated. For these 2 distributions, the differences 
in prediction and CIs between models with observed 
OS data alone (without expert opinion) and models with 
observed OS and expert opinion are shown in Fig. 6.

Discussion
There is increasing interest in methodology to accurately 
extrapolate estimates of survival beyond the clinical trial 
follow-up period [3, 11, 18, 25]. Important differences 
in the mean incremental cost-effectiveness ratios and 
their uncertainty have been identified using traditional 
parametric models to extrapolate survival in cases where 

hazards were constant, increasing, decreasing, or uni-
modal [26]. In another case study, including more flex-
ible models to extrapolate a single-arm clinical trial led to 
estimates of expected survival (i.e. area under the curve) 
ranging from 1.19 (Weibull) to 2.11 (log-logistic) to 3.31 
(splines) to 11.22 (Weibull mixture model) years [4]. 
Given the impact of this structural uncertainty, current 
interest focuses on incorporating information external to 
clinical trials to limit the extrapolated survival to values 
that are reasonable, based on this additional information.

We have formally elicited the opinions of subject-mat-
ter experts and incorporated those beliefs into parametric 

Table 1  Model fit statistics for all models

Without experts With experts

Deviance Penalty DIC Deviance Penalty DIC

Exponential 476.61 0.93 477.55 465.23 1.10 466.33

Weibull 472.74 2.09 474.83 460.51 2.14 462.65

Lognormal 476.04 2.08 478.12 468.18 1.88 470.06

Log-logistic 474.82 2.05 476.86 475.01 1.90 476.91

Gamma 473.04 1.91 474.94 460.66 2.04 462.71

Generalized gamma 471.54 2.69 474.23 463.39 3.33 466.72

Gompertz 470.99 1.90 472.89 472.68 1.74 474.42

Fig. 6  Comparison of Gompertz models based on KarMMa data alone and KarMMa data and consensus expert opinion. Dotted blue and yellow 
lines reflect the 95% credible intervals. Observed data includes OS curve (solid line) and associated 99% CI (dashed lines). Dots represent consensus 
MLV, and densities show the truncated normal distributions based on the expert-defined plausible range. Abbreviations: CI, confidence interval; 
MLV, most likely value; OS, overall survival
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survival models. Expert opinion has the benefit of being 
relevant to the population of interest, as the experts take 
this into account during the elicitation, which may not 
be the case with other external sources. Previously, Cope 
et  al. [17] demonstrated the feasibility of systematically 
integrating long-term survival estimates obtained from 
a formal expert elicitation study with empirical clini-
cal trial data. This provides a transparent, robust, and 
reproducible method to incorporate expert opinion into 
the model selection process [17]. We have extended this 
work to integrate the exact individual event and censor 
times based on the IPD using parametric models used 
most often for CEAs, rather than fitting fractional poly-
nomials to the discrete hazards. We present the JAGS 
code for these models with and without expert informa-
tion to encourage others to use or adapt these models for 
future HTAs that require CEAs. Including expert opinion 
does not fundamentally alter the structure of the model, 
which makes it easy to incorporate into a CEA model. 
The survival distributions are defined primarily by the 
data, which are modified by the expert information, while 
still retaining the general properties of the survival dis-
tributions. This allows for a single model that is not sub-
ject to additional subjective modeling choices such as 
knot placements (as required by splines), cut points, or 
classification into disjoint sets of patients (as in mixture 
models).

Using data from the KarMMa trial helps to illustrate 
these models and highlights the increased consistency 
across the models once expert opinion has been inte-
grated, which aims to improve the plausibility of the 
extrapolations from a clinical perspective. As seen with 
the Gompertz model, the inclusion of the expert data 
removes the influence of the drop in survival at the end 
of the trial. The lognormal distribution is characterized 
by hazards that decrease in the tail, which often leads 
to an unrealistic plateau in survival when extrapolated. 
Therefore, expert opinion pulled this survival down into 
a more plausible range. This is particularly notable in 
our case study of heavily pretreated TCE patients with 
RRMM, who have poor survival outcomes.

As the experts do not change the underlying paramet-
ric model, it is possible that expert opinion is not con-
sistent with a particular model, and that the model is not 
sufficiently flexible to incorporate the expert information. 
This was the case for the lognormal distribution, where 
adding expert information came at the expense of lower-
ing the curve within the range of the trial data. Therefore, 
the notable differences between the lognormal models 
with and without expert information can be used as evi-
dence that this distribution is not well suited to the data. 
However, the other distributions could be adjusted by the 
expert information and produced plausible long-term 

survival predictions that fit well to the 3- and 10-year 
expert estimates, whereas the 5-year survival estimates 
were slightly lower than the expert information, but still 
within the plausible ranges. Therefore, the influence 
of the expert information may depend on the assumed 
survival distribution. It may be of interest to extend our 
approach to more flexible models, such as cubic splines, 
fractional polynomials, or mixture models, as described 
in recent guidance by the NICE Decision Support Unit, 
where constraints may be increasingly important to 
ensure plausible estimates [3].

Our approach is similar to Guyot et al., who also con-
strained the parameter estimates based on conditional 
survival from either experts or observational data [11]. 
However, we address the challenge of integrating sources 
of evidence where we have the survival estimates (at mul-
tiple time points) rather than the number of patients at 
risk and with an event. Guyot et al. [11] also constrained 
the treatment effects in terms of the hazard ratio, forcing 
it to be one at a specific time point with a certain degree 
of uncertainty. Future research could extend our models 
to include treatment effects for a new intervention versus 
standard of care to integrate evidence from randomized 
controlled trials (or more broadly to indirect compari-
sons and network meta-analysis models versus multiple 
comparators of interest). In this context, it may be inter-
esting to explore the impact of asking experts regarding 
survival estimates for each treatment arm separately, 
versus directly asking about constraints on the treatment 
effect(s) (either at specific time points or asking when the 
treatment effect would be expected to return to one).

Beyond imposing a functional relationship in the 
parameters of the survival distribution there are alter-
native methods to share information as outlined by 
Nikolaidis et  al. [27]. External evidence can be inte-
grated as prior information, which is typically the 
approach to integrate expert opinion. In the context of 
survival outcomes, Soikkeli et  al. used mature histori-
cal trial data as prior information to inform the shape 
parameter of a comparator arm of a pivotal trial [28]. 
In our study, experts did not provide direct informa-
tion on the parameters of survival distributions, but 
rather were asked about survival at specific times in the 
tail of the distribution, which complicated the integra-
tion using priors. Since the KM plot of survival from the 
trial was presented to experts to inform their long-term 
estimates, the trial itself could have been used to inform 
the priors for the survival parameters, while modeling 
the effect of expert information; however, we preferred 
a functional model given the dependency between the 
KM and the expert estimates. This approach also allows 
for the integration of other sources as priors, such as 
evidence from phase 1 trials to inform longer-term 
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follow-up, whereas historical control evidence used by 
Soikkeli et  al. [28] is less likely to be available regard-
ing new interventions. Mixture priors (Efthimiou et al. 
[29]) or power priors (Rietbergen et  al. [30]) could be 
used to down-weight evidence depending on differences 
between the phase 1 and the pivotal trial. However, it 
may be necessary to consider how experts may have 
incorporated this earlier trial information into their 
estimates. 

Rather than integrating external information as func-
tional relationships or using priors, it may be possible 
to develop a multilevel model to integrate different 
sources of evidence similar to how Schmitz et al. com-
bined information from different study designs [31]. 
This may have the advantage of being able to explicitly 
control the relative weight of the estimates from the 
trial versus the experts. Also, such a model might allow 
for the combination of estimates from each individual 
expert as well as estimates of between-expert variation 
(given sufficiently large number of experts). Depending 
on whether estimates from experts alone provides suf-
ficient information to provide stable estimates, future 
research could evaluate whether this would be feasible 
in the context of piecewise or spline models that are 
interval specific.

One potential limitation of the current model is that 
the uncertainty in expert estimates is not directly linked 
to the sample size and event rate of the clinical trial in 
the model. Therefore, while a larger study will carry more 
weight than a smaller study relative to the same expert 
estimates, it is not clear how the uncertainty in expert 
estimates relates to the sample size of the trial. Future 
research could explore this by evaluating alternative 
scenarios in which the expert elicitation varies sample 
size, or by asking experts to directly estimate the num-
ber of patients at risk at the end of the trial who would 
be expected to have died. Adding a parameter to up- or 
down-weight expert estimates in the model in relation 
to expert uncertainty may provide a straightforward 
approach to explore the relative weight of experts versus 
the trial. This may help to mitigate potential limitations 
regarding the case study, such as potential bias in the 
elicitation process, recruitment of experts, and number 
of experts (Additional File 1).

Finally, the current analysis used truncated normal 
distributions to characterize the expert distributions at 
each time point, which aligned reasonably well with the 
estimates provided by experts. Using a beta distribution 
may fit more naturally with the estimated survival prob-
abilities provided by experts. However, at 10 years, both 
the MLV and the LPLs were 0, which was not feasible 
to incorporate with the beta distribution. As a possible 

extension, a multivariate distribution could be used to 
account for the correlation between estimates at different 
time points. Additional research regarding the optimal 
time points for the elicitation of the survival estimates 
would be helpful. Conditional probabilities at particular 
time points were selected as the quantity of interest to 
ensure it was straightforward for experts to understand 
and elicit; however, alternative quantities of interest for 
time-to-event outcomes  could be explored.  Finally, it is 
unclear whether the experts’ uncertainty is truly equiva-
lent to the sampling distribution of the MLV. A different 
set of experts may provide a different measure of vari-
ability, which could affect the model fits. The use of the 
consensus values should mitigate this; however, this still 
assumes that the distributions derived from expert opin-
ion are representative of the variability of S(t).

Our case study in TCE RRMM provides a representa-
tive example where expert opinion regarding long-term 
survival adds information for a CAR T cell therapy with 
a novel mechanism of action, where there is limited evi-
dence beyond the available follow-up from the phase 2 
study (N = 140). Given the unmet need in these heavily 
pretreated patients, the approval of this new therapy pro-
vides an important new treatment option, which will also 
be explored in earlier lines of therapy (NCT03651128). 
As long-term survival estimates become more favorable, 
the importance of getting the tail right reinforces the role 
of formal integration of expert opinion.

Conclusions
Overall, this study demonstrates a structured and trans-
parent approach to integrate IPD from a clinical trial with 
expert opinion using traditional parametric models to 
ensure long-term survival extrapolations are plausible.
Our methodology improves upon current model selec-
tion methodology to directly integrate expert opinion, 
which may improve the process for CEAs and decision-
making for HTA. This will be increasingly important to 
constrain more flexible parametric models as recom-
mended in most recent NICE Decision Support Unit 
guidance.
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