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Abstract: Particle image velocimetry (PIV) is an optical and contactless measurement method for
analyzing fluid blood dynamics in cardiovascular research. The main challenge to visualization
investigated in the current research was matching the channel material’s index of refraction (IOR)
to that of the fluid. Silicone is typically used as a channel material for these applications, so optical
matching cannot be proven. This review considers hydrogel as a new PIV channel material for IOR
matching. The advantages of hydrogels are their optical and mechanical properties. Hydrogels swell
more than 90 vol% when hydrated in an aqueous solution and have an elastic behavior. This paper
aimed to review single, double, and triple networks and nanocomposite hydrogels with suitable
optical and mechanical properties to be used as PIV channel material, with a focus on cardiovascular
applications. The properties are summarized in seven hydrogel groups: PAMPS, PAA, PVA, PAAm,
PEG and PEO, PSA, and PNIPA. The reliability of the optical properties is related to low IORs, which
allow higher light transmission. On the other hand, elastic modulus, tensile/compressive stress,
and nominal tensile/compressive strain are higher for multiple-cross-linked and nanocomposite
hydrogels than single mono-cross-linked gels. This review describes methods for measuring optical
and mechanical properties, e.g., refractometry and mechanical testing.

Keywords: PIV channel material; hydrogel composites; IOR matching; optical and mechanical
properties; material characterization; cardiovascular application

1. Introduction

Particle image velocimetry (PIV) is a contactless optical measurement method for
analyzing fluid dynamics and capturing velocity information. This method offers various
applications in disciplines such as aerodynamics, experimental fluid mechanics, and funda-
mental turbulence research [1]. Besides typical applications such as the characterization
of airflows in aircraft cabins [2] and the determination of flows in hollow cylinders [3] or
the slip velocity of macroparticles in turbulent flows [4], it is also possible to use PIV to
visualize the fluid flow in blood vessels [5]. Utilizing PIV in cardiovascular applications,
the main goal and advantage is validating the results of computer simulations (CSs). Hence,
these CSs can be expanded into more complex flow issues.

In 2019, the World Health Organization (WHO) estimated that 17.9 million people died
of cardiovascular diseases, constituting 32% of all global deaths [6]. These deaths indicate
the high medical need for and the importance of cardiovascular research worldwide. In
Germany, coronary heart disease caused 92,809 heart surgeries in 2020 [7]. In about half of
the cases, coronary bypass surgery was performed [7]. Besides these bypass surgeries, the
number of implanted cardiovascular implants is increasing rapidly. The implantation of a
vascular prosthesis and the resulting intervention in the cardiovascular system influence
the local hemodynamics of the patient’s cardiovascular circulation, affecting the implant’s
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clinical success. The underlying effects are not yet fully understood. Current research has
examined this problem by combining computer-simulated flow behavior and experimental
PIV tests.

A major challenge in experimental investigations is the development of a suitable PIV
material channel. For the visualization of local flow near the material wall, the channel
must not only be designed in an anatomically and biomechanically accurate model but
be perfectly matched to the optical requirements for PIV measurements. Especially for
cardiovascular flow simulations, the material hydrogel, with its matching optical and
mechanical properties, represents a promising novel PIV channel material.

Performing a general search in Scopus using the keyword “hydrogel”, a total of
89,056 publications were found (period 2000–2022) with an exponentially increasing trend.
For the keyword “PIV”, the total number of publications regarding the same period was just
23,286. The total numbers of publications with the keywords “hydrogel + cardiovascular”
and “PIV + cardiovascular” were reduced to 837 and 278, as presented in Figure 1. A
considerable reduction in publications was seen when the keywords “hydrogel + PIV”
were used together. Since 2004, only 19 publications have been listed in Scopus. Finally,
with the keywords “hydrogel + PIV + cardiovascular”, a total of two publications were
found over the last seven years. A similar trend of publications was determined via the
PubMed database.
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Figure 1. Scopus search: Number of publications in the period 2000–2022 related to the keywords “hydro-
gel + cardiovascular”, “PIV + cardiovascular”, “hydrogel + PIV”, and “hydrogel + PIV + cardiovascular”.

The Scopus search showed that only a few studies have been performed on hydro-
gels as a PIV channel material in recent years. Because of the limited information, this
review will significantly help researchers who wish to apply PIV in simulations for car-
diovascular applications. The review aimed to provide an overview of seven potential
hydrogel groups that can be used as PIV channel materials in cardiovascular PIV mea-
surement: poly-2-acrylamido-2-methyl-1-propanesulfonic acid (PAMPS), polyacrylic acid
(PAA), polyvinyl alcohol (PVA), polyacrylamide (PAAm), polyethylene glycol (PEG) and
-oxide (PEO), sodium polyacrylate (PSA), and poly-N-isopropyl acrylamide (PNIPA). The
optical and mechanical properties of these materials are listed in Section 5 based on the
optical requirements of PIV channel materials and the mechanical requirements of the phys-
iological and pathological blood vessels to be imaged. Moreover, measurement methods
for optical and mechanical properties of hydrogels are presented and discussed.
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2. Particle Image Velocimetry

For PIV measurements, seeding particles are added to the fluid and temporarily
illuminated by a laser. The most commonly used laser type is a solid-state Nd:YAG-Laser
with a wavelength λ of 532 nm. Other PIV lasers are the ruby laser, with λ = 694 nm, and
the He–Ne laser, with λ = 633 nm [8]. High-resolution cameras record the scattered light of
the particles (cf. Figure 2). Images are taken at defined time intervals and used to determine
the movement of the seeding particles. Based on this information, it is possible to calculate
the average flow velocity, flow direction, and profile [1].
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Figure 2. Basic setup of a PIV system with a transparent test area and a laser device for irradiating
the PIV particles within the test area. The reflection recording is performed with high-resolution
cameras at different time intervals to determine the flow velocities. Adapted from Raffel et al. [1].

PIV methods are generally divided into 2D- and 3D-PIV. The 2D-PIV method works
with two cameras (2C-PIV) in the planar domains of the flow field. With this method, only
planar velocity vectors can be determined. By adding a third camera (3C-PIV), 3D-PIV can
be performed, and the third velocity vector can be extracted. Standard techniques are the
stereo technique, dual-plane PIV, holographic recording, and tomographic PIV [9]. The
utilization of different PIV methods depends on the application and the complexity of the
fluid flow. For applications in the range of several microns, e.g., blood streams in small
vessels, flow fields are determined with µ-PIV systems [9].

2.1. Refractive Index Matching

One of the biggest challenges in PIV measurements is matching the refractive index
(also known as index of refraction (IOR)) of the solid channel material with that of the
fluid [10]. The IOR n is a dimensionless material property. It describes the speed at which
light travels through a material and is defined as:

n = c0/c (1)

where c0 is the speed of light in vacuum and c is the speed of light in phase [11]. The IOR
can be measured with a refractometer and is influenced by temperature, material density,
fluid, and the laser wavelength of the PIV. For example, the IOR of water is n = 1.3333 [12].

IOR matching for PIV is highly relevant, especially for analysis of complex geometries
or the local flow near the material wall. Otherwise, seeding particles within the fluid are
detected by light distortion, and the results are unreliable for complex geometries [13].
Therefore, the IOR of the fluid is generally matched to that of the channel material. Indeed,
the channel material’s transparency is also essential to provide a clear record of particle
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motion. In Figure 3, IOR matching is schematically drawn for fluids with and without PIV
seeding particles.
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2.2. PIV for Cardiovascular Applications

Via the Scopus search, 278 papers were found focusing on PIV measurements in
cardiovascular applications during the last 22 years. PIV measurements can quantify the
blood flow conditions near the vessel walls, which makes them very interesting. However,
current research has shown limitations in selecting channel materials and IOR matching.
Often, rigid materials are chosen that cannot reflect the physiological properties of blood
vessels. The fluid’s rheological properties are usually neglected due to IOR matching. The
following three main publications on PIV in the cardiovascular field underlined these
limitations. Ong et al. [14] evaluated the complex blood flow behavior in the pre- and
postaneurismal aorta experimentally by PIV. They developed nonrigid phantom models
of the aorta, including an aortic aneurysm, and fabricated them using silicone with an
elastic modulus of 2 MPa, close to that of the aorta. The limitation lay in the uniform
thickness of the phantom model. To adjust the blood viscosity, a solution mixture of
glycerin and water was used with a dynamic viscosity of 3.5 mPa·s at 23 ◦C. IOR matching
was not implemented [14]. Another study was performed by Stanley et al. [15]. The
group produced optically clear anatomical vessel models by 3D printing with a rigid resin.
Stanley et al. [15] matched the IOR of the fluid to that of the resin material by utilizing a
fluid mixture composed of sodium iodide, glycerol, and distilled water. The IOR of the
resin was 1.5304 [15]. The limitations were the stiffness of the model and the postprocess
of the inner and outer vessel. Dynamic viscosity was not mentioned. Franzetti et al. [16]
also use rigid flow models for PIV measurements on personalized aortic dissection. A
potassium thiocyanate (KSCN) water mixture was used as the flow fluid. IOR matching was
performed (IORChannel material = 1.5, IORFluid = 1.48). The viscosity of the fluid (2.2 mPa·s)
could not be matched to that of blood, so optical matching could not be performed [16].

Current studies have shown substantial limitations in PIV utilization for cardiovascu-
lar applications, as the previously discussed studies by ONG et al. [14], STANLEY et al. [15],
and Franzetti et al. [16] underline. For the channel materials, polymethylmethacrylate
(PMMA) [17], resin [15], and silicone [14,18,19] have been used. This has made it almost
impossible to simulate natural blood vessels. Specifically, the compliance of the vessels
has been neglected. Compliance refers to the extensibility of a blood vessel in a radial
direction triggered by a physiological pressure load (diastole/systole) [20]. Mixtures of
water with glycerin, sodium iodide, and xanthan gum have been used for blood replace-
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ment fluids [14,15,18,19,21]. By changing the chemical composition of these solvents, IOR
matching can be adapted precisely. However, this consequently changes the blood replace-
ment fluid’s viscosity (blood viscosity is 1.1 mPa·s at 37 ◦C [22]). Thus, considering and
evaluating the relevance of IOR matching and viscosity is inevitable. The main limitations
of rigid channel materials, IOR matching, and viscosity can be neglected by using hydrogels
as novel PIV channel materials.

3. Hydrogels

In the last two decades, hydrogels have become more and more important. Hydrogels
are used in sanitary products such as diapers [23,24], because of their highly absorbent prop-
erties, and in the pharmaceutical industry as superdisintegrants [25]. Since the COVID-19
pandemic, hydrogels have also been in particular demand as carriers for disinfectant
molecules, allowing them to be used to implement antiseptic coatings with a long-lasting
effect against COVID-19 in hospitals [26]. Another popular application area is the biomed-
ical field. Biocompatible hydrogels, in general, are nonthrombogenic [25] and therefore
used as scaffolds or contact lenses [27,28]. More precisely, hydrogels are three-dimensional
cross-linked polymer networks that are water swollen. In general, hydrogels’ water content
is at least 20–30 vol% and can be 90 vol% or more. Chemical or physical bonds hold the
polymeric structures of hydrogels together [29]. A unique feature is provided by sensitive
hydrogels. These hydrogels change their volume and can therefore respond to external
environmental stimuli such as temperature [30], pH value [31], and electric stimuli [32]. If
the external stimulus reaches a critical value, volume or shape changes such as swelling,
shrinking, or bending can occur [32].

3.1. Hydrogel Synthesis

Hydrogels are synthesized via two methods, addition (physical) and condensation
(chemical) polymerization [29]. Addition polymerization proceeds as a chain reaction in
three stages. The first stage is initiation, leading to the formation of free radicals. An
activator-like ultraviolet (UV), gamma, or electron beam starts the chemical reaction, and
the initiator opens the monomers’ double bonds. Free radicals react with the monomer
and induce a chain reaction [33]. After initiation, propagation follows. This stage includes
the linkage of more monomer units to a macromolecule. The process continues until
all monomer units have been linked to larger chains. The reaction takes a few minutes,
depending on the material and the sample size. The third and final stage of addition
polymerization is termination. Reactions can be controlled and ended with termination.
This can be done by removing the energy source (e.g., UV light) by directly coupling or
exchanging a hydrogen atom from the chains that grow together [33]. The reaction happens
without the elimination of side products. Condensation polymerization, the second method,
gives the polymer a stepwise growth pattern. It is induced via a condensation reaction
or reactions between the functional groups of two polymers [34]. Most approaches use
initiators and cross-linking agents such as N,N’-methylenebis acrylamide (MBAm) [35–40].
The reaction continues until almost all reagents are depleted. Another difference is the
production of side products such as water or carbon dioxide.

3.2. Hydrogel Swelling

Hydrogels can swell more than 90 vol% when hydrated [41]. The degree of swelling
depends on parameters such as temperature, pH value, and ionic strength. Basically,
swelling occurs in three phases: 1. diffusion of water into the polymer network, 2. relaxation
of the polymer chains by hydration, 3. expansion of the polymer network by relaxation.
After fully utilizing the water absorption capacity, the swelling reaches an equilibrium
state with maximum liquid loading of the hydrogel. Thus, the osmotic pressure and the
elasticity and restoring force of the polymer chains in the network are in equilibrium
(cf. Figure 4) [42,43].
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3.3. Measurement Methods for Optical and Mechanical Hydrogel Properties

The optical and mechanical properties of hydrogels can be measured with different
methods. Table 1 lists these properties and the most commonly used measurement methods.
A brief description of each method is given, and the relevance of each property to using
hydrogels as a PIV channel material is underlined.

Table 1. Overview and description of hydrogels’ optical and mechanical measurement methods and
their relevance for this review.

Property Measurement Method Description Relevance to PIV
Channel Material

Optical

Index of refraction (IOR) Refractometry
[35,40,44–47]

Determination of the angle of
refraction by the change in light
direction in different materials

IOR matching between flow
channel material and fluid

Infrared absorption
Fourier transform infrared
spectroscopy (FTIR)
[37,48–52]

Measuring the infrared
absorption and emission spectra

Chemical hydrogel
composition and structure

Raman scattering Raman spectroscopy
[48]

Measuring the inelastic
scattering of monochromatic
light on molecules or solids

Chemical hydrogel
composition and structure

Light absorption
Ultraviolet and visible
spectroscopy (UV/VIS)
[38,39,53]

Light absorption in the visible
and ultraviolet radiation range
caused by electron transitions
between different states in
the molecule

Chemical hydrogel
composition and structure;
transparency of hydrogel

Mechanical

Tensile/compressive stress Universal testing machine (UTM)
[37,48,49,52–59]

Determining the behavior of
material samples under axial,
tensile, or compression load

Mechanical durability and
stiffness depending
on hydration

Water vapor uptake
and submission

Dynamic vapor sorption (DVS)
[49,51,55,56,59,60]

Measuring material
absorbability by varying the
surrounding water
vapor concentration

Hydrogel swelling
and shrinking
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3.4. Advantages and Disadvantages of Utilizing Hydrogel as a PIV Channel Material

The advantage of using hydrogels as PIV channel materials in the cardiovascular
field is their clear optical properties. These are attributable to the fact that hydrogels can
absorb up to 90 vol% water. By changing the hydrogel solvents, the transparency and IOR
of a hydrogel can be corrected precisely [31]. Thereby, the IOR of the hydrogel channel
can be matched perfectly to the index of the used blood replacement fluids. The fluid’s
viscosity would be unchanged and would not need to be altered for IOR matching. As
already mentioned, the evaluation between IOR and viscosity is thus eliminated. Another
advantage of hydrogels is the manufacturing process. Blood vessel models can be cast
and adapted to any design, such as complex morphologies for bypasses or ramified blood
vessels. Computer tomography (CT) data of real atomic vessels can be implemented.
A third advantage of applying hydrogels as blood vessel materials is the imitation of
compliance via their elastic properties.

The disadvantages are related to the limited mechanical properties of hydrogels. By
swelling, hydrogels absorb large amounts of water, which leads on a molecular level to
the liquidlike and solidlike properties of hydrogels [25,41,61]. Therefore, these different
properties cause softening and a lack of mechanical strength, which can be measured
with tensile and compressive tests (cf. Table 1) [62]. This problem has been solved by
synthesizing hydrogels with high mechanical properties, e.g., double or triple networks
and nanocomposite gels [61,63].

3.5. Double and Triple Networks and Nanocomposite Hydrogels

Double networks are built of two interpenetrating polymer networks (IPNs). The first
network consists of highly cross-linked rigid polymers [64]. The second or even third net-
work structure is made of cross-linked flexible polymers, which are looser. Nanocomposite
hydrogels are polymerized radically and contain nanoparticles [48,64]. These particles
reinforce mechanical stability. Figure 5 visualizes schematically single-, double-, and
triple-network hydrogels.
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4. Hydrogels for PIV Channel Materials

The Scopus search revealed that only two studies performed cardiovascular PIV measure-
ments using hydrogels as a channel material during the last 22 years. Oktamuliani et al. [65]
used PIV for visualizing flow velocity vectors based on a left ventricular phantom hydrogel.
The phantom hydrogel was produced of PVA with a mixture of dimethyl sulfoxide (DMSO)
and water. It possessed transparency and formed a compliant material for pulsatile mea-
surements. The research group also used an aqueous glycerin solution with an IOR of 1.5
as blood substitute [65]. The second study, from Shimizu and Ohta [66], examined changes
in flow conditions due to plaque deformation in a stenotic vessel model. Here, transparent
PVA hydrogels were also utilized as a channel material. This allowed channel models with
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different mechanical stiffness to simulate the artery’s changing elasticities due to plaque.
As a blood replacement fluid, the group used a working fluid made of glycerol/water
solvent and aqueous sodium iodide. The IOR of the fluid was 1.455, and it reduced the
optical refraction of the models [66].

Both studies showed that hydrogels are promising PIV channel materials in cardiovas-
cular research. Hydrogels can entirely replace standard materials such as silicon or PMMA.
Besides PVA, other hydrogels are presented below that are suitable for cardiovascular PIV
simulations. First, the PIV channel material requirements concerning optical and mechani-
cal properties are presented. Then, the selected hydrogel types are briefly described.

4.1. Requirements for Optical Properties

IOR matching to the experimental fluid is an essential requirement for a PIV channel
material. In current cardiovascular research, typical materials for PIV channels have
included PMMA and silicone [17,19]. The IOR of PMMA is 1.491, and that of silicone
ranges from 1.40 to 1.44 [17,67]. As blood replacement fluids, mixtures of water with
glycerin, sodium iodide, and xanthan gum have been added to water to adjust the fluid’s
viscosity to that of human blood [19,21]. The addition of chemicals changes the fluid’s
IOR. By comparison, the IOR of water is 1.3325 [35], and that of a glycerin/water mixture
is 1.414 [67]. Therefore, the IOR of the hydrogels selected for this review had to be less
than 1.55. Another requirement for PIV channel materials is transparency, to enable exact
recording of particle movements within the vessel. This review considered only transparent
hydrogels with light transmissions of more than 90% [68].

4.2. Requirements for Mechanical Properties

The PIV channel, equivalent to a blood vessel, requires elastic materials that mimic
blood vessels’ natural compliance. To design suitable PIV channels for the cardiovascular
field, mechanical data of physiological and pathological blood vessels are required. For
instance, Karimi et al. [69] measured the uniaxial mechanical properties of healthy and
atherosclerotic human coronary arteries. The elastic moduli and tensile stresses and strains
are listed in Table 2. The values were converted to identical units to compare mechanical
properties across the literature in this review. The terminology was adopted by the Amer-
ican Society for Testing and Materials ASTM D638-14 (Young’s modulus equals elastic
modulus) [70].

Table 2. Mechanical properties (elastic modulus, tensile stress, and tensile strain) of healthy and
atherosclerotic human coronary arteries [69].

Elastic Modulus
in MPa

Tensile Stress
in MPa

Tensile Strain
in %

Physiological 0.85–1.75 0.51–3.08 28–91
Pathological 3.13–4.27 1.11–3.59 27–60

Besides the coronary arteries, many other types of blood vessels are part of the human
body. These blood vessels have different properties due to their diameters, wall thicknesses,
and degrees of disease. To perform a wide range of physiological and pathological cardio-
vascular PIV experiments, all mechanical properties (elastic modulus, tensile/compressive
stress at break, nominal tensile/compressive strain at break) are addressed in this review.
Furthermore, the equilibrium water content of the hydrogel was set to a minimum of
50 wt%. This value was chosen to avoid extreme swelling by the aqueous flow fluid, which
would change the hydrogel’s mechanical properties.

In summary, the following ranges for hydrogels were specified for utilization in PIV
applications to visualize the blood flow in physiological and pathological vessels:
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• IOR: <1.55
• Light transmission: >90%
• Elastic modulus: all values
• Tensile/compressive stress at break: all values
• Nominal tensile/compressive strain at break: all values
• Water content: >50 wt%

4.3. Selection of Hydrogels

Considering the set value ranges for optical and mechanical properties, seven hydrogel
groups were considered in this review: PAMPS, PAA, PVA, PAAm, PEG and PEO, PSA,
and PNIPA. The hydrogels are described briefly with their compositions, main features,
and applications. Their structural formulae are pictured in Figure 6.
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glycol (PEG) and -oxide (PEO), sodium polyacrylate (PSA), and poly-N-isopropyl acrylamide (PNIPA).

1. Poly-2-acrylamido-2-methyl-1-propanesulfonic acid (PAMPS) PAMPS is a synthetic
polymer that consists of acrylic 2-Acrylamido-2-methylpropane sulfonic acid (AMPS).
The chemical formula of PAMPS is (C7H13NO4S)n. This polymer dissolves well in
pure water [71] and is hydrophilic [72]. Furthermore, PAMPS is a thermally stable
homopolymer, which induces stability towards thermal degradation [71].

2. Polyacrylic acid (PAA) PAA is the polymer of acrylic acid, a compound with the
formula (C3H4O2)n. PAA exhibits high water retention, and upon absorbing water, it
expands over its original size [73]. This hydrophilic property, as well as its propensity
as an emulsifying agent, makes it widely marketable. It is commonly used in commer-
cial products for its thickening and suspension properties, e.g., for disposable diapers,
adhesives, paints, pharmaceutical drugs, and beauty products [73–76].

3. Polyvinyl alcohol (PVA) The chemical formula of PVA is (C2H4O)n. This polymer
is synthetic and highly water soluble. It is produced by the hydrolysis of polyvinyl
acetone [73,76,77]. Furthermore, highly polar and hydrophilic solvents can be used
to dissolve PVA [73]. This polymer is typically used for rigid and clear optical
films, adhesives, and transdermal drug delivery systems. Because of its excellent
physical and chemical properties, such as high biocompatibility, low toxicity, and
being chemically inert, PVA is broadly used in industrial applications [73,77].



Gels 2022, 8, 502 10 of 17

4. Polyacrylamide (PAAm) PAAm can be synthesized from the monomer acrylamide
by free-radical polymerization [73,76]. The chemical formula is (C3H5NO)n. This
polymer can be used as a superabsorbent material. Lightly cross-linked PAAm can
absorb and retain large amounts of water and forms a soft gel when saturated [78]. It
has other excellent properties for industrial use. For example, PAAm is chemically
inert, has low toxicity, and is stable in a wide pH-value range [73,76].

5. Polyethylene glycol (PEG) and polyethylene oxide (PEO) PEG with low molecular
weight (200 to 20,000 g/mol [79]) is an organic epoxide with the formula (C2H4O)n [80].
The polymer is known as PEO for higher molecular weights up to 5 million g/mol [79].
Because of its low toxicity, PEG is one of the most used synthetic hydrogels in biomed-
ical applications [73]. PEG polymers are water soluble and can be coupled with
hydrophobic molecules to act as surfactants. These polymers are also soluble in
methanol, ethanol, benzene, acetonitrile, and dichloromethane [81].

6. Sodium polyacrylate (PSA) This cross-linked PSA, with the chemical formula (C3H3NaO2)n,
is a sodium salt of polyacrylic acid produced by free-radical polymerization [82]. This
polymer can absorb a large amount of water because it contains ions, such as carboxyl
groups and sodium, in the polymer chain [83]. These give PSA hydrophilic properties
that allow it to be classified as a superabsorbent polymer. PSA is widely used in
commercial applications, such as cosmetic products, and in general, e.g., in diapers as
a thickening agent and in coatings [82,83].

7. Poly-N-isopropyl acrylamide (PNIPA) PNIPA is one of the most often utilized temperature-
sensitive hydrogels and has the formula (C6H11NO)n [84]. PNIPA changes its shape
by undergoing a discontinuous phase transition at a critical temperature. When this
occurs, the polymer chains change from hydrophobic to hydrophilic behavior and
make the hydrogel swell. In addition, PNIPA is a biocompatible polymer. Therefore,
its applications are found in the biomedical and optical fields [85].

5. Review of the Optical and Mechanical Properties of the Selected Hydrogels

The optical and mechanical properties of each hydrogel group are listed in Table 3.
Values for both properties were rarely found in one single reference. Optical properties
include IOR and light transmission (cf. Section 4.1). For the mechanical properties, the
elastic modulus, tensile/compressive stress at break, nominal tensile/compressive strain at
break, and water content are listed (cf. Section 4.2). Mechanical properties marked with
asterisks (*) were tested under tensile conditions; those not marked were measured under
compressive testing methods.

Table 3. Mechanical and optical values for the seven hydrogel groups.

Elastic
Modulus
in MPa

Tensile (*)/Com-
pressive Stress

at Break
in MPa

Nominal Tensile
(*)/Compres-
sive Strain

at Break
in %

Water Content
in wt.%

Index
of Refraction

Light
Transmission

in %
Ref.

Poly-2-acrylamido-2-methyl-1-propanesulfonic acid (PAMPS)

PAMPS/PAAm
PAMPS/PAAm
PAMPS/PAAm + silica nano-
particle
PAMPS/PAAm/PAMPS
(cross-linked)
PAMPS/PAAm/PAMPS
(non-cross-linked)
PAMPS/PAMPS
PAMPS/PAA
PAMPS/PTFEA
PAMPS/PTFEA/PAAm
PAMPS/MBAm + laponite
PAMPS/PAAm

0.84
-

0.06–0.33

2

2.1

-
-
-
-

0.69
-

4.6
17.2

18.6–73.5

4.8

9.2

3
2.3

1.6 *
21
27
-

65
92

94–97

57

70

80
75

4.9 *
97
-
-

84.8
90
-

82.5

84.8

93
92
52
93
-
-

-
-
-

-

-

-
-
-
-
-

1.346–1.350

-
-
-

-

-
-
-
-
-
-
-
-

[90]
[49]
[37]

[90]

[90]

[49]
[49]
[49]
[49]
[54]
[91]
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Table 3. Cont.

Elastic
Modulus
in MPa

Tensile (*)/Com-
pressive Stress

at Break
in MPa

Nominal Tensile
(*)/Compres-
sive Strain

at Break
in %

Water Content
in wt.%

Index
of Refraction

Light
Transmission

in %
Ref.

Polyacrylic acid (PAA)

PAA/PAAm
PAA/alginate
PAA/alginate + silica nano-
particles
PAA + sodium silicate

-
-
-

0.0128–0.0456

2.1
1.32

7.72–9.73

-

95
82.81

47.63–75.33

-

89
98.5

98.1–98.2

99.1–99.8

-
-
-

-

-
-
-

-

[49]
[89]
[89]

[86]
PAA
PAA/PEGMA + nanotitania
hybrid film

-
-

-
-

-
-

-
-

1.527
1.501–1.528

-
-

[92]
[50]

Polyvinyl alcohol (PVA)

PVA - 2.45 * 650 * 85 - - [93]
PVA 0.38–2.28 * and

8.99–14.84
2.23–4.47 * 207.8–317.4 * 78.4–86.5 - - [94]

PVA + saline 0.7–18.4 1.4–2.1 45–62 75–80 - - [95]
PVA + nanocellulose - - - 90.7–94.2 1.3330–1.3359 - [44]

Polyacrylamide (PAAm)

PAAm
PAAm/PAAm
PAAm/sPEOPO
PAAm/PVA
PAAm
PAAm + sucrose
PAAm
PAAm/PAAm

0.63 *
-

11.6–59.1
0.062–0.087

-
-
-
-

1.1 *
5.4

2.0–5.6
-
-
-
-
-

81 *
92

88.6–93.2
469–500 *

-
-
-
-

-
92

92.3–95.2
-

89.8
-

75–95
92.23

-
-
-
-
-

1.385–1.420
1.338–1.380

1.343

-
-
-

92
98.2–98.9

-
-
-

[96]
[49]
[87]
[38]
[39]
[36]
[68]
[40]

Polyethylene glycol (PEG) and oxide (PEO)

PEG/PAA
PEG/PAA
PEG/PAA
PEG-DA/PAA
PEG-DA/MPEG
PEO
PEO/PEG

0.5–1.5 *
-
-
-
-
-
-

2–13 *
2.5–10.9

1.1 *
8
-
-
-

-
93.8–97.2

-
90
-
-
-

83–99
90
85
-

50–95
80–95

-

1.35
-

1.35
-

1.3388–1.4136
1.339–1.356

1.4539/1.459

90
-

96
-

97.6–100
-
-

[45]
[97]
[46]
[63]
[68]
[68]
[92]

Sodium polyacrylate (PSA)

PSA
PSA/PAA/PBA
PSA/PAAm

-
-
-

0.2–2.2 *
1.1–7.7 *

-

5–115 *
1170–1730 *

-

-
-

80.79–99.02

-
-

1.3327

-
-
-

[98]
[88]
[35]

Poly-N-isopropyl acrylamide (PNIPA)

PNIPA + inorganic clay
P(NIPA-co-AMPS)/PNIPA
PNIPAm/PEGAAm
PNIPA

0.4 *
0.085–0.311

4.10
-

1 *
2.532–17.50

0.175 *
-

1000 *
71–95
56 *

-

80–90
-

80
-

-
-
-

1.32–1.39

-
-

90
-

[52]
[99]
[85]
[53]

Value ranges were set as follows: elastic modulus-all values, tensile (*)/compressive stress at break-all values, nom-
inal tensile (*)/compressive strain at break-all values, water content > 50 wt%, IOR < 1.55, light transmission > 90%.
Mechanical terminology as adopted by ASTM D638-14 [70]. Abbreviations: polytetrafluorethylene (PTFEA),
polyethylene glycol methacrylate (PEGMA), polyethylene oxide stat propylene oxide (sPEOPO), polyethylene
glycol acrylamide (PEGAAm), methoxy polyethylene glycol (MPEG), diacrylate (DA), dimethacrylate (DMA),
N,N’-methylenebis acrylamide (MBAm), 1,2-naph-thoquinone-2-diazide-5-sulfonic acid sodium salt (NQDSA),
titan(IV) oxide (TiO2), polybutyl acrylate (PBA).

Regarding the optical properties, IOR and light transmission, the single-network
hydrogel PNIPA showed the lowest IOR value of 1.32 [53]. The highest IOR value of 1.528
was observed for the hydrogel composition of PAA/polyethylene glycol methacrylate
(PEGMA) with a nanotitania hybrid film [50]. The hydrogels PVA with nanocellulose
and polyethylene glycol diacrylate (PEG-DA)/methoxy polyethylene glycol (MPEG) had
IORs comparable to those of water and glycerin/water mixtures, between 1.333 [44] and
1.4136 [68]. Not every reference contained information regarding the wavelength and
temperature for the IOR measurement. Wavelengths ranged from 400 to 650 nm [36,40,47],
and temperatures, from 20 to 25 ◦C [36,40,47]. Furthermore, the double-network hydrogel
PEG-DA/MPEG had the highest light transmission of up to 100% [68].

Values for the elastic modulus ranged from 0.0128 MPa [86] to 59.1 MPa [87] for
the hydrogel compositions of PAA with sodium silicate and PAAm/polyethylene ox-
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ide stat propylene oxide (sPEOPO), respectively. The values for tensile/compressive
stress at break ranged from 0.175 MPa* [85] for PNIPAm/polyethylene glycol acrylamide
(PEGAAm) to 73.5 MPa for PAMPS/PAAm including silica nanoparticles. Furthermore,
PAMPS/polytetrafluorethylene (PTFEA) had the lowest nominal strain at break prop-
erty of 4.9%* [49]. In comparison, triple-network PSA/PAA/polybutyl acrylate (PBA)
showed the highest value of 1730%* [88]. The hydrogels’ water content ranged from
50 to 99.8 wt% [68,89] for PEG-DA/MPEG and PAA with sodium silicate, respectively.
Predominantly, hydrogels with water content above ≈85 wt% were found.

6. Discussion

This review listed seven different hydrogel groups that fit the optical and mechanical
requirements of PIV channel materials for cardiovascular applications, i.e., to perform a
wide range of blood flow simulations in physiological and pathological blood vessels. The
literature research showed that there are different manufacturing processes for synthesizing
hydrogels. For example, the type of polymerization (UV, thermal etc.), the use of solvents,
and the concentration of the monomer solutions or swelling time can differ because of
changes in optical and mechanical properties. Furthermore, the performances of optical and
mechanical measurement methods varied. For example, the wavelength, temperature, and
performance under tensile or compressive loading conditions can differ. These deviations
made it challenging to compare the properties of each hydrogel. Nevertheless, general
relations were observed and compared.

In general, a relation between the IOR and the swelling behavior of the hydrogel was
seen. Swelling occurs with increasing water content while the IOR decreases. For example,
the water content of the hydrogel PEG-DA/MPEG ranged from 50 to 95 wt%, over which
range the IOR decreased from 1.4136 to 1.3388 [68]. Besides the IOR, the transparency
increased from 97.6 to 100% [68]. According to different ratios of ionic components in the
swelling medium, the degree of hydrogel swelling can differ because of changes in pH
values or osmotic pressure [25]; during PIV measurement, the OH– groups of the utilized
PIV fluid influenced the swelling behavior, and hence, the mechanical parameters changed
as well [25]. Therefore, the swelling of the PIV channel material is an important aspect of
experimental PIV setup design.

Another relation existed between the water content and the elastic modulus. With
increasing water content, decreases in the elastic modulus was observed. The hydro-
gel swelling ratio in pure water rose when the total monomer concentration or cross-
linking density decreased (e.g., agent MBAm [100]). This led to a reduction in me-
chanical strength [25,62]. Double-network hydrogels, such as PAMPS/PAAm [37] and
PAA/alginate [89] cross-linked with nanoparticles (e.g., silica), showed extraordinary me-
chanical properties. Under loading conditions, the nanoparticles distributed the applied
stress equally to the polymer network and prevented the polymer chains from being de-
stroyed [55,63]. These hydrogels exhibited higher mechanical properties than single- and
triple-network hydrogels [49].

The connection among the water content (swelling), IOR, and mechanical stability
of the selected hydrogels in this review is illustrated by a triangular diagram shown in
Figure 7. The three triangle sides represent the individual properties from low to high.

Two examples of swollen hydrogels are drawn in Figure 7. First, the continuous line
represents a hydrogel with a high amount of water, leading to low mechanical stability and
a low IOR. Second, the dotted line demonstrates a hydrogel containing lower water content
with high mechanical stability and a high IOR.

The hydrogel PAMPS, for example, is an electrical-sensitive hydrogel. It showed
deswelling kinetics under electric stimulation [32]. These properties can be used positively
in PIV measurements. Especially in cardiovascular applications, blood flow in physiological
and pathological vessels can be simulated in a PIV model. Thus, the mechanical properties
of the PIV channel model could be adjusted during the test, and several research hypotheses
could be investigated in one test setup.
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stability, and IOR of the high- and low-swollen hydrogels with the key influential parameters of
monomer concentration; cross-linking density; pH value; single, double, triple, or nanocomposite
networks; and temperature.

7. Summary

Experimental cardiovascular flow simulations via PIV have been a trending topic for
the last two decades. Current studies have shown substantial limitations. Materials such as
silicon, PMMA, and resin have been utilized as PIV channel materials. This has made it
almost impossible to simulate the natural pulsatile bloodstream in a vessel. Furthermore,
there have been limitations in the matching of the IOR. By matching the fluid’s IOR to the
one of the channel materials, the working fluid’s viscosity has changed. An evaluation of
the relevance of IOR matching and viscosity is inevitable.

Two studies, by Oktamuliani et al. [65] and Shimizu and Ohta [66], presented hydro-
gels as a promising PIV channel material in cardiovascular research. Hydrogels can entirely
replace standard materials such as silicon or PMMA. Physiological and pathological blood-
streams can be correctly simulated because of the hydrogels’ elastic properties. Another
optical advantage is the high amount of water within swollen hydrogels, which makes
them optically clear. The fluid’s viscosity remains untouched. Therefore, the IOR of the
hydrogel can be perfectly matched to that of the aqueous fluid.

In current studies, only the hydrogel PVA has been utilized as PIV a channel material
for cardiovascular simulations. This review presents seven other hydrogel groups that are
suitable as channel materials, PAMPS, PAA, PVA, PAAm, PEG/PEO, PSA, and PNIPA. The
hydrogel selection requirements were adapted to PIV measurements (optically) and the
blood vessels to be simulated (mechanically). The optical properties were IOR and light
transmission. The mechanical properties were the elastic modulus, tensile/compressive
stress at break, nominal tensile/compressive strain at break, and water content. Table 3
lists all of these values for the selected hydrogels. These reviewed parameters are supposed
to simplify the individual search for a suitable hydrogel as a PIV channel material. Here,
the data are presented for cardiovascular research, but they can be used for other PIV
application fields, such as turbine sciences.
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In the future, this review should contribute to the increased use of hydrogels in PIV as
a novel channel material. Research could benefit from the many advantages of synthetic
hydrogels, such as high light transmission, elasticity, and mechanical properties.
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