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Teleost adaptive immune systems have evolved with more flexibility than previously
assumed. A particularly enigmatic system to address immune system modifications in
the evolutionary past is represented by the Syngnathids, the family of pipefishes,
seahorses and seadragons. These small fishes with their unique male pregnancy have
lost the spleen as an important immune organ as well as a functional major
histocompatibility class II (MHC II) pathway. How these evolutionary changes have
impacted immune cell population dynamics have up to this point remained unexplored.
Here, we present the first immune cell repertoire characterization of a syngnathid fish
(Syngnathus typhle) using single-cell transcriptomics. Gene expression profiles of
individual cells extracted from blood and head-kidney clustered in twelve putative cell
populations with eight belonging to those with immune function. Upregulated cell marker
genes identified in humans and teleosts were used to define cell clusters. While the
suggested loss of CD4+ T-cells accompanied the loss of the MHC II pathway was
supported, the upregulation of specific subtype markers within the T-cell cluster indicates
subpopulations of regulatory T-cells (il2rb) and cytotoxic T-cells (gzma). Utilizing single-cell
RNA sequencing this report is the first to characterize immune cell populations in
syngnathids and provides a valuable foundation for future cellular classification and
experimental work within the lineage.

Keywords: single-cell transcriptomics, pipefish, immunity, cell profiling, immune cell
INTRODUCTION

The vertebrate immune system has evolved into an extremely diverse, layered network of defense
mechanisms capable of combatting a wide variety of agents on a specific (adaptive) and generic
(innate) level (1). The first adaptive immune system evolved in the descendants of the ray-finned
fishes (Teleostei) ~450 million years ago (2). Teleosts comprise a diverse group of fishes made up of
over 30,000 species, ranging in morphology, physiology and immune system constituents (3–7).

Among them, representatives of the syngnathids (seahorses, pipefishes and seadragons) are
conceivably the most morphologically bizarre fishes, boasting the unique evolution of male
pregnancy (8–10). The peculiarities extend to the syngnathid immune system, with Syngnathus
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andHippocampusmissing a functional Major Histocompatibility
Complex II (MHC II) pathway (4, 11). Until recently this
pathway was thought to be synonymous across vertebrates, it
has been postulated that the evolution of full pregnancy with
placenta-like structures in syngnathids may have been facilitated
by this adaptive immune rearrangement (4). Yet, the presence of
a fully functional MHC II repertoire in other pipefish species
(e.g., Nerophinae), with basal male pregnancy without placenta-
like structures, presents the lineage as an intriguing subject for
immune and evolutionary studies. These immunological
adaptations within the group were suggested to have coevolved
with male pregnancy permitting immunological tolerance
towards the semi-allogenic embryo (4, 12). Whilst recent
studies have helped elucidate the syngnathid immune networks
and processes, the evolutionary repercussions of such immune
deficiencies in the immune cell populations remain unknown,
with no established immune cell characterization of any
syngnathid species.

Assessing immune cell populations historically relied on
established cell surface markers receptive to specially designed
antibodies, a practice almost exclusively reserved for model
organisms such as humans and mice (13, 14). The advent of
single-cell mRNA sequencing (scRNA-seq), the practice which
facilitates the expression assessment of individual cells (15), is less
restricting than using pre-designed antibodies. It can thus be
applied in non-model species. Combined with advanced cell
separation techniques such as Drop-seq microfluidics (16),
scRNA-seq can characterize thousands of cellular gene expression
profiles, from which cell type and functional groups can
be deduced.

A number of teleost studies have utilized cell isolation and
single cell transcriptomics to assist with the identification of
brain (17, 18), kidney (19), intestine (20) and embryonic (21, 22)
derived cell populations. Moreover, further work identifying
teleost immune cell repertoires in a number of model fish
species (23–28), have established a catalogue of putative
immune cell markers that extend beyond those used in
mammalian cell identification.

The immune related genomic rearrangements that have
arisen within the syngnathid fish group provide an exciting
opportunity to explore the immune cell evolutionary
repercussions which may have occurred due to immune
pathway loss. Moreover, the discovery of immune cell type
identifiers could help lay the foundation for future
immunological experiments and characterizing studies in the
future. By employing Drop-seq micro-fluidics and scRNA-seq
this study’s aim was to carry out the first characterization of the
broadnosed pipefish (Syngnathus typhle) immune cell repertoire.
Genomic alterations have resulted in the loss (aicda, ciita) or
functional redundancy (cd74) of several MHC II pathway related
genes (4). Hence, observed immune cell population distinctions
were be expected when comparing pipefish with other teleosts,
such as the absence of the MHC II related CD4+ T-cell subset.
Furthermore, this investigation wanted to determine whether
this adaptive immune system absence could have given rise to
alternative or compensatory innate immune cell types that
adopted MHC II’s functional role.
Frontiers in Immunology | www.frontiersin.org 2
MATERIALS AND METHODS

Ethics Statement
All aquaria set-ups and dissection methods meet the guidelines
issued by the Ministerium für Energiewende, Landwirtschaft,
Umwelt, Natur und Ditgitalisierung (MELUND) (Permit
number V 242 – 57983/2018) and are in accordance with
German animal welfare law.

Animals
Aquaria-bred Syngnathus typhle reared in the GEOMAR aquaria
facilities were transported to the Centre of Ecological and
Evolutionary Synthesis in Oslo, Norway. Fish were kept under
the standard conditions used by Beemelmanns and Roth (29). All
fish were fed live and frozen mysids twice a day and fish were
starved for 24 hours prior to dissection.

Tissue Dissection and Dissociation
Three fish were used for this investigation with each of their
length and weight recorded prior to dissection (length: 20.42,
25.59 and 23.00 cm | weight: 2.2, 2.35 and 2.12g). All three fish
were euthanized with an MS-222 overdose (500 mg/l, Sigma-
Aldrich) prior to blood extraction. Blood was suspended in 1x
PBS/0.01% BSA after massaging sufficient blood from the
severed tail vein. Head kidney was removed and placed in a
petri dish containing 1x PBS/0.01% BSA medium and a 35-40µm
cell strainer, before carefully massaging cells through the filter
using a syringe plunger. Both blood and head kidney cells were
centrifuged at 300 x g for 5 min at 4°C and re-suspended in 1ml
1x PBS/BSA (0.01%). All cells were kept on ice for the duration of
the protocol. Cell sample concentration and quality were
assessed under the stereomicroscope and diluted until cell
concentrations met the required 200 cells/µl needed for
microfluidic processing.

Microfluidic Cell Capture (Drop-Seq)
This inves t iga t ion adopted the or ig ina l Drop-Seq
methodology set out by Macosko, Basu (16) and its
subsequent amended protocol (v3.1) with useful advice from
Evan Macosko, Melissa Goldman and Steve McCarroll (URL:
dx.doi.org/10.17504/protocols.io.mkbc4sn). Individual
suspended cells and micro-particle beads were coalesced
within a singular nanoliter oil droplet (80 µm) using the
microfluidic droplet generator (Dolomite, UK). Beads are
equipped with oligonucleotides consisting of four sections:
(1) priming site, (2) “cell barcode”, (3) Unique Molecular
Identifier (UMI) and (4) reverse transcription primer (30-bp
oligo dT sequence). Each bead possesses multiple primers
(108) with identical barcodes but unique UMIs for
downstream identification.

Each cell is lysed following successful droplet formation
stimulating mRNA hybridization with the bead primers and
the formation of single-cell transcriptomes attached to
microparticles (STAMPs). STAMP reverse transcription is then
carried out prior to cDNA amplification and Tn5-mediated
tagmentation. To facilitate the multiplexing of multiple cell
populations within the same sequencing library, unique sample
January 2022 | Volume 13 | Article 820152
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barcodes were incorporated within the adapter primers during
the post-tagmentation PCR procedure.

scRNA-Seq and Gene Quantification
PCR amplification success was assessed on the Agilent
BioAnalyzer High Sensitivity Chip (Agilent Technologies, Oslo,
Norway) prior to library preparation. Library preparation and
high output paired-end sequencing were carried out at the
Norwegian Sequencing Centre (Illumina, NextSeq500, 75bp)
(NSC; www.sequencing.uio.no), University of Oslo, Norway. A
custom adapter sequence (Read 1, 20bp, GCCTGTCCGCG
GAAGCAGTGGTATCAACGCAGAGTAC) and standard
Illumina adapter sequence (Read 2, 60bp) were used. Using the
Drop-Seq Core Computational Protocol (v2.0.0) (30) resultant
reads were mapped to the S. typhle genome using STAR (31)
following quality checks (FastQC v0.11.9 and MultiQC v1.9) (32,
33) and adapter removal. A digital expression matrix was
constructed exhibiting transcript number (per gene, per cell)
by grouping all reads by the cell barcode and UMI for each gene.
The first 600-5,000 STAMPS, organized into decreasing read
number order, from each sample were used for downstream
analysis. STAMP number was dependent on the sample size.

Cell and Gene Filtering
Data from all blood and head kidney samples was merged in
preparation for gene expression analysis, utilizing the R package
Suerat (v4.0.3) to create a singular Seurat object. To remove
partially sampled/dying cells and potential doublets/multiplets,
detection parameters were set only to include cells with > 150
genes and < 1300 genes and 3000 molecules (Supplementary
Figure 1). These guidelines are supported by the clustering
analysis tutorial (34) and previous fish species utilizing the
same methodology (23). Sequencing information and cell
numbers per sample can be found in the Supplementary
Material (Table S1).

Cell Clustering
Expression count data was scaled and normalized across all cells
by library size and then log2 transformed (Seurat;
“LogNormalize” method), prior to principal component
analysis (PCA) of the 2,000 most variably expressed genes.
Heatmaps and elbow plots were used to assess heterogeneity
amongst PCs and to determine the optimal number of PCs to
carry forward for further analysis (Supplementary Figures 2, 3).
Shared nearest neighbor (SNN) modularity clustering was
implemented using the Seurat “FindCluster” extension (PCs
1:23, resolution 0.35), followed by the use of Uniform
Manifold approximation and projection (UMAP) for cluster
visualization (35).

Differential Gene Expression Analysis and
Functional Identification
Differential gene expression analysis was carried out on genes
that were expressed in ≥ 25 cells within a cluster, using the
“Findmarkers” Seurat extension, which is based on the Wilcoxon
rank sum test. Post-hoc statistical testing was carried out using
the Bonferroni multiple comparison correction. The most
Frontiers in Immunology | www.frontiersin.org 3
influential differentially expressed genes for each cluster were
extracted and genes with an adjusted p > 10-50 were considered
for cell marker assignment and cell type classification. Annotated
gene functions were deduced through independent literature
searches, utilizing the Universal Protein Knowledgebase
(UniProt) (36) and The Human Protein Atlas v20.1 (37).
RESULTS

From three S. typhle pipefish individuals a total of 12129 genes
across 8658 cells were accrued following filtering and quality
control measures. 2196 cells were derived from blood and 6462
were derived from the head kidney. UMAP projection helped
distinguish 12 distinct cell type clusters characterized using
shared gene expression profiles (Figure 1). Clusters ranged in
size from 12 to 4508 cells.

Hematopoietic Cells, Erythrocytes and
Connective Tissue Cells
Differential gene expression analysis provided the foundation
for putative cell type identification by characterizing UMAP
clusters by their significant gene expression profiles. Significant
genes with immune system roles and relevant for cluster
identification can be found in Figures 2 and 3 and in the
supplementary material (Tables S2–13). The putative function
and classification for cells belonging to the largest cluster
central to the UMAP visualization, was hematopoietic or
progenitor immune cells (4,508 cells). This was owing to the
lack of strong immune markers and presence of genes involved
in cell cycle processes (hsp90ab1) and protease inhibition
(plcp1). Additionally, two genes (pabpc1, krt8) have been
shown to be strongly upregulated in hematopoietic cells
previously (38) as well as a number of ribosomal related
genes. In relation to hematopoietic cells, the hematopoietic
lineage cell-specific protein (hcls1) was expressed significantly
in three other clusters (B, T and Neutrophils) but not in the
overall hematopoietic cell cluster itself, despite sporadic
expression being visible within the cluster (Figure 4). The
majority of cells making up the hematopoietic cluster could
be attributed to those extracted from the head kidney
(Supplementary Figure 4). Two closely related clusters that
showed distinct separation from the other groupings were
identified as erythrocytes (1,332 and 714 cells), based on their
dominant upregulation of hemoglobin subunits (hba1 and
hbb2). Additionally, there was a distinct upregulation of
ribosomal related transcripts as well as a few genes with
immune related function that were identified (h2-d1 and
ifi27). Converse to the hematopoietic cluster, erythrocyte
c lu s t e r s we r e domina t ed by b lood de r i v ed ce l l s
(Supplementary Figure 4). Lastly, one small cluster perceived
to be related to structural/connective tissue (29 cells) was
identified based on the strong upregulation of fibrous binding
(fbn1 and fn1), muscle regeneration (adamts15) and collagen
(col5a2) related genes. The remaining eight clusters were
assigned to different immune cell types.
January 2022 | Volume 13 | Article 820152
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Natural Killer Cells
The largest cluster was identified as putative natural killer-like
cells (NK-cells) (586 cells), largely due to the expression of hps3,
a lysosome related protein implicated in NK-cell function (39).
This cluster exhibited a reduced number of significantly
differentially expressed genes when compared with all other
clusters, providing fewer candidates for identification. A
number of granular related serine proteases (prss1 ,
chymotrypsin b), an immune implicated cytoskeleton regulator
(msn) (40) and a cytoplasmic adapter associated with NK-cell
receptors (shc1) (41) were present but at reduced significance.

Neutrophils
The next largest cluster, which was named as the neutrophils
(560 cells), provided a number of strongly upregulated immune
genes and specific markers. One of the most prominent was the
enzyme lce (egg hatching) which was previously used as a
neutrophil marker in codfish (23). Cebpe, a gene encoding an
enhancer binding protein thought to be essential for neutrophil
Frontiers in Immunology | www.frontiersin.org 4
development (42) and the neutrophil cytosol factor 4 (ncf4) were
also highly expressed. Other indication markers include il-1r,
which is an important neutrophil receptor (43), the
inflammation factor aif1, which is expressed in neutrophils and
monocytes (44), and the neutrophil cell migration-inducing
mmp9 (45).

Macrophages
As with the neutrophil cluster, the perceived macrophage cluster
was supported by an array of easily identifiable upregulated gene
markers (364 cells). These include, csf1r2 (macrophage
differentiation), a member of a group of receptors recognized
as macrophage markers in teleost fish (46–48), mrc1 (mannose
receptor) a macrophage marker in Atlantic cod and humans (23,
49), and clec4e, a pattern recognition receptor shown to highly
expressed in macrophages (50). Cd209, a receptor found on
antigen presenting cells which promotes MHC II presentation of
the HIV virus and was one of the most upregulated genes found
within the cluster. Additional gene contributors that helped
A

B

FIGURE 1 | (A) Visual representation of isolated blood and head kidney extracted cell types of Syngnathus typhle using Uniform manifold approximation projection
(UMAP). Cell clusters characterized by differentially expressed gene markers associated with specific cell sub-types. All markers associated with immune function
previously reported in humans and/or fish species. Two erythrocyte clusters are represented with the second highlighted as such (2). Full names for all clusters are
as follows: 1. Hematopoietic cells, 2 and 3. Erythrocytes, 4. Natural killer cells, 5. Neutrophils, 6. Macrophages, 7. B-cells, 8. Basophils, 9. Thrombocytes, 10. T-
cells, 11. Connective tissue cells, 12. Eosinophils. (B) Differential gene expression heatmap highlighting top 10 marker genes, with genes representing rows and cells
representing columns.
January 2022 | Volume 13 | Article 820152
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define the cluster include the macrophage related protein,mpeg1,
lysozyme g, and the macrophage capping protein, capg.

B and T-Cell Lymphocytes
A large cluster of B-cells (265 cells) was identified by the
upregulation of a high number of immunoglobulin
components (e.g., iglc1, Ig lambda chain, ig heavy chain, ig
kappa chain) which are exclusively released by B-lymphocytes.
Further support was provided by the upregulation of irf8, cd53
(B-cell differentiation and development), swap-70, blnk (B-cell
activation), card11 (B-cell signalling) and the B-cell antigen
receptor cd79b. In addition, two T-cell receptors were among
the top 20 differentially expressed genes within this cluster
(cd247 and v-tcr).

A population of T-cells were also strongly represented (cluster
10) (53 cells) with the upregulated expression of four universal T-
cell receptors (cd2, cd3e, v-tcr and cd247), as well as the
interleukin receptor subunit il2rb. Incidentally, IL2R has been
shown to play central immune suppressive role when expressed
by regulatory T (Tregs) cells (51). Lastly, the cytotoxic protease
gzma was also highlighted for its immune related activity and
previously used as a marker for cytotoxic cells in cod (23).

Thrombocytes
Thrombocytes (61 cells), or platelets, were also represented in S.
typhle with differentially expressed genes including ak9, which
can influence platelet and blood coagulation in humans (52).
Further confirmation is provided by the upregulation of thbs1, a
previously labelled thrombocyte marker in codfish (23) and a
prominently expressed gene in thrombocytes (53). The vascular
endothelial growth factor (vegfa) which shares a functional
Frontiers in Immunology | www.frontiersin.org 5
relation with platelets and tissue wound healing (54) was also
highly expressed within the cluster.

Basophils and Eosinophils
A selection of basophil related genes characterized cluster 8,
including tfpi and itgb3 (37) (174 cells). However, the most
notable upregulation came from the gene coding for GATA2
(cell differentiation), a recognized cell marker for basophil
granulocytes (37, 44), distinguishing it from its close immune
cell relatives.

The smallest cluster isolated in this study was attributed to
eosinophils (12 cells). A large number of C-type lectins
(Galactose-specific lectin nattectin) characterized the clusters
expression profile, while the upregulated expression of
eosinophil peroxidase (epx), a common marker and constituent
of eosinophil intracellular granules in humans (55), gave further
support to a small eosinophil population presence in pipefish.
DISCUSSION

Previous work has described the evolutionary adaptations and
genomic alterations that have shaped the peculiarities within
Syngnathiformes immune system, including the loss of MHC II
in S. typhle and an increased diversification of MHC I in the
syngnathids that have evolved unique male pregnancy (4, 11).
The ramifications of these evolutionary changes on cellular
expression level in S. typhle have been left unexplored up until
this study, which was the first to characterize putative pipefish
immune cell populations based on their individual gene
expression profiles using single-cell RNA sequencing.
FIGURE 2 | Dot plot visualization of deduced cell markers used to define cell clusters in Syngnathus typhle. Dot size denotes the percentage of cells expressing the
gene within each cluster and the mean expression level of active expressional cells is indicated by the color intensity.
January 2022 | Volume 13 | Article 820152
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Successful identification of a number of integral immune system
constituents was achieved and the presence of relatable immune
cell markers, congruent with those in other model organisms,
provides a crucial baseline for future experimental and immune
assessments in syngnathid fishes.

In S. typhle and other bony fishes, the head kidney is an
important lymphoid organ and the epicentre for immune cell
hematopoiesis (56–58). Appropriately, the dominance of head
kidney derived cells in the perceived hematopoietic progenitor
cell cluster here supports the cell type classification. The size of
the hematopoietic cluster shares similarities with previous single-
cell transcriptome studies on zebrafish head kidney extracted
cells (59). Research on zebrafish has also shown that the
progressive maturation of thrombocytes is characterized by a
shift towards thrombocyte functional genes and suppression of
hematopoietic related genes relevant in cell proliferation and
ribosomal biogenesis (60). This could go some way to explaining
the lack of upregulated specific immune cell markers within the
Frontiers in Immunology | www.frontiersin.org 6
hematopoietic cell cluster, while the close relation with most of
the other more distinguished cell groups could be an indication
of immature immune cells types yet to become immunologically
active. Moreover, while lower in expressed significance, the
upregulation of ribosomal transcripts within the hematopoietic
cluster matches the ribosomal indications expressed by
Macaulay, Svensson (60) and Khajuria, Munschauer (61) with
regards their role in hematopoiesis and cell differentiation.
Interestingly, the presence of hcls1, a gene upregulated in the T
and B cell clusters, was also shown to be expressed in many cell
contingents of the hematopoietic cell cluster. The presence of
these interspersed cells could indicate that many these cells are at
different stages of maturity, while its strong expression in T- and
B-lymphocytes could relate to hcls1’s antigen signalling function
described previously (62, 63).

Fish red blood cells are nucleated and have been shown to
express immune related genes along with those related to gas
exchange (64–66). This supports the expressed presence of h2-
FIGURE 3 | Feature plot highlighting Syngnathus typhle blood and head kidney cells expressing selected genes characterizing selected immune cell clusters within
Uniform manifold approximation projection (UMAP). Increased cell color intensity indicates increased gene expression.
January 2022 | Volume 13 | Article 820152
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d2 and ifi27 here, suggesting erythrocytes could hold
immunological relevance among S. typhle ’s defenses.
Indications suggest, that the separation of the two perceived
erythrocyte clusters could be due to a batch effect stemming
from the blood extracted from two different individuals. It is
therefore, challenging to determine if additional factors
influence the cluster differences. Erythrocyte stage of maturity
for example have been reported in fish previously, with
expression differences existing between immature reticulocytes
and mature red blood cells (67–69).

An encouraging number of immune related genes were
found in S. typhle, especially when identifying, T-cell, B-cell,
neutrophil and macrophage populations. Managing to identify
these crucial immune system constituents is promising for
future syngnathid immune studies, which will allow further
sub-cell type distinctions within these white blood cell groups.
Neutrophils constitute the largest circulating leukocyte
population in humans (50-70%) (70, 71), and while
circulating neutrophil percentages in teleost fish are markedly
reduced in comparison (~5%) (72, 73), head kidney neutrophil
reserves have been shown to be extensive (72, 74), as was the
case here in S. typhle. Mmp9, a neutrophil marker in cod and
humans was suggested to drive neutrophil migration in
mammals (45), and its upregulation here could be an
indication of a similar influence in syngnathid fishes. One of
the most convincing markers extracted from the neutrophil
Frontiers in Immunology | www.frontiersin.org 7
cluster is the neutrophil development factor cebpe, which has
been used as a neutrophil identifier in zebrafish (75).

The strong upregulation of the MHC II associated cd209 in
the macrophage cluster, an immune receptor expressed in
antigen presenting cells, poses some questions. Previously,
Cd209 expression has been identified in the MHC II devoid
Atlantic cod (76, 77). This considered, it would appear that
despite the loss of MHC II in both species cd209 expression has
been conserved. This could be an indication that it has adopted
alternative antigen processing purpose or remains a phagocytic
tool capable of facilitating viral and bacterial uptake.
Macrophages are known to differentiate into pro-inflammatory
(M1) and anti-inflammatory (M2) states (78). Cd209 has been
shown to be highly upregulated in M2 macrophages compared
with pro-inflammatory cells in mammals (79), while M2
macrophage activity has been linked to tissue remodelling and
wound healing (78, 80, 81). Therefore, the elevated presence of
cd209 here could be associated with anti-inflammatory M2
macrophages, however, determining the specific function of
cd209 in syngnathids requires further investigation.

A number of intriguing T-cell markers were featured in S.
typhle including gzma. Granzyme a and -b are protease
constituents of cytotoxic T-cell granules in humans (82, 83),
while gzma in particular has been shown to be an important
innate immunological component in fish (84). Gzma was also
highlighted in codfish in association with a novel type of GATA-
FIGURE 4 | Feature plot highlighting Syngnathus typhle blood and head kidney cells expressing the hcls1 gene within a Uniform manifold approximation projection
(UMAP). Increased cell color intensity indicates increased gene expression.
January 2022 | Volume 13 | Article 820152
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3 cytotoxic cell (23). Another marker, a subunit of the IL2R
receptor associated with immune suppression, is an indicator for
Tregs (51) and CD8+ cytotoxic T and NK-cell granulocytic
defenses in fish (75, 85). Taken with the universal T-cell
receptors represented within the cluster and the absence of
additional markers, such as gata-3 indicative of the cytotoxic
cell lineage previously detected in codfish, make it difficult to
conclusively allocate this group of cells to one specific T-cell
subset. Nevertheless, in combination with additional immune
cell isolation studies, these markers are vital when it comes to
identifying T-cell subsets at a higher resolution in the future.
Genomic assessments have concluded that cd4 has been lost in S.
typhle, bringing into question the functional or overall presence
of CD4+ T-cells (4). Appropriately, no markers specifically
associated with CD4+ T-cells were identified in this study,
providing further support of their evolutionary disappearance
in S. typhle. Whilst conclusively classifying the T-cell cluster
presented here as CD8+ cytotoxic T-cells was not possible, the
unearthing of a number of MHC I related pathway constituents
and cytotoxic related genes supports the presence of the CD8+ T-
cell subset in pipefish. However, determining whether the CD8+

T-cell subset or alternative innate immune cell types are able to
offset the loss of the MHC II pathway in S. typhle requires
further investigation.

T-cell receptors and B-cell receptors in humans were thought
to be exclusively expressed by their namesakes. This traditional
concept has been challenged recently by Ahmed, Omidian (86)
who managed to isolate “dual expresser” lymphocytes capable of
expressing both receptor types. This could explain the presence
of a number of T-cell receptors that were found in both the B-
and T-cell clusters. Alternatively, a small T-cell subset may be
imbedded with the larger B-cell cluster, grouping together based
on upregulated genes shared between the lymphocyte lineages
that transcend these receptors. Further work should attempt
refine and explain the cell sub-types that exist within these two
integral adaptive immune cell groups.

Eosinophils, like basophils and neutrophils, are granulocyte
white blood cells charged with immune surveillance and
inflammatory roles in humans (87). Each are equipped with an
array of cytoplasmic granules, of which some hold C-type lectins
(88). The upregulated expression of eosinophil peroxidase (epx),
a common marker and constituent of eosinophil intracellular
granules in humans (55), gives convincing support to a small
eosinophil population present in pipefish. Isolated initially from
the venom of Thalassophryne nattereri, Galactose-specific lectin
nattectin (nattectin) is a C-type lectin with hemagglutination
activity (89). The prominent expression of nattectin, or a
potentially similar C-type lectin within the cluster, could
indicate that these granulocytes assist with coagulation or a
similar immunomodulatory function that has been reported
previously concerning nattectin (89, 90).

Deduced NK-cell-like cells in fish have been identified
previously, however, clear transcript markers are still missing
making their identities difficult to determine (23, 24).
Characterizing the putative NK-cell-like assigned cluster in this
study was challenging, due to the restricted number of highly
Frontiers in Immunology | www.frontiersin.org 8
significant upregulated genes driving cluster differentiation. The
tentative NK-cell-like assignment in this species would require
additional clarification from additional single-cell sequencing
assessments, in order to be able to confirm with confidence its
involvement in the S. typhle immune repertoire.

Although many of the expected immune system constituents
were identifiable in this study, there were also absentees, with
dendritic cells being the most notable. Dendritic cells occupy a
small percentage (~0.1%) of the total circulating cells in the
blood, but are more prominent in mucosal areas in humans and
are crucial for linking the innate and adaptive immune systems
(91, 92). Despite their perceived absence in S. typhle in this study,
their identification in other teleost fishes (23, 93, 94) suggests
that the perhaps the tissues or resolution of analyses used here
was not sufficient for their discovery. Due to their small
population and shared expressed markers with other immune
cell types, it is likely that this sub-population is being masked
within another cell cluster. The data presented here was also
insufficient to distinguish between macrophages and their
monocyte progenitors.

This investigation succeeded in describing the first in-depth
molecular characterization of the broadnosed pipefish immune
cell repertoire, utilizing single-cell transcriptomics. As with this
study’s predecessors which delved into the sparsely explored
realm of teleost immune cell populations (23–25, 27, 28), a
number of key immune cell sub-populations were identifiable
providing some insight into the putative immune function of S.
typhle. Establishing a baseline expression profile for each
immune cell group identified here, along with corroborated
gene markers, will be crucial for future experimental work
such as those carrying out infection assessments on syngnathid
fishes. This molecular assistance should extend to investigations
concerning S. typhle relatives such as seahorses and other
pipefishes, with potential scope for future comparative,
multispecies single-cell assessments that can lay down a
comprehensive immune cell overview of the Syngnathiforme
lineage. Understanding the cellular repercussions and
adapta t ions tha t may have evo lved wi th in these
immunologically bizarre fishes could support future medical
practices by shedding light on the way certain immune cell
lineages evolve.
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