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Periodontitis is a common chronic inflammatory disease of periodontal tissue, mostly
concentrated in people over 30 years old. Statistics show that compared with foreign
countries, the prevalence of periodontitis in China is as high as 40%, and the prevalence
of periodontal disease is more than 90%, which must arouse our great attention.
Diagnosis and treatment of periodontitis currently rely mainly on clinical criteria, and
the exploration of the etiologic criteria is relatively lacking. We, therefore, have explored
the pathogenesis of periodontitis from the perspective of immune imbalance. By
predicting the fraction of 22 immune cells in periodontitis tissues and comparing them
with normal tissues, we found that multiple immune cell infiltration in periodontitis
tissues was inhibited and this feature can clearly distinguish periodontitis from normal
tissues. Further, protein interaction network (PPI) and transcription regulation network
have been constructed based on differentially expressed genes (DEGs) to explore the
interaction function modules and regulation pathways. Three functional modules have
been revealed and top TFs such as EGR1 and ETS1 have been shown to regulate
the expression of periodontitis-related immune genes that play an important role in the
formation of the immunosuppressive microenvironment. The classifier was also used
to verify the reliability of periodontitis features obtained at the cellular and molecular
levels. In conclusion, we have revealed the immune microenvironment and molecular
characteristics of periodontitis, which will help to better understand the mechanism of
periodontitis and its application in clinical diagnosis and treatment.

Keywords: periodontitis, DEGs, crosstalk gene, PPI, immune system

INTRODUCTION

Periodontitis is a chronic inflammatory disease with complex pathogenesis. It will gradually cause
the loss of periodontal ligament and alveolar bone, and eventually cause tooth loss (Hajishengallis,
2015; Hajishengallis and Korostoff, 2017). As one of the most prevalent chronic inflammatory
diseases in the world, periodontitis directly affects more than 11% of the global population.
According to the National Health and Nutrition Examination Survey of the United States, nearly
half of American adults suffer from periodontitis, which is a huge number and seriously affects the
quality of life of individuals (Eke et al., 2015). Recent studies have shown that periodontitis not
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only affects the periodontal area, it is also the cause of other
systemic diseases, such as rheumatoid arthritis, atherosclerosis
and cerebrovascular diseases (Genco and Van Dyke, 2010;
Kebschull et al., 2010; Lundberg et al., 2010). In addition, studies
have found that as many as one-third of the periodontitis
mutations in the population are caused by genetic factors, and
the more severe the periodontitis, the stronger the heritability
(Nibali et al., 2019).

Studies have confirmed that infection of external microbial
flora is an important factor in causing periodontitis. Earlier,
Porphyromonas gingivalis was considered to be the cause of
periodontitis. But with the advancement of science, we have
found that periodontitis induced by Porphyromonas gingivalis
requires the presence of symbiotic flora (Hajishengallis et al.,
2011). Although with the study of the etiology of periodontitis
is more detailed, the most important is the local microbiota
and host immune response (Hajishengallis, 2014a). Under
normal physiological conditions, the host periodontal local
immune response and microbes are in a delicate balance state,
realizing routine monitoring of the flora (Graves et al., 2019).
However, once the pathogen colonizes the periodontal area,
it will significantly increase the number and destructiveness
of the microbial flora, breaking the original dynamic balance
(Hajishengallis et al., 2012). Under this condition, the immunity
will be over-activated and immune invasion will occur, thereby
destroying the activity of periodontal tissues. Different from
the immune evasion of other pathogens (Cyktor and Turner,
2011), the periodontitis flora interacts with the immune response
to improve its adaptability and use the tissues destroyed by
inflammation to obtain nutrients (Hajishengallis, 2014a,b).

After all, the process of periodontitis is caused by the dynamic
imbalance of local immunity and microbial community. Immune
invasion will cause the activation of osteoclasts, which will resorb
alveolar bone (Belibasakis and Bostanci, 2012). The abnormality
of cytokines in the host immune response has been revealed in
previous studies (Pan et al., 2019). Cytokines are key regulators
of local tissue homeostasis and inflammatory processes, playing
a role in the first wave of the host’s response to pathogens and
stimuli, and connect tissue cells with lymphocytes and helper
cell populations to work together (Graves, 2008). The immune
imbalance of periodontitis leads to systemic inflammation
(Hajishengallis, 2015), and a large number of studies on the
pathogenesis of periodontitis involve changes in host immunity.
But so far, no scholar has fully revealed the immune imbalance
of periodontitis from cells to molecules. In this study, we will
reveal the new pathogenesis of periodontitis and the abnormal
molecular mechanism through protein interaction analysis and
targeted regulation analysis of related immune genes.

MATERIALS AND METHODS

Data Collection
The expression profile and sample annotation of periodontitis
diseases was downloaded from the GEO database1, including

1https://www.ncbi.nlm.nih.gov/geo/

three series GSE10334 (183 periodontitis and 64 normal),
GSE16134 (241 periodontitis and 69 normal) and GSE23586 (3
periodontitis and 3 normal, Table 1). Next, we download all
immunosuppressive-related genes from DisGeNET (Pinero et al.,
2017)2 and HisgAtlas (Liu et al., 2017)3. In addition, we searched
for drugs related to immunosuppressive agents from Drugbank
(Wishart et al., 2018)4 obtained 311 immunosuppressive-related
drugs, and then downloaded immunosuppressive-related genes.
We merged the immunosuppressant-related genes obtained from
the above three databases, and obtained a total of 1,332 genes. We
started from BIND (Gilbert, 2005), BioGRID (Oughtred et al.,
2019)5, MINT (Chatr-aryamontri et al., 2007)6, HPRD (Goel
et al., 2012)7, IntAct (Kerrien et al., 2012)8, and OPHID (Brown
and Jurisica, 2005)9 database to download protein interaction
data, and integrate these data. We also downloaded immune-
related genes from the InnateDB (Breuer et al., 2013)10 database.
The transcription factor (TF) and target gene relationship from
the relevant transcription regulation databases TRRUST v2 (Yang
et al., 2018)11 and ORTI (Vafaee et al., 2016)12.

Immune Cell Distribution Analysis
We have preprocessed the expression matrices of the three
series of GSE10334, GSE16134, and GSE23586 and extracted
the expression profiles of immunosuppressant-related genes
in periodontitis diseases for immune invasion analysis.
CIBERSORT (Newman et al., 2015) could be used to
predict the infiltrating immune cells that are highly related
to periodontitis disease. Here, we used the R version of
CIBERSORT instead of the web version, taking into account the
user-friendly operation. CIBERSORT has four parameters
including the reference set that can be downloaded at
https://cibersort.stanford.edu/download.php, the expression
matrix we prepared, perm that is the number of permutations
when calculating the p-value and is set to 1,000, and QN that is

2http://www.disgenet.org
3http://biokb.nb.org/HisgAtlas/
4https://www.drugbank.ca/
5http://thebiogrid.org/
6http://mint.bio.uniroma2.it/mint/
7http://www.hprd. org/
8https://www.ebi.ac.uk/intact/
9http://ophid.utoronto.ca/ophidv2.204/
10https://www.innatedb.ca/
11https://www.grnpedia.org/trrust/
12http://orti.sydney.edu.au/about.html

TABLE 1 | Description of microarray profiles in gingival tissue.

GEO series Periodontitis
Sample

Normal
sample

Tissues Platforms Citation
(PMID)

GSE10334 183 64 Gingival Affymetrix;
GPL570

18980520

GSE16134 241 69 Gingival Affymetrix;
GPL570

19835625,
24646639

GSE23586 6 6 Gingival Affymetrix;
GPL570

21382035
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whether to perform quantile normalization and is set to TRUE
taking into account the microarray expression data. In order
to see more group differences in the fraction of cell types other
than plasma cells, we further transformed the raw cell fractions
into the log ratio of log (plasma_cell_fraction + 1e-3)/log
(cell_fraction + 1e-3). We also combined previous studies on
periodontitis clustering to explore the differences in the immune
microenvironment between periodontitis subtypes.

Differential Expression Analysis and
Functional Enrichment Analysis
We consider the sample size of each series in the downloaded
data, so we only perform differential expression analysis on the
downloaded sample data of GSE10334 and GSE16134. In data
preprocessing, missing values of the expression matrix were filled
by zero value. Further, the gene expression values were log2-
transformed to be suitable for differential expression analysis.
The limma package was used to measure gene expression
variation between periodontitis and normal samples. We defined
the cutoff of gene p-value as 0.05 and the cutoff of fold-change
as 1.5 (Demmer et al., 2008), which filtered out differentially
expressed genes (DEGs). The clinical variables were not include
in the DEG identification pipeline Next, we integrate the
significant DEGs of these two series of samples into a multi-gene
set list, and use the compareCluster_go() function of the latest
clusterProfiler package of the R language to perform GO function
and KEGG enrichment on the data set, and set threshold p< 0.05.

Construction of PPI Network and
Transcriptional Regulatory Network
We extract gene pairs that interact with DEGs from the PPI
data, and use the network rendering tool Cytoscape to map
the differential gene PPI data. Further, the MCODE module of
Cytoscape were used to screen the significant function modules
in the DEG PPI network (parameter selection: Degree cutoff:
5, Node score cutoff: 0.2, K-core: 2, and Max. depth: 100),
and used the network analysis tool to analyze the topological
properties of the network (Degree, Average Shortest Path
Length, Betweenness Centrality, Closeness Centrality, Clustering
Coefficient, Topological Coefficient). We use differentially
expressed immune genes as crosstalk genes, and extract the PPI
relationship pairs of these crosstalk genes, and use Cytoscape
to construct the crosstalk gene PPI network. We defined the
modules identified in the PPI network of immune-related genes
that were masked in the PPI network constructed directly using
DEGs as New-module of immune function. We extracted the
TF-target relationship pairs related to the crosstalk gene and
constructed the TF-target network using Cytoscape software.
We then analyzed the topological properties of the network,
and extracted the top 10 genes of outdegree and indegree,
respectively, as key periodontitis related genes.

Build the Classifier
We constructed periodontitis disease classifiers with significantly
different infiltration of immune cells as the characteristic and
New-module functional gene in the crosstalk gene PPI network

as the characteristic. The former uses the fraction of immune
cell identified by CIBERSORT and the latter uses gene expression
data. Here, we consider two classification algorithms, including
decision tree and SVM, to build the model. We randomly select
70% of the samples in GSE10334 as the training set, and the
remaining 30% as the test set, and use the data of the GSE16134
and GSE23586 series as the validation sets. Further, we combine
the possibility provided by the classifier and the true sample
label to measure the performance of the classifier. In order to
understand the generalization ability of the model, we introduced
fivefold cross-validation. We use the pROC package and plot
function of the R language to display the ROC curve to evaluate
the effectiveness of the model.

RESULTS

Immune System Imbalance at the
Cellular Level
Immune Cell Infiltration in Periodontitis
We developed a computational pipeline to analyze the gene
expression profile of periodontitis disease (Figure 1A). In this
study, we selected microarray profiles of the GSE10334 and
GSE16134 series with sufficient periodontitis and normal samples
for immuno-infiltration analysis of gingival tissue. After quality
control and normalization, we obtained two processed expression
profiles. Here, we used the CIBERSORT method to predict the
infiltration of immune cells in periodontitis disease. We obtained
the fraction of 22 immune cell types in these samples. We
further transformed the raw cell fractions in order to see more
group differences in the fraction of cell types (Figures 1B,C and
Supplementary Table S1). We found decreased levels of immune
infiltration during the malignant transformation of normal tissue
to periodontitis that was verified in both series of samples, which
indicates that periodontitis tissue undergoes immunosuppressive
microenvironment. By combining this with previous studies
(Kebschull et al., 2014), we found that the level of immune
infiltration in type 1 periodontitis was superior to that in type
2 periodontitis (Figure 1B), indicating that type 1 periodontitis
may be more suitable for immune targeted therapy. We found
that the fraction of CD4+/CD8+ T cells in periodontitis tissue
was significantly depressed (Figure 1D), which might be one
of the factors contributing to the suppression of the immune
microenvironment in periodontitis tissues.

Construct a Classifier Based on Immune Cells
In order to consider whether immune cells with significant
changes in fraction can represent the overall difference between
periodontitis and normal patients, we constructed a classifier
based on the significantly different distribution of immune cells.
The two machine learning methods, including Decision tree and
SVM, were used to build the classifier model, and the training
set, test set, and validation set were also scientifically allocated.
In the model constructed by the decision tree, dendritic cell,
neutrophils, and CD4+/CD8+T cell were used as important
screening indicators to control sample filtering (Figure 2A). In
order to predict the accuracy of the model, the data of the test set
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FIGURE 1 | The distribution of 22 types of immune cells in periodontitis and healthy samples. (A) Diagram of the multiple components and workflows of pipeline.
(B) The heatmap represents the fraction of immune cells for the GSE16134 series. The horizontal axis is the immune cell type and the vertical axis is the sample.
(C) The same as in (B) but for GSE10334. (D) The volcano plot represents the immune cells with significantly different gene expression levels between periodontitis
and healthy samples for the GSE10334 and GSE16134 series.

and the validation set were verified by a trained classifier, and the
prediction results are output. Then we use the pROC package and
plot function of the R language to display the ROC curve of the
data set to evaluate the effectiveness of the model.

After the construction of the classifier and the evaluation of the
classification efficiency, we found that the classifier constructed
by the SVM algorithm has a slight advantage over the classifier
constructed by the Decision tree algorithm (Figures 2B,C).
In order to measure the generalization ability of the support
vector machine model, we introduced fivefold cross-validation.
We found that the AUC value of the fivefold verification
result is stable (Supplementary Figure S1), indicating that
the choice of hyperparameters of the model is excellent. We
obtained excellent results in differentiating periodontitis from
normal tissue from the perspective of immune cells, suggesting
that the disruption of the immune microenvironment of the
gingival tissue is an important cause of periodontitis. Further,

the exploration of the molecular mechanisms underlying the
formation of the immunosuppressive microenvironment in
periodontitis is crucial.

Immune System Imbalance at the
Molecular Level
Statistical Analysis of Gene Expression Matrix
First, we performed statistical tests on the expression profile
data of the GSE10334 and GSE16134 series with abundant
sample sizes, and calculated two test indicators P-value and
Fold Change. We obtained 1,571 and 1,680 DEGs from the two
series of GSE10334 and GSE16134, respectively (Figures 3A,B).
From the results, we found that there are a large number of
DEGs between periodontitis samples and normal samples. In
order to evaluate the reliability of the experimental data, we
tested the overlap levels of the up-regulated and down-regulated
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FIGURE 2 | Construct a classifier with significantly different distribution of immune cells. (A) This picture is the decision tree diagram of the decision tree classifier.
(B) The ROC curve represents the area under curve (AUC) of the test set and validation set for SVM classifiers. (C) The same as in (B) but the Decision tree.

genes in GSE10334 and GSE16134, respectively. We found
that the up-regulated and down-regulated genes in GSE10334
and GSE16134 have significant overlap, indicating that the
DEGs we obtained from the analysis of experimental data are
reliable (Figure 3C). Further, there are 1,424 DEGs shared by
GSE10334 and GSE16134.

Next, we conduct preliminary statistics on the functional
effects of DEGs. These two series of DEGs are integrated into
a multi-gene set list, which is used for multi-gene set GO
function enrichment and KEGG pathway enrichment, and the
functional pathway with p < 0.05 is selected as the significant
function. We use dotplot and emapplot to display 15 functional
nodes and pathways in the results of function and pathway
enrichment (Figure 3D). Since the DEGs of the two series of
samples have a large overlap, they are very similar in function

and pathway enrichment. We can see from the enrichment
results that periodontitis disease has significant enrichment in cell
growth and related immune functions. And which DEGs interact
and regulate relationships deserve further analysis.

PPI Network of DEGs
Building a protein interaction network (PPI) is a common
method to reveal the interaction relationships and functional
modules between genes, so we constructed a PPI network of
DEGs (Figure 4A). First, merge these two series of DEGS to
obtain a total of 1,822 DEGs, and then extract the corresponding
interaction relationship pairs to draw the PPI network. In
the biological network, the node with the higher degree plays
a bigger role in the network and has important functions.
Therefore, we extracted the top 30 degree-ranked genes as
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FIGURE 3 | Differential expression analysis and functional enrichment analysis between periodontitis and normal samples. (A) This picture represents the volcano
map of DEGs for the GSE10334 series. (B) This venn diagram describe the intersection of the up- and down-regulated genes in the GSE10334 and GSE16134
series. Fisher’s exact test is used to measure the significance level of overlap. (C–D) This picture represents the dotplot and emapplot of the GO function enrichment
node of DEGs in the GSE10334 and GSE16134 series of samples. e represents the dotplot and emapplot of the DEGs KEGG pathway enrichment in GSE10334
and GSE16134 series samples.

important periodontitis disease-related genes (Supplementary
Table S2). The results show that genes such as FYN, LYN,
LCK, Critical Assessment of Techniques for Protein Structure
Prediction experiment (CASP3), arrestin beta 2 (ARRB2) are the

central node genes with high connectivity in the PPI network.
Among them, FYN, LYN, and LCK are all members of the
protein tyrosine kinase (PTK) family, and they are non-receptor
PTKs. Studies have shown that most proto-oncogenes have PTK
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FIGURE 4 | Analysis of the topological properties and functional modules of the PPI network of DEGs and crosstalk genes. (A) This picture represents the protein
interaction network of two series of integrated DEGs. There are 647 relationship pairs and 515 nodes in the network. (B) This picture is a moderate topological
analysis of the PPI network of DEGs and the five functional modules in the network. (C) This picture shows the PPI network of crosstalk gene, which has 58
relational pairs and 57 nodes. (D) This picture is the three modules in the PPI network of crosstalk gene. (E) Bar graph of enriched terms across TF and target genes
associated with immune pathways, colored by p-values. (F) Network of enriched terms colored by cluster ID, where nodes that share the same cluster ID are
typically close to each other.

activity, and their abnormal expression will lead to disorders
of cell proliferation and eventually tumorigenesis (Drake et al.,
2014). Non-receptor PTK-mediated signal transmission plays an
important role in the activation of T cells, B cells, NK cells and

granulocytes, and the abnormality of its gene structure or gene
expression is the cause of certain immunodeficiency diseases
and immunoproliferative diseases (Vivier et al., 2004; Vasquez
et al., 2019). This means that FYN, LYN and LCK, which are
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highly expressed, play an important role in the imbalance of the
immune system of periodontitis. In addition, we selected five
important functional modules from the PPI network (Figure 4B),
all of which play an important role in cellular immunity (Module
1) and cell growth and proliferation. In order to further study
the relationship between immunity and periodontitis disease, we
extracted genes related to immunity among DEGs and conducted
a series of analysis and research.

Crosstalk Gene in Immune Imbalance
Since crosstalk occurs when TFs regulate multitude of immune-
related genes in periodontitis disease, it is intriguing to
explore the regulatory mechanisms of immune-related genes
(Friedlander et al., 2016; Grah and Friedlander, 2020). We
extracted the immune-related genes from the DEGs and defined
them as crosstalk genes. Then, we obtained 159 crosstalk genes,
which are immune-related genes differentially expressed in
periodontitis diseases. We extracted the PPI relationship pairs
of these crosstalk genes to draw a PPI interaction network, and
analyzed the functional modules and topological properties of
the network (Figure 4C). We obtained 3 functional modules
including a new immune function module (New-module) which
was not recognized in the previous PPI network (Figure 4D).

As we all know, TFs can control gene expression and
expression efficiency (Lambert et al., 2018). Therefore, the
analysis of transcription regulation relationship helps us
understand the process of several gene expression changes.
We collected TF-target relationships from TRRUST and ORTI
database which identify TF-target regulations from small-scale
experimental studies and interrogating gene expression data.
These TF-target relationships were mapped to the transcriptional
regulatory network of DEGs associating with crosstalk genes
(Supplementary Figure S2). There were 19 TFs in this
transcriptional regulatory network, of which 14 were up-
regulated and 5 were down-regulated. A total of 5 TFs were
crosstalk genes that had unbinding event with known target
genes, and they were all up-regulated in expression, including
early growth response 1 (EGR1), ETS proto-oncogene 1 (ETS1),
interferon regulatory factor 4 (IRF4), RUNX family transcription
factor 3 (RUNX3), and X-box binding protein 1 (XBP1). We
combined immune-related genes on the basis of transcriptional
regulatory network to explore the functions of TFs in the

immune microenvironment according to Metascape (Zhou et al.,
2019). We found that these TFs and their targeted genes are
closely related to the activity of T cells (Figures 4E,F), which
may lead to the formation of periodontitis immunosuppressive
microenvironment. By analyzing the topological properties of the
network (Table 2 and Supplementary Table S3), we found that
EGR1, ETS1, RUNX3, and XBP1 were associating with multiple
genes. We also found that most of the up-regulated genes in
the New-module functional module of the cross-talk gene PPI
network are regulated by ETS1 and EGR1.

Explore the Immune Function of New-Module
As an important and novel functional module, New-module
is worthy of our in-depth exploration. We extracted the up-
regulated genes in New-module as a gene set, and analyzed
their biological pathways (BP) and functional pathways, where
ont = ‘BP’ was set in enrichGO, and p < 0.05 was set uniformly.
Through enrichment analysis of the up-regulated target genes
in module3, we have obtained significantly enriched functional
pathways. For the large number of BPs, we used dotplot and
cnetplot to show only the top 30 BPs terms (Figures 5A,B). These
BPs are mainly related to immune cell invasion and activity. In the
cnetplot, we found that these biological pathways mainly involve
7 genes, including INPP5D, LYN, PRKCD, PTK2B, ITGB2,
SLAMF1, and IL2RB. These genes are only significantly enriched
in one pathway, namely the Chemokine Signaling pathway
(hsa04062; chemokine signaling pathway), in which three genes
including LYN, PRKCD and PTK2B are involved (Figures 5C,D).
Studies have found that chemokines play a basic role in the
transport and activation of monocytes and lymphocytes in the
inflammation site. For example, this mechanism can perpetuate
local inflammation in the joints of RA patients (Zhang et al.,
2015). So, in periodontitis disease, it was possible to believe
that the production and persistence of inflammation caused by
immunosuppressive microenvironment is achieved through the
influence on chemokine signaling pathways.

We then used boxplot to show the relationship between these
genes and the expression of TFs, and we found that the expression
changes of TF and target genes are consistent, which is in line
with the transcription regulation relationship (Figures 5E,F). The
TFs involved are the two high-outdegree TFs, ETS1 and EGR1,
which reveals that the TFs ETS1 and EGR1 play a crucial role

TABLE 2 | Top 10 outdegree genes in the transcriptional regulatory network as key genes.

Symbol Out degree Average shortest path Length Betweenness centrality Closeness centrality Regulatory_type EXP_type

ETS1 859 1.022 0.001 0.979 TF_Target Down

EGR1 41 1 3.23E-05 1 TF_Target Down

RUNX3 8 1 1.55E-05 1 TF_Target Down

XBP1 6 1 1.29E-06 1 TF_Target Down

CEBPA 5 1 0 1 TF Down

IRF1 2 1 8.60E-07 1 TF_Target Up

IRF2 2 1 8.60E-07 1 TF_Target Up

POU2F2 2 2.018 1.29E-06 0.495 TF_Target Down

STAT4 2 1.333 0 0.750 TF_Target Down

IRF4 1 1 3.87E-06 1 TF_Target Up
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FIGURE 5 | New-module function and pathway analysis (A). The dotplot of enriched biological pathways (BP) across up-regulated genes in the New-module.
GeneRatio is the number of enriched genes/number of all genes of a GO term. (B) Network of enriched terms, where nodes that share the same genes are typically
link to each other. The size of the dot represents the counts of gene. (C) The pathway diagram is one of the functional pathways enriched by up-regulated genes in
the New-module gene. (D) The mechanism of the New-module up-regulated genes on the chemokine signaling pathway. (E) The boxplot represents the
transcriptional regulatory relationship of the up-regulated genes in the New-module for GSE10334 and GSE16134 series. (F) The same as in (E) but only for
GSE10334 series.

in the invasion and activity of immune cells in periodontitis.
Further, we explored whether these TFs played driver roles in TF-
target relationships by using Chromatin Immunoprecipitation
Sequencing (ChIP-seq) data from ENCODE (v112). Enriched

sequencing read peaks of these TFs have been found in the
transcription factor binding site (TFBS) regions of downstream
target genes. For example, the EGR1-IL2RB relationship of
Figure 5E has been supported by multiple ChIP-seq datasets
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FIGURE 6 | Construct a classifier based on the New-module gene. (A) The ROC curves of the test set and validation set for SVM algorithm constructed with the
New-module functional module gene in the crosstalk gene PPI network. (B) The same as in (A) but for the decision tree algorithm.

(Supplementary Figure S3). The ETS1-target relationships of
Figure 5F has also been supported by multiple ChIP-seq datasets
(Supplementary Figures S4–S8). Since the immune function
module New-module plays an important role in periodontitis
disease, we decided to rebuild the classifier using the gene of
this module as features and compare the performance of the
previous classifiers.

Construct a Classifier Based on
New-Module
To explore whether the new-module can accurately define
periodontitis and normal tissue, we constructed classifiers using
the genes in the module as features. Considering that the
expression values of the GSE10334, GSE16134, and GSE23586
series are of different magnitudes, we normalized them to make
them consistent. We built two classifiers based on decision tree
and SVM and used the classifier to predict the test set and the
validation set (see section “Materials and Methods”). We found
that the classifier constructed with SVM is the best here, and the
AUC values of the test set and the two validation sets are 0.923,
0.957, and 0.889, respectively (Figure 6). The lower AUC value
of GSE23586 as the test set is caused by the small sample size.
Generally speaking, the effect of the classifier is better.

Then we compared the performance evaluation results of this
classifier with the previous ones (Table 3). From the comparison
results, we can clearly see that the effect of constructing a classifier
based on the new-module functional module is better than based
on the different content of immune cells. All these suggesting
that although there are differences in the fraction of immune

cells between periodontitis samples and normal samples, the
differences will be more significant at the level of molecular level.

DISCUSSION

In this study, we systematically analyzed the immune imbalance
of periodontitis from the cellular to molecular level. Measuring
the fraction of immune cells between periodontitis and normal
tissues was used to determine the feature and role of immune cells
in periodontitis. Statistical analysis of gene expression profiles
is used to reveal abnormally expressed genes in periodontitis.
The PPI was constructed to explore potential functional modules
and reveal new molecular mechanisms of immune imbalance in
periodontitis. We have reconstructed the PPI network base on
immune genes and discovered a new immune function module
named New-module. By integrating TF-target relationships and

TABLE 3 | Comparison table of performance evaluation of two
classifiers successively.

Classification
features

Series
number

data sets SVM AUC Decision tree
AUC

Immune cells GSE10334 Test set 0.815 0.656

GSE16134 Validation set 0.918 0.855

GSE23586 Validation set 0.889 0.833

Important
crosstalk genes

GSE10334 Test set 0.923 0.810

GSE16134 Validation set 0.957 0.895

GSE23586 Validation set 0.889 0.833
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ChIP-seq data, we found that EGR1, ETS1, RUNX3, and XBP1
were key TFs that regulate the expression of genes that participate
in the formation of the immunosuppressive microenvironment.
The up-regulated genes are mainly regulated by EGR1 and ETS1
in New-module. In addition, New-module not only plays an
important role in the imbalance of the immune system, but is also
closely related to the occurrence and persistence of periodontal
tissue inflammation.

Periodontitis is mainly a chronic inflammation of periodontal
tissue caused by pathogens, which has the characteristics of
complicated pathogenesis and long duration. Previous studies
have shown that the imbalance of the immune system caused by
pathogen colonization is an important factor in the occurrence
and development of periodontitis. The majority of work has
focused on the external pathogenic factors and clinical treatment
of periodontitis, with limited documentation of indications that
the changes in the molecular mechanism of the immune system
of patients with periodontitis. In addition, more and more
studies have demonstrated the significance of the imbalance of
the immune system for periodontitis, including the abnormality
of cytokines in the host immune response (Pan et al., 2019),
and the immune imbalance of periodontitis leads to systemic
inflammation (Hajishengallis, 2015). Exploring the disease tissue
microenvironment at single-cell resolution is a popular direction,
but the lack of high-throughput data for periodontitis has
forced us to consider other approaches. In order to be able
to further explore the tissue microenvironment and epigenetic
characteristics of periodontitis in future research, TOAST (Li
et al., 2019, 2020; Li and Wu, 2019) tool that offers functions
for detecting cell-type specific differential expression (csDE)
and differential methylation (csDM) brings convenience to our
research. In the current study, we comprehensively assessed the
immune system imbalance of periodontitis from the cellular to
molecular level, which gained a new insight in protein interaction
and transcriptional regulation.

During the construction of PPI networks, usage of
immune genes only will lose many other pathway signals.
Our purpose is to explore the molecular mechanism of the
immune microenvironment reprogramming of periodontitis
disease. Although our selection of immune genes will ignore
other signaling pathways, the formation mechanism of the
immunosuppressive microenvironment of periodontitis disease
is important. In the future, we will integrate more genes into
the PPI networks and perform functional analysis to characterize
periodontitis disease comprehensively.

We successfully determined the immunosuppressive
microenvironment of periodontitis in the measurement of
immune cell distribution. Notably, we measured the distribution
of immune cells and differential gene expression in two series
with rich samples, which can effectively avoid the false negative

problem faced in the research. Our data may discover previously
overlooked pathogenic genes and molecular mechanisms, adding
a new blueprint for periodontitis research. In addition, we also
used a machine learning algorithm to build a classifier model
to consider the reliability and pros and cons of the statistically
obtained disease characteristics. Periodontitis is mainly a local
inflammation caused by pathogen-induced immune invasion.
Therefore, investigation and interpretation of the immune system
would provide novel and useful insights into the mechanisms
underlying the functions of these molecules in periodontitis. In
our further work, we will perform experiments in vitro to validate
key regulators identified from our results. The experimental
strategy will measure the expression levels of risk genes using
qRT-PCR in normal and disease tissues. Further, siRNAs will be
used to knockdown their expression and study gene functions
with cell proliferation assay, wound healing assay.

CONCLUSION

In summary, we provide a comprehensive view of the imbalance
mechanism of the periodontitis immune system from the cellular
to the molecular level. Our findings expand existing knowledge
about immunosuppressive associated with periodontitis. The
integration of multi-platform data comprehensively reveal that
the immune system imbalance mechanism of periodontitis
patients enhances the interpretability of the pathogenesis
of periodontitis, which may help the development of new
periodontitis treatments.
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