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Abstract
Background: Gene networks are considered to represent various aspects of molecular biological
systems meaningfully because they naturally provide a systems perspective of molecular
interactions. In this respect, the functional understanding of the transcriptional regulatory network
is considered as key to elucidate the functional organization of an organism.

Results: In this paper we study the functional robustness of the transcriptional regulatory network
of S. cerevisiae. We model the information processing in the network as a first order Markov chain
and study the influence of single gene perturbations on the global, asymptotic communication
among genes. Modification in the communication is measured by an information theoretic measure
allowing to predict genes that are 'fragile' with respect to single gene knockouts. Our results
demonstrate that the predicted set of fragile genes contains a statistically significant enrichment of
so called essential genes that are experimentally found to be necessary to ensure vital yeast.
Further, a structural analysis of the transcriptional regulatory network reveals that there are
significant differences between fragile genes, hub genes and genes with a high betweenness
centrality value.

Conclusion: Our study does not only demonstrate that a combination of graph theoretical,
information theoretical and statistical methods leads to meaningful biological results but also that
such methods allow to study information processing in gene networks instead of just their
structural properties.

Background
The advent of high-throughput technologies in molecular
biology has initiated an avalanche of data that possess
considerable challenges to quantitative sciences providing
statistical analysis methods [1]. Due to the fundamental
insight that biological processes should be studied holis-
tically [2-4] instead of reductionistically, systems based
approaches are of central importance in this respect [5].

For this reason, it is no surprise that network related stud-
ies experience an enormous interest starting with the
investigation of small-world [6,7] and scale-free [8,9] net-
works in the mid 1990's followed by numerous studies
devoted to the analysis of complex network topologies
and their properties in general [8,10-14]. It is interesting
to note that many apparently different networks have sim-
ilar properties. Most prominent example is the degree dis-
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tribution. For example, the World-Wide Web, the Internet
or biological networks are found to be scale-free
[8,10,11,15,16] with respect to their degree distribution.
In molecular biology, metabolic, transcriptional regula-
tory, signaling and protein networks have been studied
extensively during the last years [4,17-19] to shed light on
the functional organization of these complex gene net-
works [20]. In this context, functional robustness is consid-
ered a key player for our understanding regarding the
interplay of network structure and network dynamics leading
to the emergence of life as omnipresent around us [9,21-
23].

For general networks, one of the first studies that has thor-
oughly investigated structural robustness of systems that
can be represented as networks is from ALBERT et al. [24].
ALBERT studied the error and attack tolerance of synthetic
as well as real world networks and compared random and
scale-free networks, e.g., the World-Wide Web or the Inter-
net. By using purely graph theoretical measures – the
diameter of the network and the size of the largest con-
nected component – they found that scale-free networks
are much more robust against random errors than ran-
dom networks but more vulnerable against directed
attacks. In the context of gene networks the interest shifts
from the structural robustness of the networks to their func-
tional robustness because the ultimate goal is of course to
gain insights into the function of a living cell or an organ-
ism respectively. On a time scale of a living organism the
question of functional robustness has been addressed by
[25-28]. For example, in [27] the dynamics of Boolean
networks [29,30] were studied serving as a simplified
model for the signal processing taking place in gene net-
works. As major result [27] found that fluctuations occur-
ring inevitably within the system, e.g., due to the inherent
noise present on a molecular level [31,32], can be sup-
pressed by a suitable design of the overall network topol-
ogy [27]. On an evolutionary time scale the functional
robustness of gene networks has been studied by [33-35]
considering directly the role selective pressure might play
during evolution leading to observable patterns of, e.g.,
protein structures, gene expression or network structures
as present in current organisms. In this paper we tie up
with previous studies aiming to analyze the functional
robustness of networks on a time scale of living organisms.
By pointing out the time scale we want to emphasize that
we do not investigate the evolutionary robustness of an
organism. Instead, the major objective of this paper is to
investigate the functional robustness of the transcrip-
tional regulatory network (TRN) of S. cerevisiae with
respect to single gene perturbations. As quantitative meas-
ure of functional robustness we suggest to use an informa-
tion theoretic measure [36], previously used to study
synthetic networks, that does not focus directly on struc-
tural changes of the network topology due to the pertur-

bations but on the alterations of information flow,
modeled as Markov Chain [37], within the network as
consequence of the structural modifications. The advan-
tage of information theoretic measures [38-40] is that the
concrete underlying dynamics does not need to be speci-
fied precisely, instead, a qualitative model is enough to
gain principle insights into common working mecha-
nisms with regard to more elaborate biological models.
General entropy measures for quantifying structural infor-
mation in networks have been developed in [41,42]. For
our study, we use the transcriptional regulatory network
of yeast [43,44] and apply our information theoretic
measure to identify genes that are crucial for the function-
ing of the organism in the sense that disruptions of the
transcriptional regulatory network are experienced strong-
est by these genes. For this reason we call these genes frag-
ile. In this paper, we quantify our results by connecting
these to the list of known so called essential genes of yeast
[45] to demonstrate that our predictions are biologically
meaningful.

Methods
In this section we present the information theoretic meas-
ure we use to analyze the transcriptional regulatory net-
work of yeast to study its functional robustness.

Markov chains
We approximate the information flow in the network as a
Markov chain. A Markov chain is a Markov process that is
discrete in time and space. We define a Markov process by
using a given network topology G and the plausible
assumption that all possible interactions are equal likely.
Plausible in this context does not necessarily mean that
this corresponds best to the real situations, it means that
it is the most simple and unbiased assumption one can
make. For simplicity, we further assume the Markov proc-
ess to be of first-order

T(Xt+1 = j|Xt = it, ..X1 = i1) = T(Xt+1 = j|Xt = it).

That means, the transition probability T depends only on
the last state and not on states that are further in the past.

Definition 1: The transition probability T for a Markov chain
of first-order for a network G with adjaceny matrix A is defined
by

for all i, j  V.

Here ki = j Aji is the degree of node (gene) i in the network
and Aij is a component of the adjacency matrix indicating
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if node i is connected with node j (Aij = 1) or unconnected
(Aij = 0). V denotes a set comprising all genes.

Single gene perturbations
In this paper we study the effect of single gene perturba-
tions on the information processing in the transcriptional
regulatory network of yeast. Formally, we define perturba-
tions in the following way.

Definition 2: (Single gene perturbations) If a gene k in
network G is perturbed than all outgoing and incoming edges
from this gene are deleted. In addition, one self-connection is
introduced.

In Fig. 1 and 2 we visualize a single gene perturbation.
One can see that the perturbed gene (shown in red) does
no longer participate in the information processing in the
network. However, the remainder of the network is still
structurally intact and capable to transmit signals. Hence,
a single knockout can be considered as a perturbation and
the modified communication among the remaining genes
can be studied principally provided there is a measure to
quantify these alterations. This measure is given in the
next subsection.

Asymptotic Communication
The information theoretic measure we use to capture the
asymptotic behavior of information processing evaluates
the deviation of the unperturbed (or normal (n)) state
from the perturbed (p) state caused by the perturbation of
gene k. We use the the relative entropy also known as Kull-
back-Leibler (KL) divergence D [46,47] to quantify this
deviation. Our asymptotic measure is given by the follow-
ing definition.

Definition 3: (Asymptotic information change)

Here  and  are stationary distributions obtained

by

The Markov chain given by Tk corresponds to the process
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A graph depicts the flow of information in the networkFigure 1
A graph depicts the flow of information in the network.
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obtained by perturbing gene k in the network. The station-
ary distribution  of the perturbed (p) network
obtained by perturbing gene k and starting from the initial
distribution,

depends on i because we use the Kronecker delta, which is
one for i = m and zero otherwise, as initial condition. The
reason therefore is we consider i as starting point for the
spread of information in the network. The interpretation

for the unperturbed (normal (n)) distribution  is cor-
respondingly. We want to note that due to the directed-
ness of the network the Markov process is not ergodic
which results in a dependence of the asymptotic distribu-

tions  and  on the initial distribution . For

this reason it is important to use |V| - 1 (starting from k is
excluded because the perturbed gene has no longer outgo-

ing edges) different initial distributions  to evaluate
Dik. That means Eq. 3 defines the components of a matrix
and the interpretation of Dik is that the index k correspond
to the deletion of gene k and index i referes to the initial

distribution  = i, m. The diagonal elements Dik (i = k)
are not defined.

Results and discussion
Data
For our analysis we use the transcriptional regulatory net-
work of yeast [43,44] which is a directed, unweighted net-
work. From this network we extract the weakly connected
component consisting of 3357 genes and 7230 interac-
tions. The weakly connected component of a network is
defined as the subnetwork that connects every pair of
nodes by at least one directed path. That means for every
pair of genes the weakly connected component ensures
that communication (at least in one direction) between
these genes is in principle enabled. This is an important
characteristic because in our analysis we are aiming to
quantify modifications of the communication among
genes due to perturbations. Hence, if there would be no
path between genes such an analysis would not be sensi-
ble.

On a practical note, we want to remark that our theoretical
analysis described in detail in the next section is computa-
tionally expensive because we perform single gene pertur-
bations for all genes in the network. That means, we do

Perturbing the node shown in red leads to a breakdown of communication between the red node and all other nodesFigure 2
Perturbing the node shown in red leads to a breakdown of communication between the red node and all other 
nodes. However, there is still an information flow in the remaining network.
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not just analyze one network with our method but as
many as genes in the network. Hence, the results pre-
sented in this article are obtained by analyzing 3357 net-
works. It is clear that this is getting more and more
demanding computationally by increasing the number of
genes in the network. From our simulations we found that
networks with several thousand nodes can be studied
within reasonable time whereas larger networks would
require more algorithmic attention to reduce the compu-
tation time.

Results
Now we study the asymptotic behavior of the transcrip-
tional regulatory network of yeast regarding information
propagation under the influence of single gene perturba-
tion.

For the normal (unperturbed) and perturbed network
topology of the transcriptional regulatory network we
determine Markov chains from which we calculate the sta-
tionary distributions. The perturbations correspond to
single gene perturbations and the Markov chains are
obtained as described in the methods section. From the
resulting stationary distributions of the Markov chains we
calculate the Kullback-Leibler divergence Dik = D

( || ) for all genes i  V and perturbations k  V

with i  k. We want to note that due to the directedness of
the network the resulting Markov process is no longer
ergodic. Hence, information sent from different genes can
results in different stationary distributions. For this rea-
son, we use all N genes consecutively as sender gene. This
is reflected by the index i in Eq. 3 corresponding to the
gene from which the information was sent initially. On a
mathematical note we want to remark that the network
does not need to be disconnected to result in a non-
ergodic Markov chain. However, the need to consider dif-
ferent initial conditions to study the behavior of the
resulting stationary distributions meaningfully remains
also true in this case.

We begin our analysis by investigating if the asymptotic
results summarized by Dik can be connected to local, struc-
tural properties of the genes in the network. For this rea-
son we determine all genes with

and calculate the correlation with the in- and out-degree
vector of the network. More precisely, we calculate Spear-
man's rank-order correlation coefficient [48] between the
rank ordered vectors to decide if the order in these vectors
is statistically preserved. For the in-degrees we obtain a
correlation of r = -0.39 and p = 6 × 10-9, for the out-degrees

r = 0.33 and p = 1 × 10-6. Using a significance level of  =
0.05 indicates that both rank correlations are statistically
significant implying that, e.g., high out-degrees corre-
spond to high values of Di. These results seem plausible
considering the following situation: For a given gene that
is connected to all other genes (outgoing edges) it is clear,
that an arbitrary knockout of a single gene effects with
probability one an outgoing edge of this gene. Hence, this
knockout will have an influence on the information
processing of this gene. The strength of this influence can
not be easily predicted given just this information, how-
ever, we will have an influence with probability one.
Instead, a gene having very few outgoing connections has
a lower probability that a single knockout effects one of its
outgoing edges (Pr = kout/Np with Np the number of genes
that can be perturbed). However, it is possible that the
knocked out gene destroys some communication paths
(secondary- or even higher-order effect if measured as
Dijkstra distance [49]) and, hence, can still have a strong
impact on the information processing. It seems to be rea-
sonable to assume that the further away the knockout
gene is from the starting gene (in Dijkstra distance [49])
the less the impact will be. This is a strong indicator that
information processing on a systems level depends cru-
cially on the information processing in a local environ-
ment of the gene that sends the information. We want to
remark that in our analysis the number Di, given in Eq. 7,
is a global measure, whereas the degree vector is a local
measure. This result is interesting because it demonstrates
that the local properties of genes, given by their local con-
nectedness, which can be roughly summarized by their
degrees, are not averaged away with respect to the station-
ary distribution of the Markov process. That means the
local connectivity signature is still detectable in the asymp-
totic behavior. We will come back to this point in the dis-
cussions section because this is a non-trivial point.

In Fig. 3 we show the components of the asymptotic infor-
mation change Dik for which Di  0.1 holds (149 genes).
Blue corresponds to low values (zero) and cyan to high
values of Dik (the maximal value of Dik is 20.47). The ver-
tical stripes indicate that the knockout of a few genes
effects many other genes whereas most knockouts have
only a minor effect on other genes. This is also the reason
why we do not show Dik for N = 3357 genes because in
this case the figure would appear essentially blue.

In Fig. 4 we show the histogram of Di. From this figure one
can see that the distribution of Di has a heavy tail and that
most values are around zero. This indicates that our meas-
ure has the desirable property to be very selective by eval-
uating most perturbations as minor. This corresponds to
experimental results showing that only about 10% of all
genes in yeast are categorized as essential [50] which
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Asymptotic information change Dik for all genes with Di  0.1Figure 3
Asymptotic information change Dik for all genes with Di  0.1.
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means that their knockout has a catastrophic influence on
the organism.

To point out the properties of our measure we show in Fig.
5 results connecting genes with high Di values quantita-
tively to the appearance of essential genes from gene-dele-
tion experiments in yeast [45]. Figure 5 shows Ne/Nc in
dependence on D. Nc is the number of genes found for
which Di > D holds and Ne is the number of essential
genes found in this set,

Sc = {i|Di > D},

Nc = #Sc,

Se = {i|i  Sc and i is essential},

Ne = #Se.

The highest values found by this comparison are over
40%. A natural question arising now is if this occurred just
by chance or is this high coverage unlikely to happened
accidentally. Figure 6 provides information regarding this
question. There we show pD in dependence on D. The
probability pD is the sum of a hypergeometric distribution
p(k; N, NE, n) giving the probability to observe exactly k
essential genes in a set of size n = Nc(D) when the total
number of genes is N containing NE essential genes.

Hence,

is the probability to observe k or more essential genes in
the set Nc. From Fig. 6 one can see that for D  [8,15] the
probability pD < 0.05 (the dotted line corresponds to
0.05). This result suggests that the peaks observed in Fig.
5 do not appear by chance. Further, we obtain possible
cut-off values for our gene set to be considered which cor-
responds to the interval D  [8,15]. From these results we
decided to choose  = 12 as cut-off value because for
this value Ne/Nc assumes a maximum value. We call all
genes for which Di >  holds fragile genes.

In table 1 we show a list of 12 genes found by setting 
= 12 for which pD = 0.0039. These genes are ordered
according to their out-degree dout in descending order. The
first column gives the name of the gene. The second and
third, the out- correspondingly in-degree of the gene in
the TRN. The forth column gives the value of Di and the
fifth column indicates if the gene is found to be essential
(Y) or non-essential (N) according to [45]. As one can see,
the first gene (YNL216W) is a hub because dout = 240.
However, all other genes are not. Interestingly, YNL216W
is not an essential gene according to [45]. The results in
table 1 demonstrate that our measure does not prefer to
select hub genes because only one hub was selected.

This underlines the non-trivial characteristics of our meas-
ure. For reasons of completeness we show in table 2 the
top four knockout genes that cause the largest influence,
as measured by

Histogram of Di for all genes with Di > 0Figure 4
Histogram of Di for all genes with Di > 0.

Di

F
re

qu
en

cy

0 5 10 15 20

0
10

20
30

40
50

60

p p k N N nD

k N

N

E

e

c

=
=
∑ ( ; , , ),

Ne/Nc in dependence on DFigure 5
Ne/Nc in dependence on D.

5 10 15 20

0.
0

0.
1

0.
2

0.
3

0.
4

θD

N
e

N
c

ΘD
c

ΘD
c

ΘD
c

D Dk ik

i

= ∑ ,
Page 7 of 11
(page number not for citation purposes)



BMC Systems Biology 2009, 3:35 http://www.biomedcentral.com/1752-0509/3/35
on other genes. The genes are again ranked according to
their out-degrees. All of these genes are hubs. Considering
the top 50 genes reveals that in this set 20 genes have an
out-degree below 25 and even genes with an out-degree
one and two are among these. Again, this demonstrates
that hubness is no sufficient property to characterize these
genes.

Next, we analyze the structure of the TRN containing our
12 genes shown in table 1. We find that each gene pair is
connected (both ways) via a directed path. This implies
that the subgraph formed from these 12 genes is part of
the strongly connected component of the TRN. As side
note we remark that for D  9 the resulting set of genes is
no longer strongly connected and that also for D = 10
this gene set does not correspond to the entire strongly
connected component of the whole TRN comprising Nsc =
36 genes. Analysis of the strongly connected component
of the whole TRN shows that it contains only 8 essential
genes. From this we calculate the probability to find 8 or
more essential genes by chance in the strongly connected
component. By summing up the probabilities from a
hypergeometric distribution we find psc = 0.021. This
shows that essential genes are enriched in the strongly
connected component, however, due to pD (D = 12) <<psc
the strongly connected component represents a less favo-
rable set to identify essential genes than the set found by
our method. Fig. 7 shows Dik for the strongly connected
component. In contrast to Fig. 3 the influence of the per-
turbations is now much more severe as can be seen by the
many non-blue dots. As a remark we want to remind that
the diagonal of Dik is not defined as explained in the
methods section.

Finally, we test for the transcriptional regulatory network
if our measure and betweenness centrality are similar by
calculating Spearman's rank sum correlation coefficient.
For the genes in table 1 we obtain a correlation coefficient
r = 0.0139 and a p-value of 0.965 indicating that the
results of both measures are not correlated. Further, we
find that among the top 100 ranked genes of both meas-
ures only two genes are selected by both measures.

Discussion
In table 3 we provide some information about the biolog-
ical processes the genes in table 1 are involved in. All
genes found by our measure belong to the category 'regu-
lation of transcription, DNA-dependent'. Further, some
additional categories are listed for each gene in table 3. It
is apparent that involvement in transcription regulation is
the dominating category. This is interesting because the
genes listed in the bottom of the table have a fairly low
out-degree (see table 1). From our results we hypothesize
that the genes found by our method, who have not been
declared 'essential' by [45], should be 'fragile' in the sense

pD in dependence on DFigure 6
pD in dependence on D. The dotted line corresponds to 
0.05.
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Table 1: Genes obtained for  = 12.

gene dout din Di essential

YNL216W 240 2 17.5 N
YKL043W 92 1 17.9 N
YML007W 89 2 13.0 N
YFR034C 73 2 14.0 N
YER040W 44 1 17.8 Y
YBR112C 26 1 13.6 Y
YPL177C 23 2 13.3 N
YOL148C 13 1 20.4 N
YGL207W 12 2 18.1 N
YLR399C 9 3 12.2 Y

YDR138W 5 1 15.6 Y
YPR072W 4 1 16.1 Y

The first column gives the name of the gene.
The second and third, the out-correspondingly in-degree of the gene 
in the TRN. The fourth column gives the value of Di and the fifth 
column indicates if the gene is found to be essential (Y) or non-
essential (N) according to [45]. For this set pD = 0.0039.

Table 2: Top four knockout genes that have the largest impact 
on other genes. 

gene dout din Dk essential

YML027W 314 2 26.8 N
YGL096W 248 0 97.4 N
YDL056W 129 0 149.8 Y
YHR206W 128 0 27.8 N

First column: gene name. Second column: out-degree. Third column: 
in-degree. Fourth column: Dk. Fifth column: essential genes (yes (Y) or 
no (N)).

ΘD
c
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that they are influenceable quite severely by the malfunc-
tioning of many other genes. Here, 'fragile' should not
necessarily be equalized with 'essential' but the organism
may be viable, however, it's overall function substantially
impaired. It is also important to bear in mind that the list
of essential genes used in our analysis is not necessarily
complete. After intense literature research we found that
YGL207W (also known as SPT16 – subunit of the het-
erodimeric FACT complex (Spt16p-Pob3p), facilitates
RNA Polymerase II transcription elongation) is reported
to be essential by [51] confirming our findings.

On a mathematical note we want to remark that the fact
that rank(Di) and rank(dout) respectively rank(din) are cor-
related, as shown in the beginning of the results section,

does not imply that our measure approximates or is even
identical to the ranking of the degrees. This can be seen in
table 1 because, e.g., the five bottom genes have dout < 20,
however, in the whole transcriptional regulatory network
are 79 genes that have an out-degree larger than 20. But
only seven of them appear in the list.

From a perspective of information processing the connec-
tion between asymptotic information change and local
network structure represented by their degrees is interest-
ing because it indicates that a local subgraph may be suf-
ficient to study information processing in the overall
network. This dissection is interesting because it would
allow to reduce the computational complexity considera-
bly that arises studying genomes like yeast or even organ-

Asymptotic information change Dik for all genes in the strongly connected component of the transcriptional regulatory networkFigure 7
Asymptotic information change Dik for all genes in the strongly connected component of the transcriptional 
regulatory network.
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isms with more genes. In a former study [27], a similar
idea has been proposed in a different methodological
framework.

Finally, we want to remark that we repeated the analysis
using Dk = i Dik as fragility measure of genes. However,
for Dk we did not obtain meaningful results regarding the
enrichment of essential genes. That means that the infor-
mation captured by Dik is asymmetric, as one would
expect from it's construction.

Conclusion
In this paper we analyzed the influence that single gene
perturbations have on the asymptotic communication
abilities of the transcriptional regulatory network of yeast
[43,44] to learn about the functional robustness of this
network. To study the influence of the perturbations we
used an information theoretic measure [36] and approxi-
mated the information propagation as a first order
Markov chain directly defined for a given network topol-
ogy. Our numerical studies obtained three major results.
First, the asymptotic distributions for the perturbed and
unperturbed network states carry implicitly information
about their local origin from which the initial signal was
transmitted. This confirms results previously found for
synthetic networks [36]. Second, using our measure of
asymptotic information change we could demonstrate
that the predicted set of fragile genes contains a statisti-
cally significant enrichment of so called essential genes
that are experimentally found to be necessary to ensure
vital yeast. Third, a structural analysis of the transcrip-
tional regulatory network revealed that there are signifi-
cant differences between fragile genes, hub genes and
genes with a high betweenness centrality value.

In addition to these findings we consider it to be impor-
tant to emphasize that we employed graph theoretical,
information theoretical as well as statistical methods [52]

because the biological information processing in gene
networks is unlikely to be treated correctly in a determin-
istic framework. This demonstrates the power of interdis-
ciplinary approaches and is at the heart of computational
systems biology.
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