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A B S T R A C T

A pandemic outbreak of a viral respiratory infection (COVID-19) caused by a coronavirus (SARS-CoV-2)
prompted a multitude of research focused on various aspects of this disease. One of the interesting aspects of the
clinical manifestation of the infection is an accompanying ocular surface viral infection, viral conjunctivitis.
Although occasional reports of viral conjunctivitis caused by this and the related SARS-CoV virus (causing the
SARS outbreak in the early 2000s) are available, the prevalence of this complication among infected people
appears low (~1%). This is surprising, considering the recent discovery of the presence of viral receptors (ACE2
and TMPRSS2) in ocular surface tissue. The discrepancy between the theoretically expected high rate of con-
currence of viral ocular surface inflammation and the observed relatively low occurrence can be explained by
several factors. In this work, we discuss the significance of natural protective factors related to anatomical and
physiological properties of the eyes and preventing the deposition of large number of virus-loaded particles on
the ocular surface. Specifically, we advance the hypothesis that the standing potential of the eye plays an im-
portant role in repelling aerosol particles (microdroplets) from the surface of the eye and discuss factors asso-
ciated with this hypothesis, possible ways to test it and its implications in terms of prevention of ocular infec-
tions.

Background

Ocular surface infections caused by viruses are a considerable public
health problem worldwide. For example, an analysis of the 1985
National Ambulatory Medical Care Survey found that ~1% of all pri-
mary care office visits in the United States were related to conjunctivitis
[1]. If one assumes that the proportion remained the same, that would
translate to ~2.3 M visits in 2019. Similar proportion has been reported
for UK [2]. Infectious conjunctivitis1 is more prevalent than the other
types (e.g. allergic, chemical, etc.) and viral conjunctivitis is estimated
to be the most common cause of infectious conjunctivitis, at up to 80%
of all cases [3].

Of all different types of viruses as candidates of causing infectious
conjunctivitis, adenoviruses have been found to be the most common
pathogen, in up to 90% of all cases [4]. However, it has to be kept in
mind that exhaustive testing related to the causation of conjunctivitis is
not always possible, which may introduce bias in reported results. Apart

from adenoviruses, other types of viruses reported to be isolated from
the conjunctiva and implicated in the development of conjunctivitis are
herpes simplex virus, enterovirus 70 and coxsackie A24 variant virus
[5].

Somewhat surprisingly, the majority of the viruses responsible for
respiratory viral infections are not a major cause of infectious con-
junctivitis [6]. Thus, even the adenovirus causing the majority of in-
fectious conjunctivitis cases is subtype D, while strains that cause re-
spiratory infections are subtypes B, C and E and they rarely cause
conjunctivitis (Table 1 in [6]). Similarly, only one of the influenza
viruses subtypes (H7, causing avian influenza), is a significant cause of
conjunctivitis, with ~80% of the cases with this infection presenting
with conjunctivitis [7], while the much more common subtypes causing
human infection with influenza virus subtypes that are more commonly
associated with respiratory illness are an infrequent cause of the disease
[6].

Recently, the worldwide attention has been focused on a viral
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infection caused by a coronavirus, resulting in a global pandemic. This
infection is most often associated with respiratory symptoms and its
major complication is overwhelmingly a disease of the lower re-
spiratory tract, a bilateral viral pneumonia [8] and, therefore, can be
classified as a respiratory viral infection. It is caused by a coronavirus
(SARS-CoV-2) [9], while the disease has been named COVID-19 [10].
This virus belongs to the subfamily of coronaviruses, a term proposed in
1968 to describe a group of enveloped, positive-sense, single-stranded
RNA viruses with similar form, including a characteristic appearance of
the envelope glycoproteins in electron microscopy observation, recal-
ling the solar corona [11]. This proposal was accepted and currently
this type of viruses are classified as subfamily Orthocoronavirinae (of
family Coronaviridae) and contains 4 major groups (genera): alpha-,
beta-, gamma- and deltacoronaviruses, a total of 25 species, the ma-
jority of which are found in animals, but not humans [12]. The viruses
found either exclusively or not in humans typically cause respiratory
tract illnesses [13]. Seven types of coronaviruses are known to cause
disease in humans. The two types that were discovered in the 1960s,
HCoV-OC43 (a betacoronavirus) and HCoV229E (an alphacoronavirus),
were both causing mostly mild upper respiratory tract illnesses in
adults. They are still in circulation, together with three types identified
in the 2000s: HCoV-NL63, HCoV-HKU1 (both alphacoronaviruses) and
MERS-CoV (a betacoronavirus), the first two casing mild upper and
lower respiratory tract infections in adults, while the third one causing
more severe infections. Another virus, SARS-CoV (a betacoronavirus),
identified also in the early 2000s, causing severe acute respiratory
syndrome (SARS), is no longer circulating in humans after strict and
coordinated public health measures [13]. The new virus, SARS-CoV-2,
has closest similarity (40–90% identity) to the first SARS-CoV virus
[14] and shows similar clinical manifestations, although with a lower
mortality rate [15].

Generally, coronaviruses infecting humans have been rarely asso-
ciated with ocular surface infections [6]. Only rare reports of con-
junctivitis have been associated with HCoV-NL63 [16] and no reports
have been presented for SARS-CoV [17]. Whether and to what extent
these types of viruses can be spread through ocular surface exposure
remains a subject of debate and uncertainty. For example, the SARS-
CoV virus was detected in the conjunctiva from 3 probable cases (out of
36) in one study [18], but not in two other studies in tears and con-
junctival scraping samples [19,20], triggering questions about the
mechanism and details of identification of the virus in ocular tissues
and fluids [21,22]. Two recent studies by Xia et al. [23] and Wu et al.
[24], showed also a low rate of virus detection in conjunctiva (4%). A
recent meta-analysis including 1,167 patients, indicates that frequency
of conjunctivitis associated with SARS-CoV-2 infection (COVID-19) was
generally low: ~1.1% (3% in severe and 0.7% in nonsevere COVID‐19
patients) [25].

On the other hand, two recent reports showed expression of estab-
lished SARS-CoV [26] and SARS-CoV-2 [27] receptors, the angiotensin-
converting enzyme 2 (ACE2) and transmembrane protease serine sub-
type 2 (TMPRSS2) in human conjunctiva, limbus and cornea [28,29].
This finding indicates that ocular surface cells including in the con-
junctiva could be susceptible to the virus and theoretically serve as a
point of entry for the viral infection. Therefore, a question arises: if the
receptors for the virus are present in ocular surface tissues, why the
incidence of ocular surface infection is so low and isolating the virus
from ocular surfaces presents such a challenge?

Hypothesis

Our hypothesis is that the standing potential of the eye interacts
with microdroplets carrying the virus and prevents – either partially or
in whole – microdroplets from landing and attaching to the ocular
surface. Such an interaction would greatly reduce the probability of
virus presence on, and in turn reduce infections in, ocular surface tis-
sues.

The fact that the eye is electrically charged was first demonstrated
in an animal eye by du Bois-Reymond in 1849 [30] and re-discovered
by Frithiof Holmgren in 1865 in a fish eye [31]. The first rigorous
confirmation of the standing potential of the eye as a corneo-retinal
potential in humans was provided by Mowerer et al. in 1935 [32]. In
the 1960s, detailed investigation of the magnitude of the standing po-
tential under standardized light-adapted conditions showed that it is on
average ~+0.7 mV (range 0.25 to 1.1 mV), with the cornea having a
positive charge compared to the back of the eye [33] and it was shown
that this potential is relatively stable on an hourly, daily and weekly
basis, but shows some diurnal variation. It has to be noted that these
measurements were made indirectly with electrodes placed on both
sides of the eyeball, at the outer and inner canthus of the eye, and,
therefore, the true electrical potential in front of the cornea is likely to
be higher (+5 mV), which was suspected since the 1940s based on
animal studies and confirmed in humans in the 1970s with more direct
laboratory measurements [34]. It was estimated further that if the
corneal potentials were measured relative to the skin on the forehead or
cheek, the potential difference would be even higher at +10 to
+15 mV [35]. This potential could be further enhanced by electrostatic
charges on the eyelid skin. It is well-documented that human oily skin
can become highly positively electrostatically charged, as it is usually
listed near the top of the triboelectric series [36].

Discussion

Viral presence in air samples

Bioaerosols generated by human exhalation are considered a pos-
sible route for SARS-CoV-2 spread [37–40]. In support of this possibi-
lity, previous studies testing of air samples showed the presence of
another coronavirus (MERS-CoV) have found the virus in 4 of 7 air
samples [41]. Studies of the SARS-CoV virus also suggested airborne
transmission [42] and infective droplet inhalation [43], although some
uncertainty remains [44]. Influenza virus RNA was also recovered from
air sampled in a hospital [45]. Finally, a recent study identified sea-
sonal human coronaviruses, influenza viruses and rhinoviruses in ex-
haled breath and coughs of patients with respiratory disease [46].

Factors influencing the interaction between bioaerosol and ocular surface
bioaerosol particle size

Currently, it is generally accepted that bioaerosols as an infectious
disease transmission medium should be divided into three groups based
on aerodynamic droplet diameter: small particles (less than 10 µm),
that can remain airborne, larger droplets (more than 20 µm), which
settle relatively quickly to the ground and an intermediate size
(10–20 µm) may either settle or remain airborne [47]. Apart from the
consensus built around this reasonable classification, there is a great
deal of variation within the range and distribution of particle size re-
ported by different studies, which likely depends largely on the meth-
odology used to count and classify the particles. Thus, the following
discussion of this topic should not be treated as a comprehensive ana-
lysis of this subject, but rather as one specific perspective on the re-
ported results in view of the matter discussed here.

The measurement of the size of exhaled particles in a 2011 study
showed that more than 82% of all exhaled particles from three healthy
and 16 human rhinovirus (HRV)-infected subjects were within
0.3–0.5 µm diameter range, placing it firmly in the small droplets ca-
tegory [48]. Given that the average diameter of the SARS-CoV-2 virus is
~0.12 µm [49,50] and assuming that the maximal viral concentration
per droplet should be an occupancy of ~30% of the whole surface of the
droplet2, the maximal viral load per particle can be estimated between

2 Higher spatial arrangement of the viruses may be prevented by electrostatic
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8 and 21 virions/droplet3. Although this appears like a small load per
droplet, the same study found that the droplet production varied dra-
matically between subjects, with some subjects (4 out of 17) producing
~3500 particles/liter (range ~1000 to ~7000), equivalent to ~28,000
droplets/min, with the potential to spread more than 500,000 viral
particles/min via airborne particles. In contrast, the rest of the subjects
produced on average ~7.4 particles/liter (equivalent to ~52 droplets/
min with some participants generating 0 droplets), thus, supporting the
hypothesis that some people could be “high spreaders” of the viral in-
fection. It should be emphasized that this study estimated the droplet
size and production under regular breathing. The result is likely dif-
ferent when sneezing. A study estimating the droplet sizes from
sneezing found almost exclusively large droplets with diameter larger
than 50 µm (and up to 1,000 µm) [51]. For comparison, cough in
healthy volunteers appeared to generate particles with less than 1 µm in
diameter [52]. Some studies suggest that large droplets only originate
from the oral cavity [53]. Although studies with coronavirus are not
available, one study measured influenza virus in cough samples and
found that 35% of the influenza RNA was isolated from particles> 4
µm diameter, while 23% of influenza RNA was isolated from particles 1
to 4 µm diameter, and 42% in particles< 1 µm [54]. High spreaders for
the influenza virus were confirmed in another study [55]. The size and
viral load have potential importance for the probability of landing on
ocular surfaces. Thus, larger droplets, loaded with more viral particles
are expected to have poorer aerodynamic characteristics and be more
susceptible to gravity forces and quicker landing. Given lower airflow
speed under normal breathing conditions, the main type of viral air-
borne spread seems to be small droplets, which can stay afloat for many
minutes to hours, but carry relatively little viral load per droplet. As the
intensity of exhaled airflow increases, as in loud talking, singing,
coughing and sneezing, the droplet formation becomes more and more
dominated by larger and larger droplets with high viral load per droplet
and high initial velocity, but shorter airborne time.

Bioaerosol composition

Water. Although it is assumed that bioaerosol contains some amount
of water, the exact water content of bioaerosol microdroplets is difficult
to determine and probably varies a lot, depending on the relative hu-
midity and temperature of ambient air. Most physiological models of
human breathing assume 100% relative humidity and 36-37° C in the
air of the lower respiratory tract, in accordance with experimental data
[56,57]. With expiration (tidal breathing and room temperature air),
some of this water content is reabsorbed in the upper respiratory tract,
where the temperature is assumed to be ~32 °C below the glottis [57]
and vary in the naso-pharyngeal cavity, from ~25 °C in the nasal ves-
tibule, to ~30 °C in the internal nasal valve area and ~32 °C in the
middle turbinate[58,59], with some differences (~2°C) between the air
and nasal mucosa, allowing for an efficient water reabsorption during
exhaling, but also providing favorable conditions for condensation and
droplet formation. These values change with change in ambient air
temperature, as inhalation of cold air lowers the temperature in both
the upper [60] and lower respiratory tract [57], thus further improving
the conditions for water condensation during exhalation. Once the
bioaerosol leaves the human body, several factors will affect the water
content, probably the most important one being change in droplet size,

influenced by the rate of evaporation[61], interaction with each other
(coalescence or fragmentation[62]) and relative position in relation to
the center of airflow[63]. These effects are complex and still in-
sufficiently understood in the case of exhaled aerosol.

Organic components. The main organic component of exhaled human
air is an airway lining fluid component, which is highly diluted in
water, with a consensus estimate for dilution between 2,000 to 10,000
times[64,65]. The airway lining fluid likely contains various types of
lipids and electrolytes. Thus, a recent study identified 75 glyceropho-
spholipids, 13 sphingolipids, 5 sterol lipids and 12 neutral glycerolipids
in samples from healthy volunteers[66], with a large variation in
composition between subjects, underscoring the complexity of organic
content of exhaled air condensate.

Environmental conditions

Within this context, another phenomenon should be pointed out,
namely the effect of temperature and relative humidity. Two aspects
should be mentioned. First, natural evaporation from the lungs depends
on temperature and humidity – at relatively low ambient air tempera-
ture (~2° C), water loss depends very little on relative humidity
(2.0–2.2 ml H2O per L/breath/min), but at higher temperature (~27°
C), the range increases dramatically (0.5–2.1 ml H2O per L/breath/min)
with much less water loss in more humid air [67]. The second aspect to
be mentioned is the water loss at low relative humidity, which is sub-
stantial [68]. Both factors would apply to most modern air-conditioned
indoor environments, where the temperature is kept typically in the
range of 20-23° C and humidity at ~40%.

Natural and artificial airflow restrictions

The electrical potential value of the eye does not seem very strong as
a generator of an electrostatic repelling force (Coulombic force), but it
has to be kept in mind that the volume of space to be protected from
particles in front of the cornea is not large, particles need only be de-
flected less than 1 cm in front of the corneal surface, as the thickness of
the eyelid margins is only about 2 mm [69]. Considering that ocular
surface area exposed to air is typically 1.25–1.75 cm2 [70–72] (al-
though it can reach intermittently up to 3 cm2, depending on the visual
task), the “protected volume of air”4 in front of the cornea is probably
less than 0.4 cm3 and does not exceed 0.75 cm3.

Furthermore, human eyelashes act as passive dust controlling
system and reduce evaporation and particle deposition up to 50% [73],
further facilitating the defense against foreign particles (including mi-
crodroplets). What is the effect of blinking on the airflow within the
“protected volume of air” is currently unknown, however, it can be
speculated that it would create some change in low-velocity airflow, as
it was estimated that blinking increases corneal temperature by 1.3° C
[74] and this could create convection air microcurrents away from the
corneal surface. The speed and direction of local airflow can be further
modified by artificial objects in eye vicinity. For example, it is highly
likely that even regular eyeglasses can restrict the airflow around the
eyes, although we are not aware of a quantitative evaluation of this
phenomenon.

Gravitational force

Another factor to be considered under the scenario of direct, close
human-to-human communication is that the majority of microdroplets
would not reach the eye. A recent study using a 3D-printed realistic face
and airway model, with an outlet of a particle jet centered at the nose of

(footnote continued)
forces repelling them from each other within the droplet.

3 This scenario reflects only surface distribution the virus; with larger dro-
plets, virions can reside within the droplets (and it is often assumed, without
direct evidence, that this is the main form of viral positioning in a droplet) but it
has to be kept in mind that, as with surface distribution, electrostatic repelling
forces would put an upper limit of how many viruses would reside within a
droplet.

4 The “protected volume of air” in this context can be defined as the volume of
air enclosed in the space between the upper and lower eyelids when the eyelids
are open, and the gaze is directed forward in primary position.
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the model at a distance of 20 cm, found that more 80% of the generated
aerosol particles with an initial velocity of 0.94 m/s was deposited on
the lips rather than on the eyes [75].

Electrostatic force

Electrostatic (Coulombic) forces can play considerable part in
aerosol deposition [76–79], especially for particle size range 0.01 µm to
5 µm [80], which, as discussed below is the most important range of
water microdroplet particles carrying viruses. Additionally, it was
shown that even relatively low voltage (12 V) ionizer device effectively
captured airborne transmitted calicivirus, rotavirus and influenza virus
and prevented airborne transmitted influenza A between animals [81].
However, it needs to be emphasized that, according to Hoque (2010):
“No specific distribution has been identified in the literature to describe
charge distribution in bioaerosols” [82], and, thus further work is
needed to clarify the role of electrical charge of bioaerosols for de-
position on human tissue in the real world.

Bioaerosol electrical charge

To the best of our knowledge, direct measurements of the electrical
charge of bioaerosols generated by human exhalation have not been
published to date. Therefore, we would advance some theoretical
considerations supported by some indirect experimental data to explore
what would be the more likely overall change of the droplets com-
prising the bioaerosol generated by exhalation and will focus on
bioaerosol containing mostly coronaviruses. One such consideration is
that the pH of exhaled breath condensate is slightly alkaline, e.g. in
normative database from 404 subjects, the mean pH was 7.83, and the
median pH was 8.0 [83] and similar results were obtained in another
report and a meta-analysis [84,85]. However, the role of bioaerosol de-
aeration with CO2-free gas to determine pH is unclear. Therefore, it is
possible that the net charge of bioaerosol droplets generated by
breathing and other activities is positive. If this would be the case, it
would explain the low probability of airborne particles to land in suf-
ficient numbers to the ocular surfaces and remain there for long enough
time to attach to receptors and cause inflammation. Of note, the overall
isoelectric point of coronaviruses has not been reported in the litera-
ture.

Limitations

Most of the factors discussed above would apply to relatively similar
indoor controlled environments, including air conditioning, central
heating, etc., with relatively slow airflow and limited temperature and
humidity range. The production rate, spread and infective potential of
bioaerosol from exhaled air would be very different in outdoor en-
vironments. It is likely that the outdoor infectious potential of bioaer-
osol would be much more dependent on environmental factors, such as
temperature, humidity, wind speed and direction, air ionization, solar
irradiance, etc. Currently, most people in industrialized nations spend
most of their time indoors. A large (n = 9196), 2-year probability-
based telephone survey in the US (1992–1994) found that the re-
spondents reported spending an average of ~87% of their time in en-
closed buildings and ~7.6% outdoors, confirming similar findings from
earlier surveys in industrialized countries [86]. However, the exact
proportion of infectious events for viral respiratory diseases occurring
in indoor environments vs. outdoors is unknown and it is likely to be
different for different types of viruses.

Testing the hypothesis

This hypothesis could be tested by measuring the electrical charge
of bioaerosol generated by normal breathing in healthy subjects and in
patients with viral infections caused by different viruses, causing

respiratory infections or with suspected aerosol transmission pathway.
An established reliable isoelectric point for all studied viruses would be
very helpful in modeling the relationship between virion electrical
charge and droplet electrical charge.

Conclusion

The discrepancy between the theoretically expected high rate of
concurrence of viral ocular surface inflammation and its observed re-
latively low occurrence in COVID-19 is surprising. Natural protective
factors related to anatomical and physiological properties of the eyes
could prevent the deposition of large number of virus-loaded particles
on the ocular surface and play a protective role. It is possible that the
standing potential of the eye plays an important role in repelling
aerosol particles (microdroplets) near the surface of the eye and serve
as major contributing factor in securing either complete protection or
fast elimination of certain type of bioaerosols containing viruses.
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