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Editorial on the Research Topic

Zebrafish Cognition and Behavior

Understanding animal cognition has been of interest to scientists for well over a century (e.g.,
Melrose, 1921). Cognition is broadly defined as the neural and behavioral processes associated
with the acquisition, retention, and use of information (Dukas, 2004). Since the discovery of
multiple memory systems and of the fundamental role of the hippocampus in relational learning
and memory in humans (Penfield and Milner, 1958), one exciting focus of study has been
to determine how animals encode, transform, compute and manipulate spatial, temporal, and
contextual information from their environment, and how this information is utilized to organize
behavioral responses (Cook, 1993). Initial studies used simple visual and acoustic stimuli, such
as colored lights and distinct sounds. However, the use of such stimuli hindered the study of
animal cognition because it did not allow the subjects to fully engage their full information
processing capabilities. To address this issue, researchers started using more complex stimuli, such
as objects, photos, and videos. These studies demonstrated a higher level of cognitive processing
not previously attributed to animals (Dukas, 2004). As the field of learning and memory advanced,
studies started to show remarkable similarities between the cognitive processes of animals and
humans. Animals have been found to be even able to learn varied and sophisticated concepts,
exhibit mental processes, such as symbol coding and organization, to form spatial, temporal, and
numerical abstractions and perceive cause and effect relationships (Wynne, 2001).

While it is widely accepted that mammals and birds have the capacity for complex cognitive
processing, the cognitive abilities of certain less well-studied species were questioned and some
species were assumed to be able to exhibit only simple stimulus-response reflexes. For example,
even fundamental cognitive abilities of fish used to be debated with doubts about whether fish could
learn and/or remember. Even in the not-so distant past, some assumed that fish were incapable of
complex cognitive processing due to their relatively small and simple brain, and similarly, fish were
assumed not to experience suffering but only to exhibit reflexive responses to risk and pain (Rose,
2002; Arlinghaus et al., 2007; Rose et al., 2014).

Although the brains of fish are indeed smaller and simpler, the genetic, neuronal, and
physiological mechanisms that drive behavioral responses to a variety of stimuli are similar to those
observed in mammals (Ito and Yamamoto, 2009; Klee et al., 2012; Gerlai, 2020). Furthermore,
homologous brain regions that perform similar functions, for example, in the regulation of
emotional states (dorsomedial pallium equivalent to the mammalian pallial amygdala), and
learning and memory (dorsolateral pallium equivalent to the mammalian hippocampus) (Vargas
et al., 2009) have been identified. Even the assertion that fish lack a brain area homologous to the
mammalian cortex appears debatable (Mueller, 2012).

Many studies suggest that fish exhibit complex behavioral responses that cannot be explained
as a simple “stimulus-response” reflex (Trotha et al., 2014; Rey et al., 2015). For instance, fish are
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capable of exhibiting tool-use like behavior (Kuba et al., 2010;
Paśko, 2010; Millot et al., 2014; Brown, 2015), spatial learning
(Salas et al., 1996; Sison andGerlai, 2010; Karnik andGerlai, 2012;
Luchiari et al., 2015), counting (Agrillo et al., 2007, 2008, 2009,
2012), and possess long-term memory (Hinz et al., 2013). In fact,
some even suggests that given the neurobiological prerequisites,
physiological, anatomical, synaptic, and molecular mechanism
related characteristics, as well as behavioral level phenomena, fish
may have some level of sentience (Gerlai, 2017; Woodruff, 2017;
also see Cerqueira et al., 2020).

Among the many fish species that have contributed to the
current knowledge on fish cognition and behavior, the zebrafish, a
small teleost fish native to South Asia, stands out as an important
vertebrate model in biomedical research. Zebrafish have been
used in the fields of embryology (Kimmel et al., 1995; Pinheiro-
da-Silva and Luchiari, in press), toxicology (Coe et al., 2009;
Oliveira et al., 2009; Dai et al., 2014), genetics (Driever et al., 1994;
Liu et al., 2019), pharmacology (Goldsmith, 2004; Barros et al.,
2008) mainly because this species is believed to offer translational
relevance in biomedical research (Kalueff et al., 2014; Stewart
et al., 2014). One of the first studies on zebrafish genetics was
performed by George Streisinger in the 70’s. Streisinger and
colleagues from the University of Oregon successfully generated
the first homozygous diploid zebrafish clones (Streisinger et al.,
1981), one of the earliest registries of a vertebrate clone.

The many advantages of zebrafish drew the attention of other
researchers, especially those who were interested in embryonic
development. The main advantage for embryologists was that
zebrafish embryos are transparent, which allowed visualization
of changes in anatomical structures during ontogenesis. An
additional attractive aspect of zebrafish development is that it is
very fast: the embryos hatch after 3 days post-fertilization. This
fast development has been leveraged in a variety of disciplines
from genetics to toxicology and teratology.

At present, although precise figures are lacking, an estimated
8 million zebrafish are being used every year in more than
600 laboratories worldwide, making this species one of the
most popular laboratory animals for translational research. In
2000, the zebrafish genome was partially sequenced (Barbazuk
et al., 2000), allowing more detailed understanding of the
genetic similarities between zebrafish and other vertebrates,
including humans. With increasing interest from laboratories
worldwide on studying zebrafish cognition, the use of zebrafish
translational research also increased. Many questions have arisen
including how one can improve cognition, whether it be through
exercise or pharmacotherapy, and why cognitive function decays
under certain situations, such as sleep deprivation or some

brain diseases. Although fish are more distantly related to
humans compared to other mammalian models, their simple
brain possessing numerous evolutionarily conserved features as

well as their rich behavioral repertoire make them a powerful
animal model for investigating mechanisms underlying complex
behaviors, such as learning and memory (Gerlai, 2020).

Several behavioral responses are the result of cognitive
processes, which depend upon structural, physiological, and
biochemical characteristics of the central nervous system. These
characteristics can be investigated at multiple levels of analysis
starting with biochemical interactions all the way to the
connectome, remodeling of neural pathways. In this regard, the
zebrafish offers the complexity of a vertebrate brain combined
with the simplicity and practicality of invertebrates which
can utilize classical behavioral and electrophysiological and
neurobiological studies along with the latest advancement in
proteomics and genetics.

The Research Topic “Zebrafish Cognition and Behavior” in
Frontiers in Behavioral Neuroscience samples this rich and
fast evolving field, and provides examples on how cognitive
function may be studied using this simple vertebrate at multiple
organizational levels, from molecules to behavior, and from
health to pathology. For example, Pita and Fernández-Juricic
explores how shoaling, a complex and dynamic behavior, is
influenced by a variety of environmental factors, while Facciol
and Gerlai reviews the growing literature on the neurobiological
mechanisms underlying shoaling and how this behavior may be
affected by embryonic alcohol exposure. Menezes et al. study the
behavioral consequences of stress induced by exposure of juvenile
zebrafish to abnormally aggressive large male zebrafish. Luz et al.
shows that pharmacological intervention using a CB1 receptor
agonist counteracts acute restraint-stress induced anxiety-like
behaviors, oxidative stress and GABA neurotransmitter level
decrease in zebrafish. Gusso et al. shows how an environmental
toxicant, pyriproxyfen, impairs memory and cortisol levels in
zebrafish. Gómez-Laplaza and Gerlai, studies quantity estimation
abilities and the role of different features of food items
in decision making in fish using the freshwater angelfish.
Daniel and Bhat studies correlations between personality
and cognitive traits in zebrafish. Last, Buatois and Gerlai
explores often controversial questions concerning elemental vs.
configural learning and memory in fish, with a particular focus
on zebrafish.
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