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Purpose: To develop and compare deep learning (DL) algorithms to detect keratoconus
on the basis of corneal topography and validate with visualization methods.

Methods: We retrospectively collected corneal topographies of the study group with
clinically manifested keratoconus and the control group with regular astigmatism. All
images were divided into training and test datasets. We adopted three convolutional
neural network (CNN) models for learning. The test dataset was applied to analyze the
performance of the threemodels. In addition, for better discrimination and understand-
ing, we displayed the pixel-wise discriminative features and class-discriminative heat
map of diopter images for visualization.

Results: Overall, 170 keratoconus, 28 subclinical keratoconus and 156 normal
topographic pictureswere collected. The convergence of accuracy and loss for the train-
ing and test datasets after training revealed no overfitting in all three CNN models.
The sensitivity and specificity of all CNN models were over 0.90, and the area under
the receiver operating characteristic curve reached 0.995 in the ResNet152 model.
The pixel-wise discriminative features and the heat map of the prediction layer in the
VGG16model both revealed it focused on the largest gradient difference of topographic
maps, which was corresponding to the diagnostic clues of ophthalmologists. The
subclinical keratoconus was positively predicted with our model and also correlated
with topographic indexes.

Conclusions: The DL models had fair accuracy for keratoconus screening based on
corneal topographic images. The visualization mentioned in the current study revealed
that the model focused on the appropriate region for diagnosis and rendered clinical
explainability of deep learning more acceptable.

Translational Relevance: These high accuracy CNN models can aid ophthalmologists
in keratoconus screening with color-coded corneal topography maps.

Introduction

Keratoconus is a noninflammatory corneal disease
characterized by stromal thinning, anterior protrusion,
and irregular astigmatism.1 It typically manifests at
puberty and progresses until the fourth decade of life,

resulting in irreversible vision loss.2 Unfortunately, the
etiology and causes of keratoconus have still not been
elucidated even though several theories and genetic
factors have been proposed.3 Furthermore, no effec-
tive treatment modalities are yet available to prevent
the progression of early keratoconus or forme fruste
keratoconus.4,5 Therefore it is crucial to detect the
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keratoconus or forme fruste keratoconus (subclinical
keratoconus) earlier and subsequently prevent possi-
ble risk factors from its progression.5 In addition, early
detection may help us understand the natural course of
keratoconus.5,6

Notably, advanced keratoconus can be diagnosed
based on classic clinical signs, such as Munson’s
sign, Vogt’s striae, and Fleischer’s ring under slit-lamp
examination; however, these signs are not present in
the early stage of keratoconus.7 Nonetheless, emerging
technology might aid in the early diagnosis of kerato-
conus.8 Among these, computerized corneal videok-
eratography (topography) is the most often used tool
to detect the patterns of corneal topography and
keratometric parameters of keratoconus, is useful
in the early detection, and enables to discern its
natural and treatment courses.9 Several indexes of
corneal topography have been developed to differen-
tiate between keratoconus and normal eyes, such as
the zone of increasing corneal power, inferior-superior
(I-S) corneal power asymmetry, and skewing of the
steepest radial axes.10 However, the large numbers and
complexity of indexes provided by videokeratographs
pose a clinical challenge to ophthalmologists.11

Recently, compared with conventional techniques,
deep learning (DL) has been shown to achieve signif-
icantly higher accuracies in several domains, includ-
ing natural language processing,12 computer vision,13
and voice recognition.14 The use of artificial intel-
ligence (AI; machine intelligence) or DL has been
primarily applied in medical imaging analysis, wherein
DL systems have exhibited robust diagnostic perfor-
mance in detecting various ocular imaging, principally
fundus photographs and optical coherence tomog-
raphy (OCT),15 in diagnosing or screening diabetic
retinopathy (DR),16 glaucoma,17 age-related macular
degeneration (AMD),18 and retinopathy of prematu-
rity (ROP).19 Notably, several methods have been used
for automatic diagnosis of ectatic corneal disorders
by using corneal topography, such as the discrimi-
nant analysis,6 and then a neural network approach.20
These approaches achieved a global sensitivity of
94.1% and a global specificity of 97.6% (98.6% for
keratoconus alone) in the test set.21 Hwang et al.22
used multivariate logistic regression analysis to tease
out those variables available from slit-scan tomogra-
phy and spectral-domain OCT for clinically normal
fellow eyes of highly asymmetric keratoconus patients.
Similarly, AI has been used to improve the detection
of corneal ectasia susceptibility by using tomographic
data with the random forest (RF) that provided the
highest accuracy among AI models in this sample with
100% sensitivity for clinical ectasia and was named the
Pentacam Random Forest Index (PRFI).23 The PRFI

had an area under the curve (AUC) of 0.992 (sensitiv-
ity = 94.2%, specificity = 98.8%, and cut-off = 0.216),
statistically higher than the Belin-Ambrósio deviation
(BAD-D;AUC= 0.960, sensitivity= 87.3%, and speci-
ficity = 97.5%).23

Automatic analysis with these topographic parame-
ters through the use of machine learning could provide
reasonably accurate clinical diagnosis.6,20 However,
the interpretation of color-coded corneal maps and
the patterns of subtle features in the image might
prove challenging to apply to classical machine learn-
ing owing to a large amount of information required
for processing. In contrast to classical machine learn-
ing, the convolutional neural network (CNN) exhibited
its ability in recognizing images without the need for
indices input for training, thereby exhibiting suitability
for pattern recognition of color-coded corneal topog-
raphy maps. In the current study, we sought to take
advantage of DL in pattern recognition to detect
corneal topographic pattern differences between the
normal population and patients with keratoconus who
present a variety of topographic patterns. We suggest
using DL with a CNN model to diagnose keratoconus
with the pattern of color-coded corneal topography,
which has subtle features and large amount of infor-
mation, instead of complex topographic indexes.

Methods

This retrospective study was conducted at the
Department of Ophthalmology, National Taiwan
UniversityHospital (NTUH), andwas approved by the
Institutional Review Board of NTUH as per the tenets
of the Declaration of Helsinki.

Study Population and Examinations

The patients were selected from the corneal clinic of
the Department of Ophthalmology in NTUH. There
were four corneal specialists involvedwith the diagnosis
and evaluation of the keratoconus and the candidates
for refractive surgery from 2007 to 2020. Initially, total
299 patients were included. Patients with previous eye
surgery, ocular trauma, contact lens discontinuation
less than three weeks and younger than 20 years old
were excluded. In the end, 206 patients were enrolled,
and a total of 354 images were used in this study.
All patients underwent a comprehensive ophthalmo-
logic examination. The study group comprised clini-
cally manifested keratoconus eyes and subclinical
keratoconus eyes. Criteria for diagnosing manifested
keratoconus were defined per clinical findings and
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topographic criteria previously described.8,9 Clinical
signs of keratoconus were the existence of central
protrusion of the cornea, Fleischer’s ring, Vogt’s
striae, and focal corneal thinning on slit-lamp exami-
nation. Topographic criteria were central K value
>47 diopter,24 I-S value >1.4 diopter,25 keratoconus
percentage index (KISA%) >100%,26 and asymmetric
bowtie presentation.27 The main criteria of subclinical
keratoconus were basically based on the topographic
pattern. Asymmetric bowtie with skewed radial axes
(AB/SRAX), asymmetry bowtie with inferior steep
(AB/IS) and symmetric bowtie with skewed radial axes
(SB/SRAX) presented in the topography and no slit-
lamp keratoconus findings were collected.27–29 The
best spectacle-corrected vision of subclinical kerato-
conus patients was not affected. The control group
comprised candidates for refractive surgery without
any manifestations earlier, with regular astigmatism.
All corneal topographic maps were obtained using a
computer-assisted videokeratoscope (TMS-4; Tomey
Corporation, Nagoya, Japan). The tomographic and
tonometry indices were acquired from the Penta-
cam HR Scheimpflug tomography system (Oculus
Optikgeräte GmbH, Wetzlar, Germany) and Corvis
ST (Oculus Optikgeräte GmbH, Wetzlar, Germany),
respectively.

Overall, 354 images were available, including
170 keratoconus, 28 subclinical keratoconus and 156
normal topographic pictures. The topographies were
divided into the following three datasets: (a) training,
(b) test, and (c) subclinical test datasets. We used
134 keratoconus and 120 normal images in the training
dataset and 36 keratoconus and 36 normal images in
the test dataset. Twenty-eight subclinical keratoconus
cases were assigned to the subclinical test datasets. We
used only one image from each patient and assigned
them as subclinical keratoconus test dataset. The test
and subclinical test dataset did not involve the training
process.

Deep Learning Architecture and
Visualization

The proposed methods for the keratoconus detec-
tion were based on CNN.12 Three well-known CNN
models were adopted for transfer learning and analy-
sis, namely the VGG16 model,30 InceptionV3 model,31
and ResNet152 model.32 The VGG16 model was
mainly stacked with a series of convolutional and
pooling layers for image feature extraction and then
connected to the fully-connected layer for classifica-
tion, which was viewed as the extension of the classic
AlexNet model.33 The InceptionV3 model reorganized

Figure 1. Architecture of the present CNNs for keratoconus binary
classification.

the common convolutional and pooling layers into the
so-called Inception module, which comprised three
convolutions and one pooling to widen the network
layer to acquire more detailed image features and
improve prediction accuracy. By contrast, the
ResNet152 model introduced the shortcut connec-
tion before and after convolutional layers to make a
plain network into a residual network, which can build
an ultra-deep network without problems of gradient
vanishing or exploding to gain accuracy from the
considerably increased depth. In this study, the three
CNN models were adopted as pretrained models for
transfer learning separately, wherein the pretrained
model weights were downloaded from ImageNet
(http://www.image-net.org/). Figure 1 illustrates the
architecture of present CNNs for the keratoconus
binary classification. The input layer was for images of
corneal topography that were 128× 128× 3, 296× 240
× 3, and 296× 240× 3 in dimensions, respectively. The
last two dense layers were redefined for fine-tuning,
keeping all original model layers unchanged. For the
training process, training data were augmented using
the random shift and rotation of 5% or less and a
random horizontal flip. For all cases, training tasks
were conducted for more than 300 epochs with the
Adam optimizer, with a learning rate of 0.00001 and
a dropout rate of 0.5 implemented in the last fully
connected layers. After the training was completed,
test datasets were applied to analyze the performance
of CNN. For accessing the predictability in subclinical
keratoconus cases of the CNN models, subclinical test
datasets were applied as well.

Once the CNN models were trained and validated,
it was essential to evaluate and analyze the perfor-
mance of the network through visual explanations. In
general, visualization can be achieved by reconstruct-
ing pixel-wise images from high-level feature maps
through Deconvnet.34 Moreover, to further localize
class-discriminative regions, Grad-CAM35 used the
gradient information of the last convolutional layer

http://www.image-net.org/
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Figure 2. The brief procedure of our proposed model.

to determine the weights of feature maps. Hence,
the pixel-wise discriminative features, as well as the
class-discriminative heat map of diopter images, can be
displayed. The brief procedure of the present study is
presented in Figure 2.

Statistical Analysis

We evaluated the performance of ourDL algorithm.
The results of the training process were defined as true
positive (TP), true negative (TN), false positive (FP),
and false negative (FN). The methods to access the
algorithm were as below:

• Accuracy: (TP+TN)/(TP+TN+FP+FN)
• Sensitivity: TP/(TP+FN)
• Specificity: TN/(TN+FP)
• Area under the receiver operating characteristic
curve (AUROC): the area under the cumulative
distribution function of the sensitivity on the y-axis
versus the cumulative distribution function of (1-
specificity) on the x-axis.

For demographic data, the t-test was used to
compare continuous data, and the χ2 test was used
to compare categorical data between the study and
control groups. A P value < 0.05 was considered statis-
tically significant. Pearson correlation coefficient was
used to estimate the correlation between the proba-
bility of keratoconus with topographic, tomographic
and tonometry indices. All statistical analyses were
performed using SPSS software (SPSS 24.0; SPSS Inc.,
Chicago, IL, USA).

Results

The keratoconus group comprised 94 patients,
64 men and 30 women, with the mean age of 29.78 ±
9.23 years. The control group comprised 84 patients,
46 men and 38 women, who were candidates of refrac-
tive surgery, with the mean age of 25.49 ± 9.26 years.
The keratoconus group was older than the control
group, whereas no significant differences were noted
regarding sex distribution (Table 1). Descriptive statis-
tics of topographic parameters between the two groups
are presented in Table 2. All indexes in the keratoconus
group were significantly different from the control
group except for the cylinder index in the left eye.

All the three CNN models had fair accuracy after
training, and no signs of overfitting were noted when
we applied the test dataset (Fig. 3). The accuracy,
sensitivity, specificity, and AUROC are presented
in Table 3. Regarding accuracy, VGG16 and Incep-
tionV3 were both 0.931, and ResNet152 was 0.958. All
the three models had acceptable accuracy for kerato-
conus prediction. The sensitivity was 0.917 in VGG16
and InceptionV3 and 0.944 in ResNet152. The speci-
ficity of VGG16 and InceptionV3 was 0.944 and that
of the ResNet152 model was 0.972. Figure 4 displays
the AUROC of three models, 0.956 in VGG16, 0.987 in
InceptionV3, and 0.995 in ResNet152. In our dataset,
all models reached acceptable performance, with the
ResNet152 being the best.

Taking VGG16 as an example, we demonstrated
the results of DL classification in Figure 5. The images
shown in Figures 5A and 5B were clinically diagnosed
keratoconus, and the possibility of keratoconus
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Table 1. Baseline Characteristics of the Keratoconus Group and the Control Group

Keratoconus Group (n = 94) Control Group (n = 84) P Value

Age (years) 29.78 ± 9.23 25.49 ± 9.26 0.023
Gender 0.09
Male 64 46
Female 30 38

Table 2. Topographic Parameters of the Keratoconus Group and the Control Group

Keratoconus Group (n = 94) Control Group (n = 84) P Value

AveK (D)
OD 46.15 ± 3.88 44.43 ± 1.93 < 0.001
OS 46.30 ± 4.48 46.30 ± 4.48 < 0.001

Cyl (D)
OD 4.92 ± 6.93 2.96 ± 1.77 0.013
OS 3.35 ± 2.72 2.97 ± 1.66 0.279

SRI
OD 1.03 ± 0.64 0.58 ± 0.37 < 0.001
OS 0.97 ± 0.61 0.65 ± 0.31 < 0.001

SAI
OD 2.32 ± 1.82 1.15 ± 1.02 < 0.001
OS 2.18 ± 1.61 1.14 ± 0.92 < 0.001

AveK, average keratometry; D, diopter; Cyl, cylinder; SRI, surface regularity index; SAI, surface asymmetric index.

Figure 3. The training results of CNN. The red dots indicate the accuracy of the training group and the red asterisks indicate the error
rate of the training group. The blue dots with shaded band indicate the accuracy of the test group and the blue asterisks with shaded band
indicate the error rate of the test group. As the training progresses, the accuracy increases and the error rate decreases, thereby indicating
no overfitting during the training process.

Table 3. Results of Three CNNModels

Model Accuracy Sensitivity Specificity AUROC

VGG16 0.931 0.917 0.944 0.956
InceptionV3 0.931 0.917 0.944 0.987
ResNet152 0.958 0.944 0.972 0.995

predicted by the algorithm in Figures 5A and 5B was
90% and 92%, respectively. Figure 5C had a relatively
flat topographic feature, and the algorithm thought it
was nonkeratoconus with 88% possibility. Figure 5D

was regular astigmatism and predicted as 81% nonker-
atoconus feature by the algorithm. Therefore the
current algorithm successfully differentiated between
nonkeratoconus and keratoconus.

The visualization procedures were applied to the
VGG16 model with pixel-wise discriminative features
and class-discriminative heat maps for better interpre-
tation (Fig. 6). In Figure 6, the pixel-wise discrim-
inative features outline the gradient difference of
topographicmaps toward the temporal-lower quadrant
in the upper case and superior-inferior quadrant in the
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Figure 4. AUROC of the CNN. The AUROC was 0.956 in VGG16 (left), 0.987 in InceptionV3 (middle), and 0.995 in ResNet152 (right).

Figure 5. The example of the trained CNN. (A) and (B) are the
keratoconus group, and (C) and (D) are the control group. The
algorithmpredicted that (A) is keratoconus in 90%, and (B) is kerato-
conus in 92%; the (C) is nonkeratoconus in 88%, and (D) is nonkera-
toconus in 81%.

lower case. Furthermore, the class-discriminative heat
map method implied that the CNN model focused on
the largest gradient difference of topographic maps.
Similar to pixel-wise discriminative features, the class-
discriminative heat map revealed that the significance
extended from the central to temporal-lower quadrant
in the upper case and was in the central region in the
lower case, which are diagnostic clues that ophthalmol-
ogists use in clinical practice.

The predictability of subclinical keratoconus by
CNN model was showed in Table 4. We used VGG16
as a representation and also compared the probabil-
ity of keratoconus with keratoconus index (KCI),6,36
keratoconus severity index (KSI),20 Belin/Ambrósio
enhanced ectasia display deviation (BAD-D),37 and
Corvis biomechanical index (CBI).38 The probabil-
ity of keratoconus ranged from 0% to 97% and

the accuracy was 28.5% (8/28) if we set the cutoff
value as 50%. Overall, the probability of keratoconus
was most correlated with KCI (correlation coefficient
r = 0.63). Taking the accurate cases into considera-
tion, the probability was highly correlated with KSI
(correlation coefficient r = 0.68). No correlation was
observed between the predictive model with BAD-D
and CBI. The ground truth of the predictive model was
based on the pattern of the topographic images and
no topographic parameters were involved. The positive
correlation with the topographic indices demonstrated
the diagnostic process of the model was reliable.

Discussion

For early diagnosis or predicting the development
of keratoconus, several parameters, such as Kmax
more than 47.2D,24 I-S25 more than 1.4, and KISA
more than 6026 have been used, but the difficulty
includes high false-positive rates and the complex-
ity and the number of available parameters that
may make the interpretation difficult.39 Consequently,
several machine-learning methods with an anterior
segment analyzer or topography have been developed
for the same purpose. For example, Smadja et al.40
developed a method for automatizing the detection
of keratoconus based on a tree classification. They
imaged 372 eyes with a dual Scheimpflug analyzer and
a total of 55 parameters were obtained. After the train-
ing and pruning process, they reached a sensitivity of
100% and a specificity of 100% for the discrimina-
tive ability between normal and keratoconus. Hidalgo
et al.41 trained a support vector machine algorithm
with 22 parameters obtained from Pentacam measure-
ments. The accuracy was 88.8%, with an average sensi-
tivity of 89.0% and specificity of 95.2%. However, the
tree discriminant rule and machine algorithm remain
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Figure 6. The visualization of the trained CNN. The first column is the original topographic image. The second column is the pixel-
wise discriminative features, and it can outline the gradient difference of the topographic maps clearly. The third column is the class-
discriminative heat map visualization method, and it reveals that the most significant area in the topographic images lies in the area of
the greatest gradient difference.

impractical in terms of quick and simple clinical appli-
cation and generalization.

In the current study, we trained three CNNs
with topographic images without manual segmenta-
tion. We did not include topographic parameters in
the training process. Our results revealed comparable
sensitivity, specificity, and accuracy by training with
color-coded maps and CNN models (Table 3). The
sensitivity and specificity were over 0.90 in all models,
and the specificity of ResNet152 was 0.972. High sensi-
tivity suggested a low false-negative prediction rate,
which implied that the present trained CNN models
were suitable for keratoconus screening. Moreover, it
was applicable in daily clinical situation owing to its
high specificity, which means good prediction power
for normal controls. Ourmodels could identify not only
the typical inferior steep pattern but also other typical
keratoconus topographic patterns, such as central cone
and asymmetric bowtie with a skewed radial axis
(AB/SRAX) (Fig. 5A).

The color scale of each topography map was
different in our study. In the keratoconus group, the
maximum of color scale ranged from 43.4 to 69.9 while
the minimum ranged from 32.6 to 51.5. In the control
group, the maximum of color scale was in the range
of 42.8 to 51.1 while the minimum was in the range
of 37.7 to 45.2. This meant that CNN models were
trained with data having varied color scales. Neverthe-
less, none of color scale information was given in the

training process, as well as in the validation process.
As a result, the CNN models could learn more pattern
features of topography map for classification rather
than the features of fixed color scale. According to
the good performance of model validation, it was not
the color scale but the pattern of topographic features
that mattered the classification process and it has two
important application. First of all, it is believed that
this method could work across different platforms (e.g.,
Nidek, Pentacam, Galilei, etc.) as long as it shows
the correct topographic pattern even the color scale is
different among these platforms. Second, it may be able
to train the models with front, back, or topographic
maps with reasonable topographic patterns. The front
topographic corneal maps were used in this study
and it may have comparable results with different
topographic maps from different platforms.

Clinical manifested keratoconus was easily
diagnosed by our CNN models, while the accuracy
of subclinical keratoconus diagnosis was barely satis-
factory. There were several explanations. First of
all, it was estimated that 50% of subclinical kerato-
conus progressed to keratoconus within 16 years, and
the greatest risk was the first six years of onset.42
The clinical course of subclinical keratoconus was
a long-term progression, and it was reasonable that
the prediction was unsatisfactory when based solely
on one topography image. Second, the accuracy of
a model was dependent on the cutoff value set by
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Table 4. Keratoconus Probability Prediction of Subclinical Keratoconus Casesa by VGG16 and Comparing With
Topographic, Tomographic, and Tonometry Indexes

TMS Indexes (Topography)
Pentacam

(Tomography)
Corvis

(Tonometry)
Case No.

Probability of
keratoconus (%) KCI KSI BAD-D CBI

1 97% 15.7% 35% 0.23 0
2 89% 24.2% 37.5% 0.22 0
3 89% 29.3% 29.4% 0.5 0.07
4 81% 0% 0% 2.75 0.67
5 73% 23.8% 31.7% 3.03 0.08
6 67% 34.3% 22.3% 0.19 0
7 64% 0% 0% 0.5 0
8 55% 0% 0% 2.1 0.02
9 44% 41.2% 37.2% 0.36 0
10 37% 0% 19.3% 0.64 0
11 36% 26.5% 31.7% 1.81 0.82
12 20% 0% 0% 0.94 0
13 14% 0% 15.3% 0.49 0.06
14 12% 0% 0% 2.82 1
15 10% 0% 0% 0.92 0
16 7% 0% 0% 1.83 0.03
17 4% 0% 20.8% 1.84 0.05
18 4% 0% 0% 1.27 0.05
19 3% 0% 0% 1.57 0.07
20 3% 0% 0% 0.91 0
21 2% 0% 15.5% 1.61 0.25
22 1% 0% 20% 2.37 0
23 1% 0% 17.9% 2.11 0
24 1% 0% 17.4% 1.62 0.01
25 1% 0% 15.8% 2.38 0
26 0% 0% 0% 2.01 0.9
27 0% 0% 0% 1.79 0.71
28 0% 0% 17.9% 1.87 0.23

aThe ground truth of subclinical keratoconus was based on topographic pattern interpreted by clinicians.

investigators. It was usually set at the value of 50% in
most circumstances but can also be adjusted according
to different clinical situations. For the purpose of
screening, we may set the value around 30% to 40%
and find as many subclinical cases as possible. The
accuracy of subclinical keratoconus test group will
increase from 28.5% to 39.2% (11/28) if we set the
cutoff value at 30%. In our opinion, we may improve
the predictability by replacing the training dataset with
longitudinal topography maps and tested with several
topography images. On the other hand, adjusting
the cutoff value may be another effective method to
improve the predictability if we don’t have longitudinal
topographic maps for training.

We adopted a data augmentation and dropout layer
in the training process to prevent overfitting. Data were
augmented using random shift and rotation within
5% and random horizontal flip during each epoch.
Therefore, the more the training times (epoch), the
more the diversity of the training dataset. Moreover,
not including the test dataset into the training process
made the accuracy more reliable. In the last two fully-
connected layers, we implanted a dropout rate of 0.5
to prevent overtraining of the algorithm.43 Figure 2
reveals that the error rate of the test group decreased
after training, indicating no overfitting during the
algorithm development and making the algorithm
reliable.
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The nature of the hidden layer in the CNN
model prevented us from interpreting the decision
base of the algorithm. Therefore we performed the
pixel-wise discriminative feature through Deconvnet34
and developed the class-discriminative heat map of
diopter images through Grad-CAM.35 Deconvnet
could highlight the detail in images with high resolu-
tion, and Grad-CAM could localize the most signifi-
cant region in the image. Therefore we needed to deter-
mine what and where the CNN model read during
the classification process under these two methods.
Initially, these two methods were performed to visual-
ize the VGG16 model. In the pixel-wise discrimina-
tive feature method, the model focused on the shapes
of diopter contours, which is very crucial to evaluate
corneal topography. In the heat map of the predic-
tion layer by Grad-CAM, the model localized a hot
region corresponding to the high variation or gradi-
ent of diopter contours in topographic images. This
visualization approach helped us outline the detail and
the region of interest with the highest significance in
the topographic image reading by the VGG16 model.
We noted that it focused on the region similar to
the one relied on by ophthalmologists. Furthermore,
we tried to visualize the other two CNN models, but
results were difficult to interpret because of the nature
of the CNN model architecture. Further effort was
mandatory for these issues to facilitate a better under-
standing of the model and to make the model more
interpretable. Nonetheless, we believed the visualiza-
tion of the VGG16 model could provide ophthalmol-
ogists insights to re-examine the possible features of
keratoconus detection.

Keratoconus is a bilateral, progressive corneal
degenerative disease that is garnering significance
because of the increase in the number of laser refrac-
tive surgeries worldwide, as well as for its incidence
in children.44–46 Preoperative screening of keratoconus
may prevent post-LASIK ectasia (PLE). Multiple
objective metrics obtained using contemporary corneal
imaging devices have been proposed for the diagnosis
and severity evaluation of keratoconus. Nonetheless,
these highly complex and numerous parameters can
pose a clinical challenge for ophthalmologists. There-
fore we believe our models could aid in simplifying
keratoconus screeningwith high accuracy in the clinical
setting or telemedicine.

Currently, diagnosing keratoconus remains contro-
versial. Scheimpflug-based tomographic indices, the
curvature of the posterior cornea, corneal thickness,
and biomechanical assessments all help in detecting
clinical and subclinical keratoconus.47–50 Furthermore,
the integration of several diagnostic approaches has
exhibited enhanced detection ability.51 In addition to
these modalities, the Placido disc-based topography

can evaluate the ocular surface and tear film, which are
crucial in clinical evaluation. To the best of our knowl-
edge, this study is the first to develop an AI method to
diagnose the corneal disease based on corneal topog-
raphy. We believe this method can be of great benefit
in the clinical scenario, alone or combined with other
devices.

The limitations of this study are its retrospective
nature and the limited number of patients for algorithm
training. Moreover, the final diagnosis of topographic
images was decided by one institute. Therefore future
studies can achieve further progress in this aspect by
including more cases and disease types. In addition,
future studies can involve different specialists to help
arrive at a consensus regarding the diagnosis.

In conclusion, the current study revealed that
the CNN model had high sensitivity and speci-
ficity in identifying patients with keratoconus through
topographic images. In addition, it exhibited a reason-
able diagnostic ability after applying visualization
methods. Nevertheless, further study is mandatory to
explore the applicability of this model in daily clinical
practice and large-scale screening.
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