
ARTICLE

A mapping framework of competition–cooperation
QTLs that drive community dynamics
Libo Jiang1, Xiaoqing He 1, Yi Jin1, Meixia Ye1, Mengmeng Sang1, Nan Chen1, Jing Zhu1, Zuoran Zhang1,

Jinting Li1 & Rongling Wu 1,2

Genes have been thought to affect community ecology and evolution, but their identification

at the whole-genome level is challenging. Here, we develop a conceptual framework for the

genome-wide mapping of quantitative trait loci (QTLs) that govern interspecific competition

and cooperation. This framework integrates the community ecology theory into systems

mapping, a statistical model for mapping complex traits as a dynamic system. It can

characterize not only how QTLs of one species affect its own phenotype directly, but also

how QTLs from this species affect the phenotype of its interacting species indirectly and how

QTLs from different species interact epistatically to shape community behavior. We validated

the utility of the new mapping framework experimentally by culturing and comparing two

bacterial species, Escherichia coli and Staphylococcus aureus, in socialized and socially isolated

environments, identifying several QTLs from each species that may act as key drivers of

microbial community structure and function.
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No species lives in isolation. The pattern of how one species
interact with others affects the behavior and process of
ecological communities1. A mounting body of evidence

has suggested that interspecies interactions determine how
communities respond to environmental perturbations, including
climate change2,3. It has been increasingly recognized that genes
from each coexisting species play a pivotal role in shaping the
internal workings of communities4–6, but how to identify these
genes at the genome-wide level has been an unsolved issue. Many
studies using a simple experimental design have been able to
characterize single genes or pathways that contribute to ecological
interactions in a community7–9, but they have proven to be dif-
ficult for charting the comprehensive genetic architecture of how
different species interact and communicate. As of today, we still
cannot build a precise genotype–phenotype map for interspecies
interactions in a population, community, or ecosystem, despite
the increasing availability of genetic data by high-throughput
genotyping and sequencing techniques10.

Given its capacity to genome-wide search for quantitative trait
loci (QTLs) that control complex phenotypes, genetic or asso-
ciation mapping has been widely used as an approach for
studying complex genetic questions11,12. By integrating the
mathematical function of trait formation, a new approach, named
functional mapping, has been developed to cope with the devel-
opmental feature of complex traits13,14. More recently, functional
mapping has been upgraded to the level of systems mapping by
regarding a complex trait as a system composed of interactive
components15,16. The characteristic of systems mapping lies in its
seamless implementation of a group of ordinary differential
equations (ODEs) that can not only characterize the dynamic
change of one component, but also discern how one component
interacts and coordinates with its partners in a complex system.
Thus, by dissolving the phenotype into its underlying compo-
nents based on morphogenetic, physiological, and anatomic
principles15, systems mapping can map and identify specific
QTLs that govern the interconnections of different components,
gleaning new insight into the mechanistic basis of trait formation
and progression.

To take conceptual advantage of systems mapping, we equip it
with the community ecology theory to put forward a new map-
ping framework. A community or biocoenosis is defined as a
dynamic assemblage of populations composed of two or more
distinct species occupying the same geographical area17. Com-
munity ecology examines how the community works as a func-
tional unit through the emergent interactions and coordination of
its components18,19. It divides interspecies interactions into dif-
ferent types based on whether a species chooses to compete or
cooperate with other species, and provides a biological inter-
pretation of how each type of interaction gives rise to the dynamic
change and evolution of communities19–22. By mathematically
modeling the pattern and strength of ecological interactions
among different species, the new mapping framework can
characterize, quantify, and visualize how QTLs mediate inter-
species competition or cooperation. Beyond a reductionist
approach for mapping the genotype–phenotype relationship of a
single species, our new mapping framework links genotype
combinations between interacting species to their phenotypes and
further capture how QTLs from one species affect the phenotype
of its coexisting species and how QTLs from different genomes
interact epistatically to influence the phenotypes of multiple
species. The encapsulation of these previously omitted indirect
genetic effects and genome–genome epistatic interaction effects
would gain new insight into the global genetic architecture of
community dynamics.

We carry out an experiment of microbial competition to
validate the practical application of the new mapping framework.

A set of strains from Escherichia coli and Staphylococcus aureus
are randomly paired to form 45 independent interspecific pairs,
i.e., no single strain from one species was paired with multiple
strains from the second species. We create a socialized environ-
ment by co-culturing each pair in a flask. To investigate how the
bacteria respond to ecological interactions, we also culture each
strain in a socially isolated flask. By analyzing the abundance data
of paired bacterial strains, the new mapping framework identifies
several key QTLs from each species that govern competition and
collaboration in microbial communities through their direct,
indirect, and epistatic genetic effects. Our framework provides a
tool to showcase and infer community structure, organization,
and function based on genetic blueprints of the interacting
species.

Results
Fitting bacterial growth curves. The behavior of microorganisms
under a particular condition follows some biological rule, for
example, microbial growth is characterized by different phases,
lag, exponential, and stationary23,24. In the lag phase, the specific
growth rate starts from zero and then accelerates to a maximal
value in the exponential phase. When growth reaches the sta-
tionary phase, the rate decreases and finally approaches zero. The
three phases are each specified by a distinct parameter: the
exponential phase by the maximum-specific growth rate (r, the
tangent in the inflection point), the lag phase by the lag time (λ,
the x-axis intercept of this tangent), and the stationary phase by
the asymptote (A, the maximal value reached). A number of
growth equations have been derived to capture these phases,
among which three representatives are Gompertz, logistic, and
Richards, expressed as

NðtÞ ¼ Aexp � exp
r � e
A

ðλ� tÞ þ 1
h in o

Gompertz equationð Þ
ð1aÞ

NðtÞ ¼ A

1þ exp 4r
A ðλ� tÞ þ 2
� � Logistic equationð Þ ð1bÞ

NðtÞ ¼ A 1þ v expð1þ vÞ exp r
A

1þ vð 1þ 1
v

� �
ðλ� tÞ

� �� 	�1
v

Richards equationð Þ
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where N(t) is the abundance of a microbe at time t and the
Richards equation includes an additional parameter (v) that
describes the shape of a curve.

By assuming the four-parameter Richards equation as one
that can exactly predict microbial growth in monoculture, we
implemented a statistical procedure to test and validate whether
any of the three-parameter Gompertz and logistic equations can
sufficiently describe the data. Results from the F test for model
comparison suggest that the Richards equation provides an
optimal fitness to time-dependent abundance data for both E. coli
and S. aureus in monoculture (Fig. 1). Supplementary Table 1
gives the estimates of growth parameters by each growth equation
for each species. Using Sun et al.’s heterochronic formula25,
we divided the Richard curve of microbial growth into lag,
exponential, and stationary phases, which span 0–0.54, 0.54–9.14,
and 9.14–36 h for E. coli and 0–1.21, 1.21–13.49, and 13.49–36 h
for S. aureus, respectively, showing that these two species have
different forms of growth.

Given their possible interactions between coexisting strains, we
introduced a Lotka–Volterra (LV) ordinary differential equation
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group24 to jointly fit the microbial growth of two species in co-
culture. Let Ne and Ns denote the abundances of two coexisting
strains from E. coli and S. aureus, respectively. The LV equations
are expressed as

_Ne ¼ reNe 1� NeþαejsNs

Ke


 �

_Ns ¼ rsNs 1� NsþαsjeNe

Ks


 �
8><
>:

ð2Þ

where re and rs are the Malthusian growth rates of E. coli and
S. aureus strains, respectively; Ke and Ke are an intrinsic-carrying
capacity of two different species; and αe|s and αs|e are
dimensionless parameters that model how one species affects
the other through competition or cooperation in co-culture. We
fit the growth data of the two bacterial species in co-culture using
Gompertz, logistic, Richards, and LV equations (Supplementary
Table 1) and further chose one that best fit the data based on
the AIC information criterion. The result suggests that the LV
equations outperform the Gompertz, logistic, and Richards
equations in fitting growth trajectories of both species in co-
culture (Fig. 1). A random relationship between the predicted
values and the residuals across individual interspecific pairs
(Supplementary Fig. 1) indicates that the LV model possesses
reasonably good statistical behavior in our co-culture data fitting.

To explore the consequence of interspecies interactions, we
compared the difference of growth trajectories between the same
species in monoculture and co-culture, i.e., phenotypic plasticity
induced by microbial coexistence22. On average, the growth
trajectories of E. coli are slightly responsive to its conspecific
(Fig. 1a), whereas S. aureus displays measurable phenotypic
plasticity, with a greater growth rate in monoculture than in co-
culture (Fig. 1b). Considerable variation was detected in growth
trajectory among different strains from each species in each
culture (Fig. 1), implicating the possible existence of QTLs that
regulate microbial growth. For both species, a great variability
exists in how a strain responds to ecological coexistence (Fig. 1).
Some strains grow better in co-culture than in monoculture,
while others exhibit an opposite pattern of response. Further-
more, the sign and magnitude of phenotypic plasticity may vary
over the time of culture.

Mapping microbial abundance by a static approach. We used
two approaches, static and dynamic, to map growth QTLs in two
cultures. The static mapping approach is to associate each gen-
ome with microbial abundances of strains measured at individual
time points, whereas the dynamic mapping approach attempts to
regress growth trajectories of strains on their marker genotypes
through mathematical equations. After adjusting the phenotypic
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Fig. 1 Trajectories of microbial growth and its interaction-induced phenotypic plasticity for E. coli (a) and S. aureus (b). Microbial abundance of individual
strains from each species (circles) was observed in monoculture and co-culture during the first 36 h after culture. In monoculture, the F test of three-
parameter Gompertz (G, green solid line) and logistic equations (L, red solid line) against the four-parameter Richards equation (R, blue solid line) suggests
that the latter gives a better goodness-of-fit to mean growth trajectories than the former two equations. Three distinct phases, lag, exponential, and
stationary, on the Richards curve are indicated. In co-culture, the G, L, and R equations were compared with the Lokta–Volterra (LV) ordinary differential
equations, suggesting that the LV is the most parsimonious according to the AIC values. The LV curve of each species in co-culture was partitioned into its
underlying independent (broke line) and interactive growth components (dot line). Negative interactive growth for both species shows an antagonistic
relationship held between E. coli (a) and S. aureus. Phenotypic plasticity curves were calculated as the differences of bacterial growth in monoculture from
that in co-culture at different time points. Mean plasticity curves are indicated by thick lines
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data for population structure aimed to avoid the detection of
spurious associations, both approaches identified different sets of
QTLs for each species, depending on where it was grown (Fig. 2).
In monoculture, the static approach found a number of sig-
nificant QTLs (63) in E. coli distributed throughout the genome,
but all these QTLs are only associated with abundance at time
12 h of the early stationary growth phase (Fig. 2a). Under the
same condition, only five QTLs were observed for S. aureus,

with one affecting the exponential phase and four affecting the
stationary phase.

The bacterial abundance of co-culture was mapped by a
bivariate model that integrates genetic and phenotypic informa-
tion of two interactive species E. coli and S. aureus (Methods). We
identified eight QTLs from E. coli and six QTLs from S. aureus
that affect microbial growth through their 17 pairs (Fig. 2a). But
these QTL pairs exert a significant influence only on the
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abundance at 4 h, a middle stage of the exponential phase.
We further partitioned the genotypic values of four genotype
combinations at each QTL pair into direct, indirect, and
genome–genome epistatic genetic effect components (Methods).
We used a pair of QTLs E635206 from E. coli QTL and S30869
from S. aureus as an example to explain our discovery (Fig. 3).
This QTL pair explains a heritability of 0.035 and 0.022 for
the abundance at 4 h in E. coli and S. aureus, respectively. The
two QTLs each trigger an effect not only on the growth of their
home species directly (P < 0.01), but also on the growth of the
opposite species that coexist with their home species indirectly
(P < 0.01). Also, they affect the growth of each species epistatically
across different genomes (P < 0.01). Together, indirect and
genome–genome epistatic effects at this QTL pair explain 49%
and 54% of the total genetic variance for E. coli and S. aureus,
respectively. We calculated the total heritability of 4 h abundance
explained by all significant 17 QTL pairs (Fig. 2a), which is 0.39
for E. coli and 0.25 for S. aureus. Indirect and genome–genome
epistatic effects of all QTL pairs together account for 59% and
48% of the total heritability of these two species, respectively.
Approximately one half of the heritability was contributed by
these two interspecific interaction-induced genetic effects.

Modeling the genotype–phenotype relationship by a dynamic
approach. As two dynamic approaches for QTL mapping, func-
tional mapping, and systems mapping were used to map micro-
bial growth in monoculture and co-culture, respectively. By
implementing the best-fit Richards equations, functional mapping

identified 24 significant SNPs associated with time-dependent
abundance for both species in monoculture (Fig. 2b). Results
from the functional annotation of genes using NCBI’s GenBank®

sequence database show that a large portion of QTLs detected by
functional mapping residue in genome positions of candidate
genes, validating the usefulness and statistical power of this
approach, as well demonstrated in previous studies14.

Systems mapping implemented by the LV equations can
identify QTLs that control the interactive pattern of two species
in co-culture (Methods). We integrated this approach and
community ecology to produce a new mapping framework by
which to quantify and interpret the pattern of interspecies
interactions and characterize and map specific QTLs that regulate
each of these interactions. Any species in co-culture may choose
to cooperate or compete with its conspecific, depending on at
which level the common resource can be shared for their
respective growth19. According to the community ecology theory,
the strategy with which these two species interact with each other
can be formulated by a strategy matrix

S: aureus

� 0 þ

E: coli

�
0

þ

Antagonism Amensalism Parasitism

Amensalism Independence Commensalism

Parasitism Commensalism Mutualism

0
B@

1
CA

ð3Þ

Different strategies used by each species lead to six distinct
interaction types: mutualism by which two species benefit from
each other, independence by which any one species does not
depend on or affects the other, antagonism by which two species
are in conflict of one another, commensalism by which one
species benefits its conspecific whereas the latter does not affect
the former, predation/parasitism by which one species helps the
other but the latter is harmful to the former, and amensalism by
which one species hurts the other while the latter does not affect
the former.

These competition or cooperation relationships as well as their
strengths can be captured by the LV equations. We split the
LV equations into two different parts that describe microbial
abundance differently, expressed as

_Ne ¼ reNe 1� Ne
Ke


 �
þ reNe

�αejsNs

Ke


 �
� _Me þ _Nejs

_Ns ¼ rsNs 1� Ns
Ks


 �
þ rsNs

�αsjeNe

Ns


 �
� _Ms þ _Nsje

8><
>:

ð4Þ

where the first part, _Me or _Ms, is the independent growth of
each species, determined by its intrinsic property, and the second
part, _Nejs or _Nsje, presents the interactive growth of each species,
determined by how it interacts with its conspecific. If the
interactive growth of a species is positive or negative, this
indicates that this species is benefitted or harmed by another
species. If there is no interactive growth, it means that the two
species are not affected by one another. Thus, by estimating
ODE parameters Θ= (re, Ke, αe|s; rs, Ks, αs|e), the LV equations
can not only specify the dynamic pattern of abundance for
each species, but also characterize the interactive pattern of
two species in co-culture. On average, E. coli and S. aureus
when cultured together in the same environment were detected
to hold an antagonistic relationship since the interactive growth
of each species is negative (Fig. 1).

The new mapping framework developed through a unifying
likelihood of two interactive species (Methods) can characterize
how QTLs determine interspecies competition and cooperation in
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combination at QTL E635206 from E. coli and QTL S30869 from S. aureus
for microbial abundance at 4 h is partitioned into its direct, indirect, and
genome–genome epistatic genetic effect components. Upper left: direct
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a community. As such, it is named the competition–cooperation
mapping (CoCoM) model. We used CoCoM to pairwise scan
markers from different species throughout their genomes,
obtaining 54 significant combinations of QTLs comprising
of 41 SNPs from E. coli and 12 SNPs from S. aureus (Fig. 2b).
This number detected by dynamic CoCoM is remarkably
larger than the number of QTLs by static CoCoM (Fig. 2a),
possibly suggesting the increasing power of QTL detection by
the former. The functional annotation of genes from NCBI’s
database shows that almost all QTLs detected residue within
candidate genes of known biological functions, ranging from
RNA transcription to peptidoglycan metabolism to biotic stress
tolerance and evolution (Supplementary Table 2). For E. coli,
SNPs E1483999 and E1486303 reside in a gene, hrpA, that
encodes targeted mutagenesis for improving this bacteria’s
isobutanol tolerance26. E19056 is close to gene nhaR encoding
transcriptional activator NhaR that mediates the osmotic
induction of osmC(p1), a promoter of the stress-inducible gene
osmC in E. coli27. E3328548 is relevant to the greA gene that
stimulates the mRNA cleavage activity of RNA polymerase,
helping to stall or incorporate incorrect nucleotides28. For
S. aureus, SNP S188004 exerts pronounced genetic interactions
with many SNPs distributed over the entire E. coli genome.

Comprehending the genetic architecture of community
growth. CoCoM can chart a more complete picture of genetic
architecture by revealing previously neglected indirect and
genome–genome epistatic genetic effects of QTLs. We explained
this power based on a representative QTL pair E4614704 (from
E. coli) and S188004 (from S. aureus). By gene annotation
analysis, these two QTLs were detected to be associated with some
biological functions. E4614704 resides in yjjW, a gene that
encodes a homolog of pyruvate-formate lyase activating enzyme
PflA29. As a key intersection in the network of metabolic path-
ways, pyruvate can be converted to carbohydrates via gluconeo-
genesis, fatty acids, or energy through acetyl-CoA, the amino acid
alanine, or ethanol, depending on whether the condition is
aerobic or anaerobic. All these metabolic processes may play an
important role in adapting E. coli to microbial coexistence.
S188004 is relevant to the gene ggt30. This gene encodes gamma-
glutamyltranspeptidase that regulates the metabolic pathway of
glutathione. By converting methylglyoxal to D-lactate, glutathione
may form a key pathway for S. aureus to react with microbial
interactions (Supplementary Fig. 2).

We drew the fitted overall curves of microbial growth for E. coli
and S. aureus in co-culture at four interspecific genotypic
combinations of this QTL (Fig. 4a). We divided each curve into
its independent ( _Me, _Ms) and interactive growth components
( _Nejs, _Nsje). For combination C/C, the overall growth of E. coli is
considerably smaller than its independent growth because this
species is hindered by S. aureus to form the negative interactive
growth. This is reciprocally true for the overall growth of
S. aureus (Fig. 4a), suggesting that these two bacteria are in an
antagonistic relationship (matrix 2), although the extent to which
S. aureus confronts E. coli is much larger than that to which
E. coli represses S. aureus. A similar antagonistic relationship was
also observed for the other three genotypic combinations C/T,
T/C, and T/T, but the pattern of antagonistic relationship
varies among the four genotypic combinations. All these results
suggest that E4614704 and S188004 are antagonistic QTLs that
participate in determining and shaping the antagonistic relation-
ship between E. coli and S. aureus when they are co-cultured in
the same medium. This result was confirmed by an additional
analysis of the state-space of the combination of abundance
between two species (Supplementary Fig. 3).

QTL E4614704 owned by E. coli affects directly its own growth;
so does S188004 from S. aureus. Yet, it is interesting to find that
these two QTLs each exhibit pronounced indirect effects and
genome–genome epistatic effects, even with magnitudes being
larger than those of direct effects (Fig. 4b). It seems that S188004
from S. aureus is a more “aggressive” QTL, because its indirect
effect on the abundance dynamic of E. coli is larger than its
direct effect on the abundance of its home species during the
exponential phase of growth and also larger than the indirect
effect of E4614704 from E. coli on the abundance of S. aureus.
It can be seen that indirect effects and genome–genome epistatic
effects together account for a large proportion of the total genetic
variance (68–85% for E. coli and 57–81% for S. aureus) in the
abundance trajectories of both species when they are co-cultured.
This part of genetic variance cannot be detected by any traditional
mapping approach. From genetic effect and variance curves,
we can see how an SNP affects the growth of two microbial species
over time. At this particular QTL combination, direct, indirect,
and epistatic effects on E. coli reach a maximum at time 6–10 h,
whereas these effects on S. aureus are somewhat periodic over
time. Overall, the proportions of the direct effects to the total
genetic variance in both species tend to decrease with time.

We drew abundance curves of two genotypes at E4614704 for
E. coli and at S188004 for S. aureus in co-culture, respectively,
from which to estimate the genetic effect curves of each QTL
(Fig. 4c). These effects are marginally significant (P= 0.095),
but the genetic effects due to differences among four QTL
genotype combinations C/C, C/T, T/C, and T/T are highly
significant for both species (P < 0.001) (Fig. 4a). This suggests that
the impact of some QTLs can be activated by their interaction
with QTLs from conspecifics in communities. We also compared
growth curves of the same genotype from each species between
co-culture and monoculture, from which the genetic effect curves
of a QTL in each treatment and the allelic sensitivity curves of the
same genotype to different treatments can be drawn (Fig. 4c).
Dramatic differences in the effect curve between monoculture and
co-culture and in the sensitivity curve between two genotypes
(P < 0.01) suggest the existence of QTL × ecological interactions.

QTL network. The abundance of E. coli in co-culture is deter-
mined jointly by direct effects of its own 41 SNPs, indirect effects
of 12 SNPs from S. aureus, and interspecific epistatic effects
between these SNPs. On contrast, 12 S. aureus SNPs and 41 E. coli
SNPs trigger direct and indirect effects, respectively, on the
abundance of S. aureus in co-culture. We implemented an ODE-
based genetic networking approach to characterize how these
QTLs interact with each other in a network to affect microbial
abundance through three different types of effects (Fig. 5). The
central feature of QTL networks is its capacity to identify hub
QTLs that play a pivotal role in the genetic architecture of
microbial growth in species coexistence. SNP 11 (E1317124), 16
(E1838489), and 26 (E2594191) from E. coli as hub QTLs affect
directly its own performance (Fig. 5a), whereas hub E. coli QTLs
in the network of indirect effects are SNPs 3 (E62059), 33
(E3328548), 35 (E3539840), and 37 (E3956003) (Fig. 5b). Inter-
estingly, SNP 1 (S188004) and 10 (S2076600) from S. aureus serve
as hub QTLs in both networks of direct and indirect effects,
although the structure of the network differs between these two
types of effects. Genome–genome epistasis mediates the abun-
dance of E. coli and S. aureus in a varying but complex network.

Biological and statistical validation. One merit of CoCoM is to
decompose the overall growth of bacteria in co-culture into its
independent and interactive growth components so as to better
reveal the quantitative impact on the growth of a species by its
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coexisting species and, more importantly, characterize the genetic
machineries of this species–species interaction. To demonstrate
the biological relevance of the model, we reanalyzed the data
of experiment by culturing all strains individually in isolated
flasks. The microbial abundance of each species in monoculture
was fitted separately for two alternative genotypes at E4614704
for E. coli and S188004 for S. aureus (Supplementary Fig. 4).
These curves that represent microbial growth in isolation were
detected to be in a broad agreement with those of independent
growth components estimated by CoCoM. This consistency
supports the usefulness and accuracy of the model for unveiling
the biologically grounded rules underlying the genetic archi-
tecture of ecological interactions.

We also conducted computer simulation to validate the
statistical properties of CoCoM. The data were simulated by
assuming that two species are reared in monoculture and co-
culture. The phenotype is determined by a set of QTLs among
1000 simulated markers, plus a residual error following a multi-
variate normal distribution. Under monoculture simulation
scenario, the genetic component of phenotypic variation was
due to direct effects only, whereas the data under co-culture
simulation scenario involve all direct, indirect, and interspecific
epistatic effects. The data were analyzed reciprocally by
traditional univariate functional mapping and the new model.
As expected, traditional mapping can effectively detect significant
QTLs from the monoculture data under a modest sample size and
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heritability, but its power for QTL detection from the co-culture
data has reduced sharply to 0.15–0.25 (upper panel, Supplemen-
tary Table 3). Similarly, CoCoM shows reasonably good power to
detect QTLs hidden in the co-culture data, although it is not
proper to analyze the monoculture data. We also drew growth
curves using ODE parameters estimated by CCM, in a
comparison with the true curves, showing that the true curves
are within the confidence interval of the estimated curves
(Supplementary Fig. 5). All the above results suggest that CoCoM
is not only essential for precisely mapping any QTL that affects
phenotypic traits in an interactive community, but also it is
statistically robust for the identification of significant QTLs.

As a modeling exploration of community genetics, this pilot
study only chose 45 interspecific pairs of strains from two
bacterial species. We further examined the statistical properties of
the new model to analyze such a small data set. Although its
power to detect significant QTLs reduces largely, the estimation
of growth curves for each genotype is still within a reasonable
estimation interval (lower panel, Supplementary Table 3 and
Supplementary Fig. 6). In general, our model provides the
reasonable accuracy of parameter estimates when heritability
ranges from 0.05 to 0.10 even with a modest number of
interspecific pairs, but a sample size of 200 is required for
increasing its power.

We performed an additional simulation study to assess the
false-positive rate (FPR) of CoCoM. The same scenarios were
used to simulate the genetic and phenotypic data under the
assumption of no heritability. If a model detects a significant QTL
from such simulated data, this discovery is a false positive. As
expected, functional mapping has small FPRs (<0.09) if the data
were simulated under monoculture (Supplementary Table 3). For
the co-culture data, small FPRs (<0.10) were also found by

CoCoM, even when a sample size is modest, suggesting that the
new model has a reasonably high specificity.

Discussion
In nature, a species can adapt not only to physical environments
(e.g., temperature), but also to another species with which it
interacts (e.g., competitors)31. It has well been recognized that
interspecies interactions affect community composition and
adaptation to changing environment2,3 and operate as an evolu-
tionary force that drives species to change through time and
space33–35. Traditional genetic mapping focuses on the pheno-
typic variation of a single species, failing to characterize how
QTLs determine multiple species as a community. In this article,
we present a competition–cooperation mapping (CoCoM) model
to unravel the genetic machineries of interspecies interactions.

The merit of CoCoM lies in its statistical synthesis of systems
mapping and community ecology into a genetic setting. It can test
and estimate how QTLs modulate interspecific competition and
cooperation and interpret the critical roles of these QTLs in
organizing community structure and function through mutual-
ism, antagonism, parasitism, commensalism, and amensalism. In
a co-culture experiment of E. coli and S. aureus, CoCoM detected
a set of QTLs for microbial interactions, most of which determine
an antagonistic relationship between these two bacterial species
(Fig. 4). These QTLs expressed in a socialized environment were
found to differ from those in a socially isolated environment
(Fig. 2), suggesting that ecological interactions activate the
expression of some unique genes. Taken together, CoCoM can
glean new insight into the genetic architecture of interspecific
interactions, species co-evolution, and community dynamics.

The genetic underpinning for the response of a species to
abiotic factors only contains genes from this species, whereas the
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biotic response of a species is also driven by genes of its coexisting
species and the epistatic interaction between genes from different
species35,36. As a reductionist approach, traditional QTL mapping
can only identify direct genetic effects of QTLs from a species on
its own phenotype, but cannot detect indirect genetic effects of
QTLs from one species on the phenotype of its interacting
partners in the same community and genome–genome epistatic
genetic effects of QTLs from different species on the community
phenotype. Epistasis may occur not only among the QTLs of the
same genome, but also among the QTLs derived from different
genomes. In molecular genetic experiments, such epistatic QTLs
that act depending on the other genomes have been mapped36

and the molecular pathways implicated for QTL actions identi-
fied37. CoCoM can separate direct, indirect, and interspecific
genome–genome epistatic effects of QTLs involved in community
composition and dynamics. In our co-culture experiment, indir-
ect and genome–genome epistatic effects together contribute to
more than one half of the total genetic variance for bacterial
growth in a community.

CoCoM is a dynamic model that capitalizes on time series
phenotypic data to search for interaction QTLs. To assess its
advantage, we implemented and compared a static mapping
model based on the phenotypic data measured at discrete time
points. Previous statistical analyses have shown that, compared to
a static model, a dynamic mapping model is biologically more
relevant due to its embedment of biologically meaningful equa-
tions and statistically more powerful through parsimonious
modeling of the mean covariance structures13,14. These advan-
tages hold for the dynamic CoCoM model that detected much
more biologically interpretable QTL pairs than its static coun-
terpart (Fig. 2). Also, the dynamic model can visualize the
temporal-spatial pattern of genetic effects and, therefore, should
be particularly useful for inferring and predicting the genetic
machineries of community dynamic and evolution.

How does interspecific epistasis play a role in the dynamic
trajectories of ecosystem phenotypes31? The CoCoM model
provides a platform for testing the genome–genome epistasis of
eco-devo. In addition, in which manner do specific genes that
influence species competition and co-evolution operate in natural
communities? Through the implementation of a zero-isocline
analysis of differential equations, CoCoM can quantitatively
determine when one species should deplete all resources of its
competing counterparts to survive, or it can coexist and, thus,
coevolve with the others over ecological time in natural com-
munities (Supplementary Fig. 2). It can further identify specific
QTLs that govern this ecological process.

CoCoM represents a general framework for mapping com-
munity dynamics, for which there is much room to improve.
First, the recent development of statistical variable selection has
made it possible to visualize a network of genetic interactions
among a large number of loci in genome-wide association stu-
dies38. The integration of CoCoM and variable selection will

enable the systematical characterization of direct, indirect, and
genome–genome epistatic genetic effects throughout the entire
genome. Second, a complex community is often composed of
multiple species in which interspecies interactions are organized
into a network39. A group of high-dimensional ordinary differ-
ential equations should be derived and implemented into CoCoM
to quantify how each and every species interacts and commu-
nicates with all possible other species in a network and identify
hub or keystone species that play a leadership role in mediating
network dynamics. Third, additive Lotka–Volterra pairwise
models can only characterize how one species stimulates or
inhibits the abundance of other species in a gross way. By con-
sidering the chemical mediators underlying interspecific interac-
tions, Momeni et al. theoretically showed that these additive
models fail to capture the complexity of ecological interactions40.
These authors have formulated mechanistic reference models for
predicting two different species engaging in chemical-mediated
interactions. By incorporating Momeni et al.’s mechanistic
models, CoCoM can be armed to establish a more precise pre-
dictive model of community dynamics and evolution of inter-
acting species in ecological systems.

Methods
Design of ecological experiment. Microorganisms are thought to be ideal
material for ecological experiments aimed to characterize interspecific interac-
tions41. Suppose there are two microbial species A and B, from each of which we
randomly sample n strains to produce two natural mapping populations and
genotype these samples for single-nucleotide polymorphisms (SNPs) throughout
the entire genome for the two species. To study how two species compete in the
same environment, we pair each strain from one species randomly with one (and
only one) strain from the other, thus forming a total of n independent pairs. Each
pair is cultured in a separate flask with at least three replicates. The flasks are laid
out randomly with no position effect in a laboratory.

Depending on how they can share the resource, two strains from different
species within a flask may choose to compete or cooperate. We investigate such
inner workings in each flask by measuring the abundance of each strain repeatedly
at multiple times (say T) during microbial growth. We hypothesize that the
abundance dynamics of each species is governed by QTLs from its own genome
(through direct effects), QTLs from the genome of its coexisting species (through
indirect effects), and interactions between the QTLs from different species
(genome–genome epistasis).

Quantitative genetic model. Assume that there is a QTL on species A with two
genotypes A and a and another QTL on species B with two genotypes B and b. The
two QTLs form four interspecific genotype combinations, A/B, A/b, a/B, and a/b,
whose genotypic values for the abundance of each species l (l=A or B) at time t are
denoted as μlABðtÞ, μlAbðtÞ, μlaBðtÞ, and μlabðtÞ, respectively. According to quantitative
genetic theory, these genotypic values can be partitioned into their components42,
shown in Table 1. Let μA(t) and μB(t) denote the time-dependent population means
of abundance for species A and B, respectively, aAAðtÞ denotes the time-dependent
direct genetic effect of species A’s QTL on its own abundance, aBBðtÞ denotes the
time-dependent direct genetic effect of species B’s QTL on its own abundance,
aBAðtÞ denotes the time-dependent indirect genetic effect of species A’s QTL on the
abundance of its coexisting species B, aAB ðtÞ denotes the time-dependent indirect
genetic effect of species B’s QTL on the abundance of its coexisting species A, and
IAA ´BðtÞ and IBA ´BðtÞ denote the time-dependent genome–genome epistatic effect
between the QTLs of two species on the abundance of species A and B, respectively.

Table 1 Overall genotypic values of genome–genome combinations at a QTL and their decomposition into different components
for two coexisting bacterial (haploid) species A and B

Genotype combination Genotypic value of abundance for different species

A B A B

A B μAABðtÞ= μA(t)+ aAAðtÞ + aAB ðtÞ+ IAA ´ BðtÞ μBABðtÞ= μB(t)+ aBAðtÞ+ aBBðtÞ+ IBA ´ BðtÞ
A b μAAbðtÞ= μA(t)+ aAAðtÞ ‒ aAB ðtÞ ‒ IAA ´ BðtÞ μBAbðtÞ= μB(t)+ aBAðtÞ ‒ aBBðtÞ ‒ IBA ´ BðtÞ
a B μAaBðtÞ= μA(t) ‒ aAAðtÞ+ aAB ðtÞ ‒ IAA ´ BðtÞ μBaBðtÞ= μB(t) ‒ aBAðtÞ+ aBBðtÞ ‒ IBA ´ BðtÞ
a b μAabðtÞ= μA(t) ‒ aAAðtÞ ‒ aAB ðtÞ+ IAA ´ BðtÞ μBabðtÞ= μB(t) ‒ aBAðtÞ ‒ aBBðtÞ+ IBA ´ BðtÞ
Subscripts denote genotype combinations between two species or the species from which the QTL is derived, and superscripts denote the species whose phenotype (abundance) is affected by the QTL
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From expressions in Table 1, each of these genetic effect components are solved by

aAAðtÞ ¼ 1
4 μAABðtÞ
� þ μAAbðtÞ � μAaBðtÞ � μAabðtÞ


 ð5aÞ

aBBðtÞ ¼ 1
4 μBABðtÞ
� þ μBaBðtÞ � μBAbðtÞ � μBabðtÞ


 ð5bÞ

aBAðtÞ ¼ 1
4 μBABðtÞ
� þ μBAbðtÞ � μBaBðtÞ � μBabðtÞ


 ð5cÞ

aAB ðtÞ ¼ 1
4 μAABðtÞ
� þ μAaBðtÞ � μAAbðtÞ � μAabðtÞ


 ð5dÞ

IAA´BðtÞ ¼ 1
4 μAABðtÞ
� þ μAabðtÞ � μAAbðtÞ � μAaBðtÞ


 ð5eÞ

IBA´BðtÞ ¼ 1
4 μBABðtÞ
� þ μBabðtÞ � μBAbðtÞ � μBaBðtÞ


 ð5fÞ

All these direct, indirect, and genome–genome epistatic effects jointly construct
the genotype–phenotype map, although previous quantitative genetic studies can
only estimate the direct effects.

Mixture model and estimation. We formulate static and dynamic models to
estimate QTL genotype-specific parameters by associating marker data and phe-
notypic data for n interspecific pairs of strains. Let NA

i ðtÞ and NB
i ðtÞ denote the

abundance of individuals from species A and B in a pair (i) of strains at time t (t=
1, …, T). A mixture-based likelihood model has been widely used to map QTLs for
complex traits42. Considering microbial abundance data at time t, the likelihood is
written as

LðNAðtÞ;NBðtÞÞ¼ Qn
i¼1

ωAjBifABðNA
i ðtÞ;NB

i ðtÞÞ þ ωAjbifAbðNA
i ðtÞ;NB

i ðtÞÞ
h

þωajBifaBðNA
i ðtÞ;NB

i ðtÞÞ þ ωajbifabðNA
i ðtÞ;NB

i ðtÞÞ
i ð6Þ

where ω�ji is the conditional probability of a particular interspecific QTL genotype
combination given the marker genotype combination of interspecific pair i, which
is expressed by marker-QTL linkage disequilibria in the populations of two spe-
cies;42 and f�ðNA

i ðtÞ;NB
i ðtÞÞ is a bivariate normal distribution function of species A

and B with genotype combination-dependent mean vector μA� ðtÞ; μB� ðtÞ
� 


and
covariance matrix composed of species A’s variance (σ2AðtÞ), species B’s variance
(σ2BðtÞ) and species–species correlation (ρ(t)). Based on the maximum likelihood
estimates of μA� ðtÞ; μB� ðtÞ

� 

, we can estimate the direct, indirect, and

genome–genome epistatic effects according to Eqs. (5a)–(5f).
The mixture-based likelihood of time-dependent abundance data for n

interspecific pairs is expressed as

LðNA;NBÞ¼ Qn
i¼1

ωABjifABðNA
i ;N

B
i ;ΘAB;ΨÞ þ ωAbji fAbðNA

i ;N
B
i ;ΘAb;ΨÞ

h

þωaBji faBðNA
i ;N

B
i ;ΘaB;ΨÞ þ ωabjifabðNA

i ;N
B
i ;Θab;ΨÞ

i ð7Þ

where NA
i = NA

i ð1Þ
�

, …, NA
i ðTÞ



and NB

i =(NB
i ð1Þ, …, NB

i ðTÞ) are the vectors of
abundance trajectories at T times for species A and B, respectively, and
f� NA

i ;N
B
i ;Θ�;Ψ

� 

is a multivariate normal distribution with expected mean vector

for pair i that belongs to a particular interspecific QTL genotype combinations,
expressed as

μAB ¼ μAAB; μ
B
AB

� 
 � μAABð1Þ; ¼ ; μAABðTÞ; μBABð1Þ; ¼ ; μBABðTÞ
� 
 ð8aÞ

μAb ¼ μAAb; μ
B
Ab

� 
 � μAAbð1Þ; ¼ ; μAAbðTÞ; μBAbð1Þ; ¼ ; μBAbðTÞ
� 
 ð8bÞ

μaB ¼ μAaB; μ
B
aB

� 
 � μAaBð1Þ; ¼ ; μAaBðTÞ; μBaBð1Þ; ¼ ; μBaBðTÞ
� 
 ð8cÞ

μab ¼ μAab; μ
B
ab

� 
 � μAabð1Þ; ¼ ; μAabðTÞ; μBabð1Þ; ¼ ; μBabðTÞ
� 
 ð8dÞ

and covariance matrix

Σ ¼ ΣA ΣAB

ΣBA ΣB

� �
ð9Þ

with ΣA and ΣB being (T × T) covariance matrices of abundances over time and
ΣAB= ΣTBA being a (T × T) covariance matrix between two species.

Systems mapping models genotypic value vectors of each interspecific QTL
genotype combination, i.e., μAB, μAb, μaB, and μab, by a group of LV-based ODEs
(1) characterized by interspecific QTL genotype combination-dependent
parameters ΘAB, ΘAb, ΘaB, and Θab, respectively. For all genotype combinations,
systems mapping assumes the same covariance matrix Σ, modeled by a set of

matrix-structuring parameters Ψ. As shown in Fu et al.43, the fourth-order
Runge–Kutta algorithm can be implemented to solve the differential equations
within the mixture model framework, which obtains the maximum likelihood
estimates of ΘAB, ΘAb, ΘaB, and Θab. The covariance structure is modeled by using
a parsimonious and flexible approach, such as autoregressive, antedependence,
autoregressive moving average, or nonparametric and semiparametric approaches.
These approaches have been used and tested in the functional mapping and
systems mapping44. The EM algorithm is implemented to estimate marker-QTL
haplotype frequencies42, hybridized with the Runge–Kutta algorithm to estimate
ΘAB, ΘAb, ΘaB, and Θab and the simplex algorithm to estimate covariance-
structuring parameters Ψ.

Hypothesis testing. Based on static likelihood (6) and dynamic likelihood (7), we
can test whether there are significant interspecific QTLs involved in interspecific
interactions. Using the dynamic model as an example, this can be done by
formulating the two hypotheses:

H0 : ΘAB ¼ ΘAb ¼ ΘaB ¼ Θab � Θ

H1: Not all equalities in the H0 hold
ð10Þ

under each of which the likelihoods are calculated, respectively. Then, their log-
likelihood ratio is calculated and compared against a genome-wide critical
threshold determined from permutation tests or score statistics45. If the null
hypothesis above is rejected, this means that QTLs from two species have been
detected by the molecular marker.

After significant QTLs are detected, the next is to test whether these QTLs
exert significant direct effects, indirect effects, and interspecific genome–genome
epistatic effects. The null hypotheses for these tests are, respectively, expressed as

H0: a
A
AðtÞ ¼ 0 and aBBðtÞ ¼ 0 for direct effects ð11Þ

H0: a
B
AðtÞ ¼ 0 and aAB ðtÞ ¼ 0 for indirect effects ð12Þ

H0: I
A
A ´BðtÞ ¼ 0 and IBA ´BðtÞ ¼ 0 for genome� genome epistatic effects ð13Þ

The critical thresholds for tests (11)−(13) can be obtained from simulation
studies. Two effects of each test on the abundance of species A and B, respectively,
can be further tested for their significance.

Study material. The model was validated by an experiment of bacterial
competition. We collected strains of E. coli and S. aureus, whose IDs were listed
in Supplementary Table 4, from National Infrastructure of Microbial Resources,
China, and paired these strains between species to form 45 independent
interspecific combinations. Each pair was co-cultured with a 1:1 ratio in a separate
flask but with the same media for all pairs. Meanwhile, all paired strains were
mono-cultured individually under the same condition. Cultures were established in
50 mL flasks containing 25 mL of two-times diluted brain heart infusion medium
(OXOID, Basingstoke, England) and inoculated initially from established cultures
of bacteria after 4-day cultivation. In the co-culture treatment, inoculates of each
species were added to the same flask to create a two-species community. The
starting concentration of each species was 5 × 103 copies/mL. In the monoculture
treatment, bacteria were cultured in 25 mL medium with a starting concentration
of 5 × 103 copies/mL. We replicated the experiment three times for both mono-
culture and co-culture.

We used quantitative PCR (qPCR) to count the number of cells for each strain
in each flask at time once every 2 h before 24 h of culture, followed by once every
4 h after 24 h. An Mx3005P real-time system (Stratagene, La Jolla, USA) was used
to perform qPCR in a total volume of 25 μL, consisting of the SuperReal PreMix
Plus (SYBR Green) (TIANGEN, Beijing, China), 300 nM forward primers and 300
nM reverse primers. Genomic DNA was extracted by the TIANamp Bacteria DNA
Kit. For specific detection of E.coli species, 217 bp of the regulatory region of uidA
gene, designated uidR, which is located upstream of the uidA structural gene, were
amplified by forward primer GTGGCAGTGAAGGGCGAACAGT and reverse
primer GTGAGCGTCGCAGAACATTACA. For specific detection of S. aureus
species, 226 bp of nuc gene encoding thermostable nuclease, were amplified by
forward primer AAAGGGCAATACGCAAAGAGGT and reverse primer
CTTTAGCCAAGCCTTGACGAAC. Control samples, without template DNA,
were also included in the runs. The thermal cycling conditions were as follows: an
initial denaturation at 95 °C for 10 min followed by 40 cycles of 30 s at 95 °C, 1 min
at 55 °C, and 1 min at 72 °C. Each run ended with a melting curve analysis.
Fluorescence data were collected at the end of each cycle and determination of the
cycle threshold line was carried out automatically by the instrument. The DNA
copy number of each species was calculated using a uidA/nuc-containing plasmid
of known concentration as a standard. The qPCR counts of each strain/pair,
averaged over three replicates, were used for genetic mapping.

Whole-genome sequencing was performed on the Illumina HiSeq2000
platform at Novogene (Novogene, Beijing, China) using E. coli str. K-12 substr.
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MG1655 and S. aureus subsp. aureus NCTC 8325 as the reference strain,
respectively. Average sequencing depth and coverage for E. coli and S. aureus were
summarized in Supplementary Table 4. Illumina reads were mapped directly to the
E. coli and S. aureus reference sequences using BWA mapper (Version 0.7.8).
In alignment results, PCR duplicates were removed by SAMtools software package
(Version 0.1.18). We also used SAMtools to detect SNPs. Every time a mapped
read shows a mismatch from the reference genome, SAMtools can be used to
figure out whether the mismatch is due to a real SNP. It incorporates different
types of information, such as the number of different reads that share a mismatch
from the reference, sequence quality data, and expected sequencing error rates,
which helps to determine how observed mismatches occur. SNPs with high-quality
score (Q value ≥20) and enough supporting bases ≥4) (with the variant) were kept
as final SNPs result. In total, 168,720 SNPs that cover the E. coli genome by
approximately one per 23 bp and 83,642 SNPs that cover the S. aureus genome
by one per 41 bp were obtained for these strains. These SNP densities should be
sufficient enough for the identification of genomic regions in a genome-wide
association study.

The study material was subject to structural analysis using Q-ROADTRIPS46,47.
It identified five and eight subpopulations among the E. coli and S. aureus strains
sampled, respectively. The subsequent association studies were based on the
phenotypes that have been adjusted for these subpopulation differences. As shown
by Q–Q plots (Supplementary Fig. 7), the confounding effects of population
structure have been well removed for functional mapping of each species growth in
monoculture and systems mapping of two species in co-culture.

Code availability. The computer code is available as an open R package at https://
github.com/LiboJiang/MicrobialInteraction or under request directly from the
corresponding author.

Data availability. The raw sequence data were deposited in the NCBI short reads
archive under accession number SRP074089 and SRP074912. The other data are
available with the computer code at https://github.com/LiboJiang/
MicrobialInteraction, or under request directly from the corresponding author.
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