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For the trajectory planning problem under the nonlinear and strongly coupled characteristics of unmanned helicopters,
membrane computing with distributed parallel processing capability is introduced for unmanned helicopter trajectory planning.
,e global and local spatial information is temporally characterized; the temporal characterization algorithm under mapping
information is designed; the hierarchical discriminant regression algorithm is designed based on incremental principal com-
ponent analysis to realize the process of building and identifying trees in trajectory planning; and the pulsed neural membrane
system (PNMS) with spatio-temporal coding function under membrane computing is constructed. Compared with the RRT
algorithm in two experimental environments, the original path length, the trimmed path length, the time used to plan the
trajectory, and the number of search nodes have different levels of improvement; the feasibility and effectiveness of the PNMS in
unmanned helicopter trajectory planning are verified. It expands the theoretical research of membrane computing in the field of
optimal control and provides theoretical support for the subsequent application practice.

1. Introduction

Autonomous controllability is the new trend of unmanned
helicopter development, and trajectory planning is an im-
portant research content to measure the performance of
helicopter autonomous controllability. Unmanned aerial
vehicles (UAVs) will play an important role in the con-
struction of smart mines, smart cities, and smart factories;
the key is to solve the problems of model construction,
algorithm, and scene selection. So how to effectively plan the

trajectory of the helicopter flight is an important guarantee
for the helicopter to complete the mission.

For the helicopter trajectory planning problem, Fu et al.
used neural networks to plan the helicopter global and local
paths to improve the data collection under unmanned he-
licopter constraints [1]. Based on the idea of guided rein-
forcement Q learning, Zhou et al. achieved fast convergence
of the learning algorithm by continuously optimizing the
path through the Q learning algorithm [2]. Mehrez and
Ahmed proposed a helicopter path planning algorithms
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based on target trajectory regression prediction for sea
surface floaters, which achieved good prediction results [3].
Lim et al. implemented unmanned helicopter path planning
using heuristic angular derivatives [4]. Yang et al. elaborated
various intelligent optimization algorithms for cluster path
planning in path planning problem [5]. Li et al. proposed an
artificial potential field fused with an ant colony algorithm
for finding the optimal algorithm to avoid the localized
trapping problem [6]. Yu Sheng designed a reinforcement
learning-based multi-UAV path planning algorithm for
different business scenarios, which improves the execution
efficiency compared to traditional algorithms [7]. Zhang
introduced the idea of lifting convex optimization to un-
manned helicopter trajectory planning and solved this
nonconvex problem by convex optimization and mixed-
integer programming, thus improving the solution efficiency
[8]. Zhao proposed twomethods to control the saturation set
and Lyapunov function to implement UAV path planning
and verified the validity and reliability [9]. Wang applied
expert knowledge-assisted reinforcement learning to UAV
path planning by constructing potential functions through
recommended trajectory order and trained by Q-learning,
and the strategy got good results [10]. Roth et al. proposed a
scene agent perception model and applied it to helicopter
formations for perception and prediction [11]. Sun et al.
proposed an edge computing framework model for the
optimization of UAV trajectories, but the model was
implemented based on fixed-wing aircraft [12]. Su et al.
developed a trajectory optimization model for controlled
variables and constraints, which overcame the algorithm’s
local trapping optimality but did not generalize in terms of
application scenarios [13]. Faŕı et al. used vector fields to
implement the adaptive path tracking dynamics problem in
the summer without modeling, but the strategy has some
room for optimization in tracking performance [14]. Park
and Kim proposed a new distributed dynamic trajectory
planning algorithm with the addition of constraints to
improve its robustness, but the efficiency of this algorithm is
93%, which also has a lot of room for improvement [15]. ,e
above methods undoubtedly include model construction,
neural network intelligent algorithms [16], and numerical
optimization to achieve good results, but the results achieved
also produce problems such as possible computational en-
hancement and data set expansion due to restricted sce-
narios and error reduction; this can be further promoted and
applied better in actual industrial production.

Membrane computing, as a new branch of natural
computing, was proposed by Păun G of the Romanian
Academy of Sciences [17, 18]. Because of its powerful
parallel processing capability, it has rapidly become a hot
spot for multi-disciplinary cross-research in computer, bi-
ology, control science, and artificial intelligence [19–23], and
it has been theoretically studied and practically applied in
multiple fields. In this paper, membrane computing is in-
troduced to unmanned helicopter trajectory planning by
constructing an impulsive neural membrane system, which
can convert spatial information into temporal information
by encoding spatial and temporal information, designing an
incremental hierarchical discriminant regression algorithm

using incremental principal component analysis, and further
constructing a sample statistical model to realize unmanned
helicopter trajectory planning by an impulsive neural
membrane system. ,e main contributions of this paper are
as follows:

(1) A temporal representation algorithm with spatio-
temporal encoding is designed with the premise of
global and local spatial information representation

(2) Hierarchical discriminant regression algorithm is
designed to build a framework for unmanned heli-
copter trajectory planning, based on which tree
building and recognition trees are implemented

(3) ,e PNMS is constructed, and the effectiveness of
the PNMS in trajectory planning is verified

2. Feature Information Extraction

For the objects of information collection, most of them are
multi-feature, high-noise, and nonlinear, so information
needs to be collected in the practical application process; the
process of information collection is to analyze the charac-
teristics of information. ,e spatial and temporal infor-
mation encoding of the PNMS can convert spatial
information into temporal information, and at the same
time, temporal information has the characteristics of spatial
information so that the encoding of time can obtain spatial
information [24].

2.1. Global Spatial Information Representation. ,e global
spatial information representation is rotation and transla-
tion invariant, and this feature enables autonomous navi-
gation of the helicopter when the target position in the
environment has not changed [25]. In the process of gen-
erating spatial information temporal representation by the
PNMS, neurons and spatial information features possess a
correspondence relationship, which can be attributed to the
correspondence of neurons and feature points, and feature
value inputs likewise correspond to neuron channels. ,e
ignition neurons of each iteration of the computational
process get recorded and form a time sequence over time.
,e elements in the sequence are the number of ignition
neurons recorded for each iteration of the system, and at the
same time, the sequence contains the geometric structure of
spatial information, and this sequence is the global spatial
information representation of spatial information.

During each iteration of the computation of the PNMS,
the neuron ignition is determined jointly with the value of
the feature and the issuance of the neighboring neuron
pulses, and the issuance of the neighboring neuron pulses is
associated with the structure of the spatial information;
therefore, global temporal representation of spatial infor-
mation can not only express its structure but also be used as
spatial information feature. Based on the structural char-
acteristics of neurons and their connections, the element of
the global spatial information time representation of the
system is the value (amount) of neuron ignition during each
system iteration calculation, and the size of this value is
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related to the number of neurons, independent of the
structure [26]. ,e flowchart of the global spatial infor-
mation temporal representation algorithm is shown in
Figure 1.

,e algorithm execution process is as follows:

(1) Define the input information matrix and initialize
the connection matrix, the state matrix, the con-
nection degree matrix, the threshold matrix, and the
output matrix.

(2) Execute the connection matrix, state matrix, and
output matrix according to the predefined calcula-
tion rules.

(3) Record the number of neuron ignitions. If the output
matrix is satisfied, then adjust the connection degree;
otherwise, continue to execute step (2).

(4) Increase the number of iterative calculations while
decreasing the threshold value.

(5) Raise the threshold and stop the ignition after
reaching the calculated value.

(6) Update the number of iterations.
(7) Determine whether to terminate the calculation;

otherwise, continue back to step (2).

Step (3) of the algorithm in Figure 1 is used to determine
whether the pulse propagation lasts in the iterative calcu-
lation process, to present the difference between the output
results before and after the neuron and to improve the
calculation efficiency. ,e time representation dimension
and time after the system are executed change in the same
direction.

If the spatial information is an image, the PNMS pro-
cesses the spatial information in three channels to obtain a
global temporal representation, as shown in Figure 2, where
Figures 2(a) and 2(b) are color images under the same object,
Figure 2(c) is the image after changing the object, and
Figure 2(d) is the result after temporal representation. From
Figure 2(d), it is shown that Figures 2(a) and 2(b) have
almost the same number of ignition pulses (error neglected)
under the same iterative calculation because only the same
objects have been rotated, while in Figure 2(c), the results
vary more because the objects in the images have changed,
unlike the global temporal representation of the former.

2.2. Local Spatial Information Representation. From Fig-
ure 2, it can be shown that the change of spatial information
cannot be expressed by the global temporal representation of
the PNMS, especially during the autonomous flight of the
unmanned helicopter the change of scene objects is normal,
so the local spatial information representation is needed to
solve this problem.

,e local spatial information characterization process of
the PNMS is to divide the original information arbitrarily
according to the information characteristics and size and to
carry out each independent information time character-
ization after the division according to the global time
characterization algorithm in Figure 1. ,e independent
information schedule collection after the characterization

cooperates as the local information schedule collection, that
is, to complete the local spatial information characterization
under the global information characterization. ,e local
spatial information representation algorithm is shown in
Figure 3.

,e local spatial information temporal representation is
divided into two ways: discrete and integral. ,e discrete
approach is to take the set of each spatial information block
after division so that the pulse of the PNMS is executed in
each block of the set separately, and the spatial information
time representation of each division block is obtained in-
dependently. In the holistic approach, the pulses of the
PNMS are executed in the whole spatial information after
the division, and the pulse neural count is generated for each
division block under the whole spatial information, and the
temporal information representation of each division block
is obtained based on the whole spatial information.

In this paper, we take the overall acquisition of the
divided information blocks as an example and divide the
information of Figure 2 into as shown in Figure 4, assuming
that the division of each block does not overlap.

For a clearer indication of the local spatial information
temporal representation, the division block 5th in
Figures 4(a) and 4(b), respectively, is taken and defined
based on the local spatial information temporal represen-
tation algorithm as follows [27]:

Spatial information
matrix input

Matrix information
initialization

Pulsed neuro membrane system
performs calculations

Numerical calculation
of neuron ignition

Iterative computation execution decision

No

Yes

End

Figure 1: Algorithm flow for temporal representation of global
spatial information.
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lump(f(i)) ∩ lump(f(j)) � ∅

􏽘

N

n�1
f(i) � f, i, j ∈ (1, 2, . . . , N),

⎧⎪⎪⎨

⎪⎪⎩
(1)

where f(i) is the local information representation, f is the
global information representation, and lump(f(i)) denotes
the division block of i. ,e results of the local spatial in-
formation temporal representation algorithm executed
under the pulsed neural membrane system are shown in
Figure 5.

Combinedwith Figure 2 for comparison, the global spatial
information temporal representation exhibits good rotation
and translation invariance properties, while the temporal
representation of local spatial information changes very much
as shown by Figure 5, which reflects the change of local
information very well; thus, the temporal representation of

global and local spatial information can be well applied in
helicopter target identification, tracking, or navigation
performance.

3. Unmanned Helicopter Trajectory Planning

3.1. Unmanned Helicopter Trajectory Planning Process.
,e helicopter trajectory planning process consists of two
parts: perception and cognition [28].,e spatial information
processing and feature extraction are realized by perception,
and the processing results are used as input to the cognitive
part, thus realizing the helicopter autonomous navigation
process. In the training phase, the helicopter processes the
acquired spatial information and performs feature extrac-
tion through Silan A2 LiDAR and Intel REALSENSE depth
camera (integrated inertial measurement unit), that is, it
acquires the temporal representation of spatial information
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Figure 2: Temporal representation of global spatial information: (a) spade placed lengthwise, (b) the revolving spade, (c) badminton racket
placed lengthwise, and (d) the results of pulse characterization over time.
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based on the pulsed neural membrane system, uses the
acquired features as input to the cognitive part in incre-
mental principal component analysis (IPCA), and adopts

incremental hierarchical discriminant regression tree
building; the test phase judges the achievement of the he-
licopter navigation task. As can be seen from Figure 2, the

Initialization of global
spatial information

Spatial information
segmentation

Neuron ignition value
acquisition for each module

Post-segmentation spatial
information execution pulse neural

membrane system

Algorithm for temporal
representation of global

spatial information

Whether to iterate through the execution again

Obtaining a temporal
representation of local spatial

information

No

Yes

Figure 3: Flow of algorithm for temporal representation of local spatial information.
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Figure 4: Spatial information division: (a) image information division and (b) image information partition after rotation.
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global and local characteristics of the temporal represen-
tation of spatial information possess good sensitivity to the
degree of spatial information variation; if the spatial in-
formation variation is small, the global spatial information
temporal representation of the PNMS can be used in the
helicopter perception part, and if the degree of spatial in-
formation variation is large, both global and local spatial
information temporal representations can be used. ,e
helicopter trajectory planning process is shown in Figure 6.

3.2. Incremental Principal Component Analysis. Principal
component analysis minimizes the projection error, as a
typical representative of the projection method. ,e pro-
jection method refers to the projection of high-dimensional
data to lower dimensions, and the direction of projection can
be determined by feature processing. Principal component
analysis needs to incorporate all the information into the
calculation; however, the method has some drawbacks for
too large data sets. If the idea of dividing spatial information
and selecting some information for calculation at a time is
called incremental principal component analysis, this
method is used not only for processing larger information
but also for online processing, which is higher than principal
component analysis in terms of performance.

,e incremental principal component analysis is per-
formed by spatial information principal components,
computed by stepwise iterations until convergence to the
desired feature vector, which can be obtained incrementally
from spatial information during the fast convergence pro-
cess. Assume that the set of sample vectors {z(i)} is obtained,
the dimensionality is randomized as desired, and the co-
variance matrix A � E zT(i)z(π)􏼈 􏼉 is defined, which must
satisfy λx � Ax, where λ is the eigenvalues. Replacing x with
the estimate x(i) and assuming λx � a, it is obtained that
[29, 30]

a(i) �
1
i

􏽘

i

j�1
z

T
(i)z(i)x(π), (2)

where a(i) is the estimate of step i. After obtaining the
estimation of a, the eigenvalues and eigenvectors can be
obtained separately using x � a/‖a‖, λ � ‖a‖.

In order to obtain the estimate x(i), due to the existence
of x � a/‖a‖, consider a(i − 1)/‖a(i − 1)‖ instead of x(i) and
obtain the incremental representation in the following form:

a(i) �
1
i

􏽘

i

j�1
z

T
(i)z(i)

a(i − 1)

‖a(i − 1)‖
. (3)

To facilitate incremental estimation of equation (3), it
can be further transformed into an iterative form as follows:

a(i) �
i − 1

i
a(i − 1) +

1
i
z

T
(i)z(i)

a(i − 1)

‖a(i − 1)‖
. (4)

Here, i − 1/i is the estimated weight in the previous step;
1/i is the new weight, and furthermore, it is known that
a(0) � z(1); i tends to infinity; a1(i)⟶ ± λ1v1; v1 is the
eigenvector of λ1; and λ1 is the eigenvalue.

To improve the convergence speed, the forgetting factor
ε is introduced, and equation (4) is converted to

a(i) �
i − 1 − ε

i
a(i − 1) +

ε + 1
i

z
T
(i)z(i)

a(i − 1)

‖a(i − 1)‖
. (5)

,e above process is the first order for the eigenvectors,
and the higher-order vectors can be solved by the heuristic
algorithm. Because of the helicopter flight characteristics
and real-time calculation, the heuristic algorithm tends to
cause too long solution time. According to the orthogonal
characteristics of the vectors, the residuals can be added to
the complementary set to calculate the relatively higher-
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Figure 5: Temporal representation of local spatial information: (a) partial image information selection and (b) temporal characterization of
pulse under local information.
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order eigenvectors and shorten the convergence time. ,e
execution process is as follows:

(1) Initialization of the sample vector z(i)

(2) Initialize the i-th feature vector: an(i) � zn(i), i � n

(3) Execute equation (5) when i≠ n

When the principal component calculation is generated,
the m maximum eigenvalue projection factors corre-
sponding to the samples are calculated by the following
equation:

ηj(i) �
a(i − 1)

‖a(i − 1)‖
z

T
(i), j ∈ [1, m]. (6)

3.3. Incremental Hierarchical Discriminant Regression
Algorithm. From the helicopter navigation process in Fig-
ure 6, the helicopter cognitive stage uses an online incre-
mental hierarchical discriminative regression algorithm and
the UAV navigation process; the training process builds a
data set (cognitive tree) based on the feature information of
the temporal representation of spatial information extracted
by the impulse neural membrane system; and the cognitive
model is used for the testing process after training, thus
realizing the helicopter navigation under the incremental
hierarchical discriminative algorithm.

,e cognitive model established by the hierarchical re-
gression algorithm is characterized in the form of a tree, that

is, root nodes, intermediate nodes, and leaves, as shown in
Figure 7.

Hierarchical regression adopts a double clustering
approach, in which the input and output clusters are
computed separately at the nodes of the regression tree in
accordance with the one-to-one correspondence, and the
feature set (sample) data each corresponds to a vector label,
and the input feature set data dimension is relatively small
compared with the output dimension; meanwhile, the
clusters of the input sample space generate the discriminant
of the input space; and the classification sample space of
each node of the regression tree is generated by the cor-
responding discriminant. Considering feature set of dy-
namics, it is difficult to differentiate with very few complete;
after all, the data obtained are the current moment; sub-
sequent data are a process of gradually reached and
therefore must set a threshold value; if the current moment
under the node number of the feature set is greater than the
threshold, the characteristics of the node set, with the
passage of time, the regression tree samples increase,
continue the similar division. If the number of feature sets
in the subset reaches the threshold, the subset is also
divided.

Dimensionality plays an important role in the com-
parison process of both feature sets with subsets and
subnodes including leaf nodes with sample sets. Considering
the efficiency of the decision process, negative log-likelihood
is established for each node so that the probability distri-
bution can be introduced into the discriminative space of
nodes, thus weakening the condition of other discriminative
methods on the number of sample space and applying to the
sample space under the conforming threshold, thus avoiding
large samples and sample imbalance situations. In this paper,
a negative log-likelihood model suitable for the threshold
condition is used to satisfy the hierarchical regression al-
gorithm with fast operational conditions. Assuming that the
feature set sample space is (Xi, Yi)􏼈 􏼉 and the threshold value
of node output O is zO, the process of hierarchical regression
algorithm to construct and identify the tree is shown in
Figure 8.

Incremental hierarchical discriminant regression im-
plements online construction of cognitive trees, which is in
line with the online adaptive flight process of helicopters, by
incrementally constructing cognitive trees from a large
number of samples. ,e higher the level of the constructed
tree, the smaller the variance with the input sample space
cluster equation, and if the number of samples in each space
is too small to satisfy the generated spatial cluster estimate,
the corresponding leaf node in that space is formed. As-
suming that the sample input at a moment in time axis is
(Xi, Yi) and the threshold is zO, the steps of incremental
hierarchical discriminant regression to build a cognitive tree
are as follows:

(1) Compute the Euclidean distance between all leaves
and leaf nodes of the one with the smallest value.

(2) Incorporate the defined (Xi, Yi) into the leaf node
space computed in (1) and update the leaf node space
mean value.

Helicopter space information
acquisition

Pulsed neural membrane system for
feature extraction

Pulsed neural membrane system for
feature extraction

Building incremental hierarchical
discriminant regression tree

Training search to build incremental hierarchical
discriminant regression tree

Helicopter behavior execution

Training

Testing

Figure 6: Helicopter trajectory planning process.
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(3) Continue to perform the Euclidean distance between
the current space and all leaf spaces, and if the result
appears the same as (1), that is, the distance does not
change, stop the operation. If the nearest node space
to Xi changes, (Xi, Yi) is included in the changed
node space, and the changed node-related values are
updated, while the previous node space mean value is
returned (restored).

(4) When the number of samples in the leaf space is
higher than a predefined threshold, build a tree, use
the node as the root node, and execute in turn until
the update is completed.

3.4. Sample StatisticalModel Construction. According to the
process of constructing the cognitive tree in Figure 8, we give
the size of the sample space assumed at a certain small scale;
given that for each node, space can have a considerable
number of samples involved in the calculation, it is necessary
to construct a suitable statistical model according to the
actual size of the samples. Along with the existence of
properties of the sample space from small to large scale, the
Euclidean distance when the sample space is small, the
Marxian distance when the sample space is increasing, and
the Gaussian distance when it is larger are defined as follows
[31, 32]:

Feature set space

Root node

Leaf node

Intermediate layer node

Figure 7: Hierarchical regression tree structure.

Cluster Yi, generate m clusters, calculate the mean
values of Xi and Yi, and store them in the

corresponding nodes.

�e input Xi is incorporated into the nearest cluster under the
negative log-likelihood to form n sub-nodes, and the

execution continues for each formed node.

Calculate the Euclidean distance between samples in O,
determine the magnitude between it and the threshold,

less than the threshold determined as a leaf

Compare results

Hierarchical regression cognitive tree
construction completed

Less than threshold

(a)

No

Yes

Compute the Euclidean distance from the root node to the test
sample layer by layer, and the smallest one is marked as

the active node

Determine whether the active node is a leaf, if not, mark it as an
inactive node, continue to execute the Euclidean distance

between the lower node and the sample, and mark the
smallest child as the active node

Mark the number of final nodes that match according to the
determination principle

Compare results

Calculate the final node and sample Euclidean
distance to determine the leaf nodes

End the identification process

(b)

Figure 8: Hierarchical regression algorithm to build the tree and identify the tree: (a) tree building process and (b) identifying tree process.
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Le X − Cm( 􏼁 � ln (2π)
(p− 1/2)

+ ln Εm
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑
1/2

+
X − Cm( 􏼁

2
Εm( 􏼁

− 1
X − Cm( 􏼁

T
, (7)

LM X − Cm( 􏼁 � ln (2π)
(p− 1/2)

+ ln Ηm

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑

1/2
+

X − Cm( 􏼁

2
Ηm( 􏼁

− 1
X − Cm( 􏼁

T
, (8)

LG X − Cm( 􏼁 � ln (2π)
(p− 1/2)

+ ln Νm

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑

1/2
+

X − Cm( 􏼁

2
Νm( 􏼁

− 1
X − Cm( 􏼁

T
, (9)

where Cm,Ηm, andΝm correspond to the variance matrices.
Due to the possible variations in the size of the sample

space, parametric scale factors are introduced to satisfy the
process of increasing sample size, and the scale factors are
defined in turn as follows:

σe � min i, δi􏼈 􏼉, (10)

σM � min max 0,
2(i − p)

p
􏼨 􏼩, δi􏼨 􏼩, (11)

σG �
2(i − p)

p
2 , (12)

where i is the number of samples and p is the number of
spaces.

Based on equations (7)–(12) defined above, the matrix
weights under the number of conforming samples are in-
troduced, and the sum of the three matrix weights is defined
as follows:

Wm � WeE + WMH + WGN. (13)

Define the normalized coefficients σ as the sum of σe, σM,
and σG as 1.,en the weights in equation (13) areWe � σe/σ,
WM � σM/σ, and WG � σG/σ, respectively. According to
equation 13, the negative logarithmic likelihood distance of
the m-th input node is as follows:

L X − Cm( 􏼁 � ln (2π)
p− 1/2

+ ln Wm

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑

1/2
+

X − Cm( 􏼁

2
Wm( 􏼁

− 1
X − Cm( 􏼁

T
. (14)

4. Construction of Spatio-Temporally Encoded
Pulsed Neural Membrane System

,e PNMS consists of neurons (single cells), a large number
of which form a directed graph. Neurons send pulses to
neighboring neurons through synapses, and the pulses
undergo transformation (evolution) through excitation rules
[33, 34].,e PNMSwith a definition of degree n is as follows:

Π � O, σ1, σ2, . . . , σn, syn, fw, fL, in, out( 􏼁. (15)

where

(1) O � p􏼈 􏼉 denotes a single letter set and p represents a
pulse

(2) σ1, σ2, · · ·, σn denotes the n neurons in the system,
each neuron σi � (mi, Ri), 1≤ i≤ n, where:

(1) mi is the number of pulses contained in neuron
σi in the initial state of the system calculation.

(2) Ri denotes the set of all rules in neuron σi. ,e
rule representation is as follows:

① E/ax→ ay; q. E denotes regular expressions
of a, 1≤y≤ x, q≥ 0, and this type is an ex-
citation rule

② pr→ λ, r≥ 1, Ri belongs to type ① of
E/ax→ ay; q; there exists pr ∈ L(E); L(E) is
the language represented by the regular ex-
pression E; and this type is the forgetting rule

(3) syn⊆ 1, 2, · · ·, n{ } × 1, 2, · · ·, n{ } denotes the connec-
tions between neurons, (i, i) ∉ syn.

(4) fw represents the weight function between neurons
at time t. At the current moment, if the neuron is
“active,” the neuron will send a certain number of
pulses to the neighboring neurons, and the number
of pulses received by the receiving neuron is de-
termined by the weight function of the two neurons;
conversely, if the neuron is “inactive,” the neigh-
boring neuron will not receive pulses, and the pulses
will be output to the system according to the rules.

(5) fL denotes the test function of the PNMS, which
together with fw maps the weight function at the
next moment, according to fw(t) at time t, and
characterization of fw(t + 1) by fL(t).

(6) in, out ∈ 1, 2, · · ·, n{ } denotes input and output.

Since the PNMS can only input pulse strings, the in-
formation needs to be characterized in the form of strings.
According to the characteristic information representation
method in this paper, the segmentation process of infor-
mation is converted into a sequence string, and the division
of information 4∗ 4 is changed into the form of matrix 4∗ 4
as shown in Figure 9 as an example in Figure 4(a). ,e
converted binary string consisting of 0 and 1 can be used as
the input of the system.

From equation (15), the input process of the system is
carried out by a neuron that has a specialized input synapse,
that is, it acquires information from the environment. ,e
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input neuron acquires a 16 bit binary string, and if it reads a
“1” in the current string, it acquires a pulse, and vice versa; it
does not acquire a pulse; and 16 units (moments) are read. If
the neuron is “active” after receiving a pulse, it sends a pulse
to the neighboring neuron if there is a “0” in the current
string, it means that there is no pulse input at the current
moment and the neuron cannot be “active” at the next
moment.

In the training process, the number of neurons in the 4∗ 4
number is determined by the specific “value” of the input
string, which ultimately determines the specific number of
pulses a neuron contains. In this process, the neuron does not
execute the forgetting statute; the neuron only makes the
decision to send or not to send pulses to neighboring neurons
according to the “active” and “inactive” states. Based on the
change of the weight function in the above-defined system, the
synaptic weights between neurons change with the passage of
time (moments). All neurons follow this rule to calculate the
final value of intersynaptic weights over time due to the
presence or absence of pulse transmission.

,e test process defines the pulse generation process of
the output neurons in the training phase to form the rep-
resentation vector parameters in accordance with the heli-
copter control, and this process finally results in the output
vector of the system. ,e computational flow of the test
process is shown in Figure 10.

5. Experimental Verification

,e experiments in this paper are implemented based on
MeCoSim and MATLAB environment, combined with the
unmanned helicopter comprehensive experimental platform
built by the authors of this paper [35]. To verify the feasibility
and effectiveness of the PNMS, two different experimental
scenarios are built, each with a width of 5.8m and 3m, re-
spectively, and the starting and ending points are set in the
experimental scenarios, with red dots representing the starting
points and green squares representing the ending points.

In order to achieve comparability of the experimental
results, the classical RRT algorithm was selected for com-
parison. ,e reason why the RRT algorithm was selected is
that it is more mature in robot path planning or UAV
trajectory planning applications [36]. ,e results obtained

from the experiments in the two scenarios are shown in
Figures 11 and 12.

Experiments are performed using the classical RRT algo-
rithm in Figures 11(a) and 12(a), and the temporally encoded
impulsive neural membrane system algorithm proposed in this
paper is used in Figures 11(b) and 12(b).,e gray line segment
in the figure shows the tree branch searched by the algorithm;
the black line segment shows the path searched by the algo-
rithm; and the blue line segment shows the pruned path. It can
be seen from the figure that in two different experimental
scenarios, the classical RRTalgorithm needs to perform a large
number of searches and generate a large number of nodes, and
the smoothing of the searched trajectory is poor and the length
of the trajectory is large, indicating that the PNMS algorithm
proposed in this paper can search well in narrow paths, the tree
branches elongate in the direction of the target with a certain
probability.,e number of nodes used to search for the path is
significantly reduced; the trajectory planning is relatively
smooth; and the trajectory length of the planned path is rel-
atively small. ,e detailed data obtained from the experiments
are shown in Table 1.

From Table 1, it can be seen that the method proposed in
this paper in environments 1 and 2; planning the original path
length is 6.98% and 11.11% shorter than the RRT algorithm,
respectively; the trimmed path length is 3.94% and 2.06%
shorter, respectively; the time used to plan the trajectory is
reduced by 66.67% and 86.30%, respectively; and the number
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Figure 9: Pulse string conversion diagram.
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Comparison of output results

Figure 10: Test computing flow.
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of search nodes used to plan the path is reduced by 66.23%
and 84.28%, respectively. ,e above shows that the improved
algorithm has a great improvement in planning efficiency
relative to the original algorithm, which is suitable for heli-
copter trajectory planning in a coal mine tunnel.

6. Conclusions

In this paper, membrane computation is introduced to an
unmanned helicopter trajectory planning by using

unmanned helicopter as a carrier and obtained the following
conclusions:

(1) ,e spatio-temporal encoding with the global and
local spatial information representation is feasible to
introduce unmanned helicopter trajectory planning

(2) Unmanned helicopter trajectory planning process is
reasonable, and it is proved theoretically

(3) ,e experimental results obtained ideal results in
terms of planning path and pruning path, planning
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Figure 11: Experimental results obtained for the first scenario: (a) experimental results of RRT algorithm and (b) experimental results of
PNMS.
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Figure 12: Experimental results obtained for the second scenario: (a) experimental results of RRT algorithm and (b) experimental results
of PNMS.

Table 1: Comparison of track planning data of two algorithms.

Experimental scenario Track planning algorithm Original path length Trim path length Planning time Number of search nodes

Scenario 1 Classic RRT 51.60 43.44 0.45 382
PNMS 48.00 41.73 0.15 129

Scenario 2 Classic RRT 43.20 34.44 0.73 509
PNMS 38.40 33.73 0.10 80
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time, and search nodes number compared with the
classical RRT algorithm, which proved that the
PNMS has good feasibility and effectiveness in un-
manned helicopter trajectory planning

,e follow-up work, based on the results of this paper,
we continue to do research on the optimization of PNMS
construction and strive to put the theoretical research results
into practice.
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