
Mechanisms of Insulin Resistance After Insulin-Induced
Hypoglycemia in Humans: The Role of Lipolysis
Paola Lucidi, Paolo Rossetti, Francesca Porcellati, Simone Pampanelli, Paola Candeloro,

Anna Marinelli Andreoli, Gabriele Perriello, Geremia B. Bolli, and Carmine G. Fanelli

OBJECTIVE—Changes in glucose metabolism occurring during
counterregulation are, in part, mediated by increased plasma free
fatty acids (FFAs), as a result of hypoglycemia-activated lipoly-
sis. However, it is not known whether FFA plays a role in the
development of posthypoglycemic insulin resistance as well.

RESEARCH DESIGN AND METHODS—We conducted a se-
ries of studies in eight healthy volunteers using acipimox, an
inhibitor of lipolysis. Insulin action was measured during a 2-h
hyperinsulinemic-euglycemic clamp (plasma glucose [PG] 5.1
mmo/l) from 5:00 P.M. to 7:00 P.M. or after a 3-h morning
hyperinsulinemic-glucose clamp (from 10 A.M. to 1:00 P.M.), either
euglycemic (study 1) or hypoglycemic (PG 3.2 mmol/l, studies
2–4), during which FFA levels were allowed to increase (study
2), were suppressed by acipimox (study 3), or were replaced by
infusing lipids (study 4). [6,6-2H2]-Glucose was infused to mea-
sure glucose fluxes.

RESULTS—Plasma adrenaline, norepinephrine, growth hor-
mone, and cortisol levels were unchanged (P � 0.2). Glucose
infusion rates (GIRs) during the euglycemic clamp were reduced
by morning hypoglycemia in study 2 versus study 1 (16.8 � 2.3 vs.
34.1 � 2.2 �mol/kg/min, respectively, P � 0.001). The effect was
largely removed by blockade of lipolysis during hypoglycemia in
study 3 (28.9 � 2.6 �mol/kg/min, P � 0.2 vs. study 1) and largely
reproduced by replacement of FFA in study 4 (22.3 � 2.8
�mol/kg/min, P � 0.03 vs. study 1). Compared with study 2,
blockade of lipolysis in study 3 decreased endogenous glucose
production (2 � 0.3 vs. 0.85 � 0.1 �mol/kg/min, P � 0.05) and
increased glucose utilization (16.9 � 1.85 vs. 28.5 � 2.7 �mol/kg/
min, P � 0.05). In study 4, GIR fell by �23% (22.3 � 2.8
�mol/kg/min, vs. study 3, P � 0.058), indicating a role of
acipimox per se on insulin action.

CONCLUSION—Lipolysis induced by hypoglycemia counter-
regulation largely mediates posthypoglycemic insulin resistance
in healthy subjects, with an estimated overall contribution of
�39%. Diabetes 59:1349–1357, 2010

P
hysiological responses to insulin-induced hypo-
glycemia in humans are well established (1,2).
Timely increments in secretion of counterregula-
tory hormones and specific symptom appearance

prevent further fall in plasma glucose concentration (3).
Counterregulatory hormones are all similarly critical in

defense against hypoglycemia (3). These “anti-insulin”
responses last several hours after a hypoglycemic episode
ends (4). This condition of posthypoglycemic insulin resis-
tance translating into postmeal hyperglycemia was de-
scribed first by Somogyi (5) after his observation that
overtreatment with evening regular insulin can result in
hyperglycemia the following morning (6). In the clinical
setting, this process can contribute to the instability of the
metabolic control in patients with diabetes (7). With
intermediate- and long-acting insulin as well as continuous
subcutaneous insulin infusion currently available, fasting
hyperglycemia after nocturnal hypoglycemia is either in-
frequent (7) or modest (8). Posthypoglycemic insulin
resistance nevertheless results in significant postmeal
hyperglycemia (9).

Mintz et al. (10) and Oakley et al. (11) described reduced
rebound hyperglycemia after hypoglycemia in hypophy-
sectomized patients, proposing a role for growth hormone
and cortisol in the pathogenesis of posthypoglycemic
insulin resistance, whereas Popp et al. (12) documented
impaired glucose recovery from acute hypoglycemia in-
duced by an intravenous insulin bolus after �-adrenergic
blockade, suggesting an involvement of catecholamines, at
least in the acute phase. In the mid-1980s, Bolli et al. (13)
provided evidence that posthypoglycemic hyperglycemia
in patients with type 1 diabetes is the result of counter-
regulatory hormonal response to hypoglycemia in concert
with prevalent plasma insulin concentration, and that all
of the hormones but glucagon may play a role. Long-
lasting posthypoglycemic insulin resistance (up to 7–8 h)
is induced in its early phase primarily by epinephrine
response and in its late phase by growth hormone and
cortisol (14–19). The mechanisms by which the counter-
regulatory hormones adrenaline, growth hormone, and
cortisol induce posthypoglycemic insulin resistance are
attributed to increased endogenous glucose production
(liver and kidney) and suppressed glucose utilization
(peripheral tissues, mainly muscles). However, it is possi-
ble that other mechanisms, i.e., indirect mechanisms, may
also contribute. Indeed, earlier observations (20,21) indi-
cate that activation of lipolysis, i.e., an increase in plasma
free fatty acids (FFAs) and glycerol, plays a critical role in
mediating the effects of catecholamines and other lipoly-
tic, counterregulatory hormones in the defense against
acute, insulin-induced hypoglycemia. It is conceivable that
the same mechanisms continue to operate immediately
after hypoglycemia and contribute to insulin resistance in
subsequent hours.

The present series of studies was undertaken 1) to
establish whether increased availability of FFA substrate
after lipolysis and/or lipid oxidation in response to acute,
insulin-induced hypoglycemia plays a role in the pathogen-
esis of posthypoglycemic insulin resistance, and if so, 2) to
quantitate its contribution, and 3) to determine whether its
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effects are mediated by the liver or peripheral tissues, or
both.

RESEARCH DESIGN AND METHODS

Subjects. The study was carried out according to the Declaration of Helsinki
after obtaining written informed consent from all subjects. Eight healthy
volunteers (three women and five men) with no family history of diabetes or
other endocrine diseases and who were not taking any medications partici-
pated in the study, which had been approved by the local ethics committee.
Their mean (� SE) age was 28 � 1.8 years and their mean BMI (kg/m2) was
22.8 � 0.7. All subjects were studied on four different occasions, in random
order, with an interval between studies of at least 2 weeks.
Protocol. On all occasions, subjects presented to the Clinical Research
Center of the Department of Internal Medicine, Endocrinology and Metabo-
lism, University of Perugia at 6:00 A.M. after an overnight fast of 10 h. They
were placed on bed rest and maintained a supine position until the end of the
experiments at 7:00 P.M. To obtain arterialized-venous blood samples, a dorsal
vein of a hand was cannulated retrogradely with a 18-gauge catheter needle,
and the hand was maintained at 65°C in a thermoregulated Plexiglas box (22).
An antecubital vein of the contralateral arm was cannulated with an 18-gauge
catheter needle for infusions. Insulin, stable isotope–labeled tracers, and
variable glucose (20% solution) were infused in all studies, whereas a heparin
and lipid solution was infused only in study 4. Potassium chloride at the rate
of 5 mEq/h was also infused along with saline in all clamp studies to prevent
hypokalemia. All infusions were performed with separate syringe pumps
(Harvard Apparatus, Inc., The Ealing Co., South Natick, MA). Both forearm
venous lines were kept patent by saline solution infused at a rate of 30 ml/h.
At 7:00 A.M., a primed 16-�mol/kg sterile, pyrogen-free constant infusion (0.22
�mol/kg/min) of [6,6-2H2]-glucose (Cambridge Isotopes Laboratories, Cam-
bridge, MA) was started and maintained throughout to determine glucose
kinetics as previously described (23,24). Three hours were allowed for
isotopic equilibration, after which baseline blood samples were taken. Eugly-
cemic and hypoglycemic clamps were achieved by a variable rate of infusion
of 20% glucose enriched to 2.5% with [6,6-2H2]-glucose, to avoid non–steady-
state errors in measurement of glucose turnover (25) and to maintain a blood
glucose concentration at euglycemia (5.5 mmol/l) and hypoglycemia (3.2
mmol/l), respectively.

Lipid and carbohydrate oxidation expenditure were measured in all
subjects by indirect calorimetry (26) for a 30-min period at baseline (�30 to 0
min) and during the last 30 min of each hour throughout. At 45 min before
beginning experiments, a transparent plastic ventilated hood was placed over
the subject’s head and made airtight around the neck. Air flow and O2 and CO2

concentrations in the expired and inspired air were measured by a comput-
erized continuous open-circuit system (Deltatrac; Datex Instruments, Hel-
sinki, Finland) (27) that has a precision of 2.5% for oxygen consumption and
1.0% for carbon dioxide production. Protein oxidation was estimated from
urinary excretion of urea.

Subjects underwent either a 3-h hyperinsulinemic-euglycemic (study 1), or
hypoglycemic clamp (studies 2–4) in the morning between 10:00 A.M. and 1:00
P.M., (time segment 0–180 min [t1]). In studies 3–4, acipimox, an inhibitor of
lipolysis, was given to suppress lipolysis. In study 4, to quantify the effects of
acipimox per se on glucose metabolism, a lipid emulsion and heparin were
infused to reproduce plasma FFA and glycerol concentrations similar to those
of study 2 with spontaneous hypoglycemic activation of lipolysis. In t1, regular
insulin (Eli Lilly Italia SpA), diluted to 1 unit/ml in 100 ml of saline solution
containing 2 ml of the subject’s blood, was infused at the rate of 1 mU/kg/min.
Glucose was infused at variable rate to maintain euglycemia in study 1,
whereas hypoglycemia (3.2 � 0.1 mmol/l) was allowed to occur in studies 2–4.
Acipimox 250 mg (5-methyl-pyrazene-carboxylic acid 4-oxide, Olbetam; Pfizer
Italia srl, Latina, Italy) was given orally at 0 and 180 min to inhibit lipolysis in
studies 3–4. To establish whether acipimox had effects other than antilipoly-
sis, a triglyceride emulsion of 10% Intralipid (Fresenius Kabi, Verona, Italy;
10% soybean oil, 1.2% egg yolk phospholipids, and 2.25% glycerol) and heparin
(Normoparin, heparin sodium; Farmaceutici Caber SpA, Ferrara, Italy) was
infused at a variable rate (up to 1 ml/min and 0.2 units/kg/min for Intralipid
and heparin, respectively) in study 4 to reproduce the increase in FFAs and
glycerol observed in study 2. At 420 min, lipid/heparin infusion was halved
(lipids 0.5 ml/kg/min and heparin 0.1 unit/kg/min), and at 480 min the heparin
infusion was further reduced to 0.05 units/kg/min. Intralipid and heparin
infusion rates were chosen based on pilot experiments as well as experience
from previous studies in our laboratory (20).

At 1:00 P.M. (180 min) insulin infusion was stopped and euglycemia was
recovered with variable glucose infusion in the time segment 180–420 min (t2)
in all studies. At 4:00 P.M. (360 min), another capsule of acipimox 250 mg was
given to maintain suppression of lipolysis in studies 3–4. Between 5:00 and
7:00 P.M. (time segment 420–540 min [t3]) subjects underwent a 2-h hyperin-

sulinemic-euglycemic clamp to measure insulin sensitivity. Insulin infusion
was started again at 420 min in t3 at the constant rate of 1 mU/kg/min together
with glucose infused at a variable rate to maintain euglycemia throughout.
After collection of the final samples at 540 min, the subjects were fed. Finally,
when plasma glucose was stable, intravenous lines were removed and the
subjects discharged.
Analyses. Arterialized blood samples were taken before beginning the
isotope infusion to determine background glucose enrichments. To determine
glucose concentrations and kinetics, arterialized blood samples were taken
every 10 min during the last 30 min of the basal period and every 20 min during
the insulin clamps. All blood samples were drawn into tubes containing EDTA
and centrifuged. Plasma was stored at �80°C. Glucose enrichment was
determined on its penta-acetate (penta-O-acetyl-�-D-glucopyranose) derivative
by gas chromatography–mass spectrometry (gas chromatography HP 5890 II,
mass spectrometry HP 5972A; Hewlett-Packard, Palo Alto, CA) in electron
impact ionization mode monitoring the ions 200 and 202 for the unlabeled and
D-[6,6-2H2]glucose, respectively (24). To maintain euglycemia and hypoglyce-
mia, arterialized blood glucose was measured every 3–7 min (Beckman
Glucose Analyzer II; Beckman Instruments, Fullerton, CA). Blood samples
were collected at 30-min intervals and assayed for alanine (28), insulin (20),
glucagon (20), cortisol (20), growth hormone (20), adrenaline and norepineph-
rine (20), FFA (Wako NEFA C test kit; Wako Chemicas, Neuss, Germany),
3-�-OH-butyrate (28), and glycerol (28). For FFA determination, blood (2 ml)
was collected in tubes containing 50 �l of the lipoproteinlipase inhibitor
diethyl-p-nitrophenyl-phosphate (Paraoxon; Sigma Chemical, St. Louis, MO)
diluted to 0.04% in diethyl ether (29). Urine was collected from the onset to the
end of each study period to determine nitrogen excretion using the Kjeldahl
method (30).
Calculations. Oxidation rates for carbohydrate and fat were calculated from
indirect calorimetric measurements by averaging the data over the 30 min of
measurements during each hour (31). Nonoxidative glucose utilization was
calculated by subtracting the rate of glucose oxidation from the total rate of
glucose uptake (31). Protein oxidation rate was measured from urinary
nitrogen excretion before and during insulin infusion adjusted for changes in
serum urea during insulin infusion (32).

Tracer-to-tracee ratio for glucose was calculated as the ratio between the
master peak (M) and the enriched peak (M	2) after subtracting the back-
ground enrichment. The calculations were based on a steady-state assump-
tion. For glucose, the total rate of appearance (Ra) and disappearance (Rd)
was calculated as follows (�mol/kg/min): Ra � (Ftotal/Eglucose) � GIR and Rd

� (Ftotal/Eglucose). Ftotal is the total infusion rate of glucose tracer (�mol/kg/
min). Eglucose is the enrichment of glucose in plasma (tracer-to-tracee ratio).
Glucose infusion rate (GIR) is the exogenous glucose administered during the
clamp.
Statistics. Data in text are given as means � SE. Statistical analysis was
performed by using mixed-model repeated-measures ANOVA, with Huynh-
Feldt adjustment for nonsphericity. Post hoc comparisons (Newman-Keuls
test) were carried out to pinpoint specific differences on significant interaction
terms. P � 0.05 was considered to indicate statistically significant difference.
A sample size of eight was chosen based on the calculation that it achieves
88% power to detect a difference of 6.6 �mol/kg/min between study 3 (lipolysis
blocked by acipimox) and study 4 (lipolysis blocked by acipimox and plasma
FFAs replaced) with an SD of 6.0 �mol/kg/min and a significance level (alpha)
of 0.05 using a two-sided one-sample t test. We conducted the statistical
analyses using NCSS/PASS 2007 software (Kaysville, UT).

RESULTS

Plasma glucose and insulin concentrations and rates
of glucose infusion. In t1, plasma glucose was main-
tained at baseline euglycemia in study 1 (hyperinsuline-
mic-euglycemic clamp; Fig. 1). In studies 2–4, plasma
glucose was allowed to decrease to a nadir of 3.2 � 0.1
mmol/l between 30 and 180 min (P � 0.2 between studies
2 and 4). Thereafter, plasma glucose increased to euglyce-
mic levels of study 1 by 300 min and remained euglycemic
until the end of the study (540 min).
Plasma insulin was not different in the four studies.
Hypoglycemia in study 2 resulted in lower glucose infusion
rates required to maintain euglycemia between 300 and
420 min of t2 compared with euglycemic study 1 (3.1 � 1.3
vs. 6.1 � 1.5 �mol/kg/min, P � 0.037). However, when
lipolysis was blocked by acipimox in study 3, the rate of
glucose infusion increased to values similar to those of
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study 1 (5.9 � 6.1 vs. 12 � 2.2 �mol/kg/min, P � 0.2).
Finally, when FFAs and glycerol were replaced in study 4,
the rate of glucose infusion was again reduced to values
similar to those of study 2 (4.1 � 1.9 vs. 3.1 � 1.3
�mol/kg/min, P � 0.124). In the hyperinsulinemic-euglyce-
mic clamp of t3 (420–540 min), the rate of glucose infusion
required to maintain euglycemia was reduced by morning
hypoglycemia in study 2 (510–540 min, 16.8 � 2.3 vs.
34.1 � 2.2 �mol/kg/min, study 2 vs. study 1, respectively,
P � 0.001), but the effect was largely removed by blockade
of lipolysis during hypoglycemia in study 3 (28.9 � 2.6
�mol/kg/min, P � 0.2 vs. study 1), and largely reproduced

by replacement of FFAs and glycerol in study 4 (22.3 � 2.8
�mol/kg/min, P � 0.03 vs. study 1) (Fig. 1).
Rates of endogenous glucose production, glucose
utilization, and glucose and lipid oxidation. Hypogly-
cemia in study 2 compared with study 1 euglycemia
resulted in increase in endogenous glucose production,
suppression of utilization and oxidation of glucose, and
stimulation of lipid oxidation in t2 (Fig. 2). In particular,
endogenous glucose production and lipid oxidation were
significantly greater (9.0 � 0.9 vs. 5.9 � 0.3 �mol/kg/min,
P � 0.01, 5.5 � 0.5 vs. 4.0 � 0.4 �mol/kg/min, P � 0.07,
study 2 vs. 1, respectively). Blockade of lipolysis (study 3)
largely reversed these effects, which were reproduced by
replacement of FFAs and glycerol (study 4). In addition, in
t3, the morning hypoglycemia of study 2 compared with
the euglycemic study 1, respectively resulted in lower
suppression of endogenous glucose production (2 � 0.3
vs. 0.1 � 0.1 �mol/kg/min), lower oxidation (4.2 	 0.45 vs.
6.95 	 0.7 �mol/kg/min, P � 0.01) and utilization (16.9 �
1.85 vs. 31.9 � 3.15 �mol/kg/min, P � 0.001) of glucose,
and less suppression of lipid oxidation (5 � 0.45 vs. 3.1 �
0.3 �mol/kg/min, P � 0.01). However, blockade of lipolysis
(study 3) largely reversed all these changes (endogenous
glucose production 0.85 � 0.1 �mol/kg/min, glucose oxi-
dation 8.8 � 1.05 �mol/kg/min, glucose utilization 28.5 �
2.7 �mol/kg/min, lipid oxidation 2.9 � 0.25 �mol/kg/min).
Finally, replacement of FFAs and glycerol largely repro-
duced the effect observed in study 2 (Fig. 2).

In t3, nonoxidative rates of glucose utilization (total
glucose utilization rates minus glucose oxidation rates
from indirect calorimetry) were 78, 75, 69, and 86% in
studies 1, 2, 3, and 4, respectively, of the overall glucose
utilization. The replacement of FFA levels in study 4 with
concomitant administration of acipimox significantly in-
creased nonoxidative rates of glucose utilization com-
pared with study 3 (P � 0.02).
Plasma counterregulatory hormones concentrations.
Baseline plasma concentrations of all counterregulatory
hormones were not different in studies 1–4 (Fig. 3).
Plasma glucagon decreased slightly in the euglycemic time
segment t1 of study 1. In contrast, in the hypoglycemia
studies 2–4, plasma glucagon increased at 180 min and
then returned to baseline values. Plasma adrenaline did
not change in study 1, whereas it increased similarly in
studies 2–4 by 180 min and, subsequently, returned to
baseline values by 240 min. Plasma norepinephrine con-
centrations increased slightly between 30 and 180 min and
were not different in all four studies. Plasma growth
hormone did not change (baseline 2.0 � 0.3 �g/dl) in the
euglycemic study 1. In studies 2–4, plasma growth hor-
mone peaked at 180 min (12 � 0.3, 17 � 2, 9.4 � 1.8 �g/dl,
respectively, P � 0.01 vs. study 1). There was a trend of a
greater response of plasma growth hormone in study 3
compared with study 2 (P � 0.07) and study 4 (P � 0.08).
Plasma cortisol decreased slightly in the euglycemic study
1, whereas it increased similarly in studies 2–4 (P � 0.05
vs. study 1) at 180 min. Afterward, plasma cortisol de-
creased to baseline values by 300 min.

In t3, plasma concentrations of counterregulatory hor-
mones glucagon, adrenaline, norepinephrine, growth hor-
mone, and cortisol were not different among the four
studies.
Plasma FFA, glycerol, �-hydroxybutyrate, lactate,
and alanine concentrations. In t1, plasma FFAs de-
creased after initiation of insulin infusion from an aver-
aged baseline of 0.40 � 0.03 to a nadir of 0.09 � 0.02

Plasma Glucosem
m

ol
/l

2.5

3.0

3.5

4.0

4.5

5.0

5.5

Study 1
Study 2
Study 3
Study 4

Plasma Insulin

pm
ol

/l

0
100
200
300
400
500
600

Glucose infusion rate

Time (min)

-3
0 0 30 60 90 12
0

15
0

18
0

24
0

30
0

36
0

42
0

45
0

48
0

51
0

54
0

µm
ol

/k
g/

m
in

0

10

20

30

40

50

t1 t2 t3

insulin infusion

1 mU/kg/min

insulin

1 mU/kg/min

+ variable glucose infusion

[6,6-2H2 ] 
-glucose
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heparin � intralipid). The diagonal area depicts t1 (0–180 min, eugly-
cemia or hypoglycemia), the white area depicts t2 (180–420 min,
euglycemia or recovery to hypoglycemia), and the dotted area depicts
t3 (420–540 min, euglycemic clamp) of each study.

P. LUCIDI AND ASSOCIATES

diabetes.diabetesjournals.org DIABETES, VOL. 59, JUNE 2010 1351



mmol/l at 180 min with no differences in studies 1–3 (Fig.
4). After discontinuing insulin infusion (180 min), plasma
FFAs returned to values similar to those of baseline by 420
min of t2. In the same segment of t2, plasma FFA levels
were at all times less suppressed in study 2 compared with
studies 1 and 3 (P � 0.05). Finally, replacement of FFAs
and glycerol in study 4 reproduced plasma FFA concen-
trations similar to those of study 2 and greater than those
of studies 1 and 3 (P � 0.05).

After an initial suppression, plasma glycerol concentra-
tions increased by 240 min (150 � 23 mmol/l) in study 2. In
studies 1 and 3, plasma glycerol concentrations were
suppressed throughout, whereas in study 4 exogenous
lipid emulsion produced plasma concentrations in the
range of those of study 2. Plasma �-hydroxybutyrate
followed a pattern similar to that of plasma FFA in all
studies, although it was higher in study 2 compared with
study 4.

In the euglycemic study 1, plasma lactate (baseline 1.0 �
0.2 mmol/l) did not change. In studies 2–4, plasma lactate
baseline values were similar to those of study 1, however
plasma concentrations increased and peaked at 180 min
(1.5 � 0.24, 1.6 � 0.17, and 1.5 � 0.16 mmol/l, studies 2, 3,
and 4, respectively); afterward, they decreased to baseline
values by 240 min.

Plasma alanine concentrations did not change signifi-

cantly from baseline in all studies. In t3, baseline (420 min)
plasma FFA, glycerol, and �-hydroxybutyrate concentra-
tions were significantly higher in studies 2 and 4 than
studies 1 and 3. However, after insulin infusion, plasma
FFA, glycerol, and �-hydroxybutyrate concentrations de-
creased in study 2 to concentrations similar to those of
studies 1 and 3. In study 4, these metabolites followed the
same pattern observed in studies 1–3. Plasma lactate
concentrations increased slightly and similarly in all stud-
ies. Plasma alanine did not change, although levels tended
to be higher in studies 3–4 (P � 0.081) (Fig. 4).
Effect of acipimox per se on insulin action. Mean
values of GIR and rates of endogenous glucose production
and glucose utilization calculated during the last 30 min of
the euglycemic clamp in t3 allow estimation of the likely
contribution of acipimox per se, independent of the de-
crease in circulating FFA levels, on insulin action. In study
3, inhibition of lipolysis by acipimox determined an in-
crease in GIR, paralleled by a similar increment of glucose
disappearance, of �72% compared with study 2 (28.9 � 2.6
vs. 16.8 � 2.3 �mol/kg/min, respectively, P � 0.009). When
plasma FFA and glycerol levels were replaced by infusing
lipids and lipolysis was still blocked by acipimox in study
4, GIR was still higher by � 33% compared with study 2
(22.3 � 2.8 �mol/kg/min, vs. study 2, P � 0.026). This
indicates a role of acipimox per se on insulin action and
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quantifies its relative contribution to the effects observed
in study 3. Accordingly, the overall contribution of lipoly-
sis to posthypoglycemic insulin resistance was estimated
to be �39%.

DISCUSSION

The results indicate the following: First, the counterregu-
latory hormonal response to hypoglycemia contributes to

reduced insulin action up to 9 h after an acute hypoglyce-
mic episode. Second, this posthypoglycemic insulin resis-
tance is generated by the counterregulatory hormones
that act in part indirectly by activating lipolysis (contri-
bution of 39%), and in part directly, i.e., by lipolysis-
independent mechanisms (contribution of �60%). Third,
the mechanisms of posthypoglycemic insulin resistance
induced by lipolysis include increase in endogenous
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FIG. 3. Plasma counterregulatory hormones glucagon, adrenaline, norepinephrine, cortisol, and growth hormone in study 1 (euglycemia), study
2 (hypoglycemia), study 3 (hypoglycemia � acipimox), and study 4 (hypoglycemia � acipimox � heparin � intralipid). The diagonal area depicts
t1 (0–180 min, euglycemia or hypoglycemia), the white area depicts t2 (180–420 min, euglycemia or recovery to hypoglycemia), and the dotted
area depicts t3 (420–540 min, euglycemic clamp) of each study.
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glucose production, suppression of peripheral utiliza-
tion and oxidation of glucose, and increase lipid oxida-
tion. Thus, the adipose tissue plays a pivotal role in
determining and sustaining posthypoglycemic insulin
resistance in humans.

In a late phase of hypoglycemia, a large part of the
anti-insulin effects of counterregulatory hormones, mainly
catecholamines, on production and utilization of glucose is
not direct but is mediated by stimulation of lipolysis (20,21).

The novel finding of the present study is that hypoglycemia-
induced lipolysis also exerts long-lasting effects by blunt-
ing insulin action after restoration of euglycemia.

Administration of acipimox (study 3) suppressed lipol-
ysis (as reflected by plasma FFA and glycerol concentra-
tions) and markedly reduced lipid oxidation. This was
associated with suppression of endogenous glucose pro-
duction by 42%, increased glucose utilization by 64%, and
increased glucose oxidation by 100%.
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FIG. 4. Plasma nonglucose substrates free fatty acids, glycerol, �-OH-butyrate, lactate, and alanine in study 1 (euglycemia), study 2
(hypoglycemia), study 3 (hypoglycemia � acipimox), and study 4 (hypoglycemia � acipimox � heparin � intralipid). The diagonal area depicts
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The mechanisms of regulation of glucose metabolism by
fatty acids is not completely understood. The initial hy-
pothesis of competition between FFAs and glucose for
oxidation has been proposed by Randle et al. based on
studies in vitro (33). Increased availability and oxidation
of free fatty acids would increase levels of acetyl-CoA and
citrate. The former inhibits pyruvate dehydrogenase,
which in turn decreases glucose oxidation. The latter
inhibits phosphofructokinase, which in turn decreases
glycolysis and glucose utilization. Other studies in humans
have demonstrated that the overall effect of elevation of
levels of free fatty acids is increased lipid oxidation and
suppressed oxidation and utilization of glucose (34), thus
creating a condition of free fatty acid–induced insulin
resistance (35). However, in addition to the hypothesis of
Randle et al., it is likely FFAs interfere with insulin-
stimulated glucose transport activity in muscles and in-
duce insulin resistance by altering insulin signaling
through insulin receptor substrate-1–associated phospha-
tidylinositol 3-kinase, resulting in decreased insulin-stim-
ulated glucose transport activity (36).

It is likely that both glycerol and FFA contributed to the
increase in the rate of hepatic glucose production ob-
served in study 4 compared with study 3 (20). However,
the design of the present experiments does not allow us to
distinguish between the relative contribution of glycerol
and FFAs to the increased hepatic glucose production.

All counterregulatory hormones increased in response
to hypoglycemia (studies 1–3). However, with the excep-
tion of growth hormone (GH), which tended to be greater
when lipolysis was blocked (study 3) compared with when
lipolysis was allowed to occur (study 2) or FFA levels and
glycerol were replaced (study 4), their levels were similar
in studies 1–3. This effect on GH can be related to the lack
of suppressive action of lower FFA levels on growth
hormone secretion in study 3 (37).

From our study it is not possible to define the relative
role of the individual counterregulatory hormones in the
posthypoglycemic insulin resistance. However, because
counterregulatory hormones were not affected by block-
ade of lipolysis, with the exception of GH, one might be
tempted to speculate that, in addition to catecholamines
(12), GH might direct, to some extent, the phenomenon of
free fatty acid–induced posthypoglycemic insulin resis-
tance. Indeed, earlier evidence points toward a critical role
of GH and cortisol in insulin resistance after insulin-
induced hypoglycemia (17,35). The elevation of norepi-
nephrine in study 1 in which there was no hypoglycemia
has to be considered as a response to insulin per se during
the hyperinsulinemic-euglycemic clamp in t1 and t3. In
fact, hyperinsulinemia per se stimulates sympathetic neu-
ral activity including norepinephrine elevation (38).

It is interesting to note that in one study the suppressive
effect of acipimox on FFA and glycerol levels did inhibit
recovery from hypoglycemia in a model of acute hypogly-
cemia induced by a 30-min insulin infusion in healthy
subjects (39). However, the study did not examine the
same effect in a model of more clinical prolonged hypo-
glycemia. It is possible that increased FFA and glycerol
levels to hypoglycemia decrease insulin response during
subsequent hypoglycemia. In fact, whereas antecedent
hypoglycemia blunts neuroendocrine (and symptomatic)
responses to subsequent hypoglycemia (4), Davis and Tate
have shown that FFA levels and glucose infusion rates
during subsequent afternoon hypoglycemia were higher
and lower, respectively, after antecedent morning hypo-

glycemia compared with antecedent morning euglycemia,
resulting in greater insulin resistance compensating for
diminished neuroendocrine responses (40). More recently,
it has been shown that insulin resistance can last up to
18 h after two brief episodes of antecedent hypoglycemia
(4). In contrast, posthypoglycemic insulin resistance after
antecedent hypoglycemia has not been studied in type 1
diabetic subjects. However, in those individuals, antecedent
hypoglycemia is the major cause of hypoglycemia-associated
autonomic failure syndrome, which, by reducing both symp-
toms of and physiological defense against developing hypo-
glycemia, favors severe hypoglycemia (41).

Hypoglycemia can be common also in people with type
2 diabetes, particularly under intensive glucose treatment
(42,43). Whether the phenomenon of posthypoglycemic
insulin resistance, demonstrated in healthy subjects in our
present study, operates in people with type 2 diabetes who
are already insulin resistant to some degree, thus contrib-
uting to worsened posthypoglycemia (hyper)glycemia, is
not known.

Acipimox, a nicotinic acid analog and a potent inhibitor
of lipolysis (44), is an established therapy for dyslipidemia.
The antilipolytic action of acipimox is mediated through
suppression of intracellular cAMP levels, with the subse-
quent decrease in cAMP-dependent protein kinase activity,
leading to the reduced activity of hormone-sensitive lipase
(45). Compared with nicotinic acid, acipimox has fewer
side effects (light flushing) and a longer duration of action
(46). In addition, by lowering circulating FFAs, acute
administration of acipimox has been shown to improve
insulin sensitivity in lean (47) and obese subjects and
people with type 2 diabetes (48,49). The results of the
present study are in line with earlier reports (50) indicat-
ing that acipimox improves insulin sensitivity by decreas-
ing circulating FFA levels. In addition, our data show that
acipimox also directly enhances insulin sensitivity. In fact,
in study 3, GIR required to maintain euglycemia during the
clamp (t3) was greater than in study 4, in which acipimox
was given as in study 3 and plasma FFA levels were
replaced by infusion of lipids, but higher than in study 2. If
acipimox had no effects on insulin sensitivity, GIR would
have approximately matched rates observed in study 2. In
addition, glucose oxidation was not affected by acipimox,
suggesting that the increase in GIR stimulated by acipimox
(�33%) must be accounted for by glucose storage as
glycogen (nonoxidative glucose utilization).

Although our study reports the new finding that lipolysis
induced by hypoglycemia counterregulation mediates in
part posthypoglycemic insulin resistance, it has limita-
tions. First, the study sample size was limited. It was,
however, adequately powered to examine the issue and
conducted under carefully controlled conditions. Second,
although acipimox has been extensively adopted in meta-
bolic studies (21,37,49,50), its use to investigate the role of
lipolysis in posthypoglycemic insulin resistance may have
exerted enhancing effects on in vivo insulin action inde-
pendent of lipolysis and plasma FFA levels. We attempted
to overcome this problem by planning study 4 to correct
for the direct effects of acipimox on insulin action. Third,
the results of our study have been obtained in healthy
subjects and may not be immediately extrapolated to
subjects with diabetes until specific studies are performed.
Despite these limitations, the present study speaks to a
major role of lipolysis in the pathogenesis of posthypogly-
cemic insulin resistance.

In conclusion, the present study demonstrates that the
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activation of lipolysis by counterregulatory hormones in
response to hypoglycemia (indirect effects) accounts for
�39% of the total effect on late posthypoglycemic insulin
resistance. It is tempting to speculate that the late posthy-
poglycemic insulin resistance originates as a defensive
mechanism to protect against recurrence of hypoglycemia
after recent, antecedent hypoglycemia episode by limiting
peripheral utilization and oxidation of glucose, thus in-
creasing its availability for the brain. However, in subjects
with type 1 diabetes, and long-term type 2 diabetes (in
which pancreatic B-cell function is either totally or largely
lost), posthypoglycemic insulin resistance may result in
significant hyperglycemia especially after a meal, and
interfere with day-long blood glucose control (7). In addi-
tion, in insulin-resistant type 2 diabetic patients, the re-
duced insulin action after hypoglycemia may exaggerate
the preexisting insulin resistance and aggravate the car-
diovascular risk.
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