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Background and objectives: Multisystem involvement in spinal muscular

atrophy (SMA) is gaining prominence since different therapeutic options

are emerging, making the way for new SMA phenotypes and consequent

challenges in clinical care. Defective immune organs have been found

in preclinical models of SMA, suggesting an involvement of the immune

system in the disease. However, the immune state in SMA patients has

not been investigated so far. Here, we aimed to evaluate the innate and

adaptive immunity pattern in SMA type 1 to type 3 patients, before and after

nusinersen treatment.

Methods: Twenty one pediatric SMA type 1, 2, and 3 patients and 12 adult SMA

type 2 and 3 patients were included in this single-center retrospective study.

A Bio-Plex Pro-Human Cytokine 13-plex Immunoassay was used to measure

cytokines in serum and cerebrospinal fluid (CSF) of the study cohort before

and after 6 months of therapy with nusinersen.

Results: We detected a significant increase in IL-1β, IL-4, IL-6, IL-10, IFN-γ,

IL-17A, IL-22, IL-23, IL-31, and IL-33, in serum of pediatric and adult SMA

patients at baseline, compared to pediatric reference ranges and to adult
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healthy controls. Pediatric patients showed also a significant increase in TNF-

α and IL-17F levels at baseline. IL-4, IFN-γ, Il-22, IL-23, and IL-33 decreased in

serum of pediatric SMA patients after 6 months of therapy when compared to

baseline. A significant decrease in IL-4, IL-6, INF-γ, and IL-17A was detected in

serum of adult SMA patients after treatment. CSF of both pediatric and adult

SMA patients displayed detectable levels of all cytokines with no significant

differences after 6 months of treatment with nusinersen. Notably, a higher

baseline expression of IL-23 in serum correlated with a worse motor function

outcome after treatment in pediatric patients. Moreover, after 6 months of

treatment, patients presenting a higher IL-10 concentration in serum showed

a better Hammersmith Functional Motor Scale Expanded (HFMSE) score.

Discussion: Pediatric and adult SMA patients show an inflammatory signature

in serum that is reduced upon SMN2 modulating treatment, and the presence

of inflammatory mediators in CSF. Our findings enhance SMA knowledge with

potential clinical and therapeutic implications.

KEYWORDS

SMA, nusinersen, immune system, multisystemic, biomarker

Introduction

Spinal muscular atrophy (SMA) is an autosomal recessive
disorder caused by mutations in survival motor neuron (SMN1)
gene, resulting in a truncated SMN protein responsible for
degeneration of brain stem and spinal motor neurons (Hamilton
and Gillingwater, 2013). Even with the same disease-causing
mutation, SMA phenotype varies widely from very severe
infantile forms to mild adult-onset (Mercuri et al., 2012; Finkel
et al., 2015). The SMN2 copy number ranges from 0 to ≥4
copies across the SMA population, where a higher SMN2
copy number is usually associated with a milder phenotype,
establishing SMN2 as the best renowned prognostic biomarker
so far (Wirth, 2021). For this reason, increasing SMN protein
production by SMN2 is the target of two out of the three recently
approved therapies for the treatment of SMA, being the third
directed to reintroduce SMN1 gene (Finkel et al., 2017; Mendell
et al., 2017; Darras et al., 2021; Mercuri et al., 2021). Antisense
oligonucleotide nusinersen (Spinraza R©) extends life expectancy,
promotes the gaining of unexpected motor milestones for
pediatric patients (Chiriboga, 2017), and improves motor
function in adult SMA (Maggi et al., 2020). However, like the
other therapies, it does not fully recover the phenotypes yet, and
other targets of potential complementary therapeutic strategies
are under investigation (Chaytow et al., 2021).

SMN1 has ubiquitous expression in the organism, where
it critically regulates several developmental and housekeeping
cellular pathways (Chaytow et al., 2018). Therefore, it is not
surprising that, despite the predominant susceptibility of motor
neurons (Tosolini and Sleigh, 2017), evidence of a multisystem

involvement is emerging in SMA. Systemic pathology is more
evident in severe SMA-type 1 patients, but it is gaining
importance with the advent of new disease-phenotypes due
to SMN-rescue therapies, which are modifying SMA natural
history (Yeo and Darras, 2020).

In this context, few reports about a potential dysregulation
of the immune system in SMA have been previously reported in
patients (Ryniewicz and Pawińska, 1978; Migaj et al., 1986) and
deepened in preclinical animal model of the disease (Deguise
and Kothary, 2017; Wan et al., 2018).

Recently, several studies highlighted the prominent role
of immune activation in neurodegenerative diseases, including
motor neuron disorders such as amyotrophic lateral sclerosis,
where anti-inflammatory strategies are under investigation
as suitable therapies (Crisafulli et al., 2018). However, the
contribution of the immune system and inflammation to SMA
pathogenesis, and its potential significance as a therapeutic
target, is still unknown. Nonetheless, in the context of emerging
therapies for SMA, the need for tools complementary to
the clinical evaluation to improve patients’ management and
clinicians’ decision making, is of relevance. For instance,
the increasing use of SMN1 gene replacement treatment
through adeno-associated virus 9 vectors demands a better
understanding of the immunological mechanisms underlying
the disease, for proper safety assessment.

Here, we investigated for the first time the immune system
involvement in SMA pathogenesis through a comprehensive
profiling of cytokines in serum and cerebrospinal fluid (CSF)
of SMA type 1 to type 3 patients, covering the wide disease
spectrum from childhood to adulthood, before and after
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nusinersen treatment. The results of our analysis indicated an
immune activation at peripheral level, modulated in an anti-
inflammatory manner after 6 months of nusinersen treatment,
and the presence of neuroinflammation, in pediatric and adult
SMA patients. By identifying innate and adaptive immune
mediators implicated in SMA, and modulated by nusinersen,
our work contributes to the understanding of SMA pathogenesis
and, prospectively, to the clinical management of pediatric and
adult SMA patients.

Materials and methods

Patients and healthy controls

This is a single-center retrospective study including a cohort
of 21 clinically and genetically defined pediatric SMA type 1,
2, and 3 patients followed-up at the Developmental Neurology
Unit, 12 adult SMA type 2 and 3 patients followed-up at
the Neurology IV - Neuroimmunology and Neuromuscular
Diseases Unit of Fondazione IRCCS Istituto Neurologico Carlo
Besta (Milan, Italy), and 11 adult healthy controls for the
comparison of serum cytokine levels. Patients were genetically
assessed at the Unit of Medical Genetics and Neurogenetics
of Fondazione IRCCS Istituto Neurologico Carlo Besta. The
study cohort consisted of SMA patients treated with nusinersen
starting from December 2018, for at least 6 months, which
corresponds to the loading period of treatment. Exclusion
criteria were: the presence of symptoms or changes in blood
biochemical and hematological parameters suggestive of a
systemic inflammatory state; immunosuppressive treatments
ongoing in the last 6 months before inclusion. Motor function
assessment included the Children’s Hospital of Philadelphia
Infant Test of Neuromuscular Disorders (CHOP INTEND)
(Glanzman et al., 2010) for SMA type 1 patients, and the
Hammersmith Functional Motor Scale Expanded (HFMSE)
(Pera et al., 2017) for SMA type 2 and 3 patients. The study
was performed in accordance with the ethical standards of
the Declaration of Helsinki. The investigation and use of
patients’ data for research purposes were approved by the
Fondazione IRCCS Istituto Neurologico Carlo Besta research
ethical committee in accordance with the Declaration of the
World Medical Association (Project identification code 92/2019,
16 January 2019).

Serum and cerebrospinal fluid sample
collection

Peripheral blood of patients, as well as healthy controls,
was drawn on the day of inclusion into the study. All patients
and healthy controls were fasting from the previous midnight

and did not perform any physical activity before blood and
CSF collection, since it has been demonstrated that in response
to exercise, some cytokines (e.g., IL-6, TNFα) are released by
immune and muscle cells (Ostrowski et al., 1998; Pedersen
and Febbraio, 2008; Ball, 2015). Peripheral blood was collected
in Greiner Bio-One VACUETTE Z Serum Sep Clot Activator
Tubes (Thermo Fisher Scientific, Waltham, MA, United States),
centrifuged at 3,000 rpm for 10 min at room temperature.
The serum, transferred in cryogenic vials, was immediately
stored in liquid nitrogen pending assays. CSF was centrifuged
at 3,000 rpm for 10 min at room temperature and collected in
cryogenic vials at −80◦C. Serum and CSF samples were obtained
after patients written consent, or parental written consent in
case of pediatric patients, right before first nusinersen infusion
(T0, baseline), and after 6 months of treatment (T6). Biological
samples were stored at −80◦C in the Biobank of Fondazione
IRCCS Istituto Neurologico Carlo Besta until use.

Cytokine quantification

A Bio-Plex Pro-Human Cytokine Immunoassay 96-well kit
(Bio-Rad Laboratory, Hercules, CA, United States) was used
to measure serum and CSF concentration of the following
cytokines on the Bio-Plex 200 (Bio-Rad) system powered by
Luminex xMAP technology: interleukin (IL)-1β (IL-1β), IL-
4, IL-6, IL-10, IL-17A, IL-17F, IL-21, IL-22, IL-23, IL-31,
IL-33, tumor necrosis factor-alpha (TNF-α), and interferon
gamma-γ (IFN-γ). Serum samples were diluted 1:4; CSF
samples were tested undiluted. Each sample was tested in
duplicate, and each plate contained a balanced sample size
for the biological groups analyzed. Cytokine concentration was
expressed in pg/ml.

Statistics

Continuous variables are presented as mean and standard
deviation, categorical variables as numbers and percentages.
Assessment of the normality was performed using Shapiro–
Wilk test. Between-groups comparisons of continuous/ordinal
variables were performed using two-sample Wilcoxon rank
sum test (Mann–Whitney) test. Comparisons among more than
two groups were tested using Kruskal–Wallis rank sum test
and the post hoc Dunn test. We used Spearman’s correlation
test to measure association between ordinal and continuous
variables. The Pearson’s correlation coefficient was considered
for correlations among cytokines. The Pearson’s correlation
matrices have been created using R package corrplot. The
significant p-value threshold was set to 0.05. GraphPad Prism
version 4.0 (GraphPad Software, San Diego, CA, United States)
and R software were used for graph elaboration.
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Data availability

All anonymized data from this study are stored in the
Open Repository of Fondazione IRCCS Istituto Neurologico
Carlo Besta, and will be shared on reasonable request from
any qualified investigator. Data reuse is permitted only for
academic purposes.

Results

Demographic and clinical
characteristics

Clinical data and bio-samples were collected from 33 SMA
patients and adult controls who satisfied the inclusion criteria.
Demographic and clinical characteristics of the study population
are shown in Table 1. The control group included 8 females and
3 males; mean age at blood collection was 34.9 ± 9.4 years.

Increase of cytokine levels in serum of
pediatric and adult SMA patients

Quantification of serum concentration of 13 pro- and anti-
inflammatory cytokines showed a significant increase in the
levels of IL-1β (p < 0.05), IL-4 (p < 0.05), IL-6 (p < 0.05),
IL-10 (p < 0.05), IFN-γ (p < 0.01), TNF-α (p < 0.05), IL-
17A (p < 0.01), IL-22 (p < 0.05), IL-23 (p < 0.001), IL-
31 (p < 0.001), and IL-33 (p < 0.01) in serum of pediatric
SMA patients when compared to the adult healthy controls
(Figures 1–3). This was supported by data comparison to the
reference value ranges reported by Pranzatelli et al. (2013) for
pediatric patients affected by non-inflammatory neurological
disorders (Supplementary Table 1). In adult SMA patients,
we observed a significant increase in serum levels of IL-1β

(p < 0.001), IL-4 (p < 0.01), IL-6 (p < 0.01), IL-10 (p < 0.01),
IFN-γ (p < 0.001), IL-17A (p < 0.001), IL-22 (p < 0.05), IL-23
(p < 0.001), IL-31 (p < 0.001), and IL-33 (p < 0.05), compared
to healthy controls (Figures 1–3).

Decrease of cytokine levels in serum of
pediatric and adult SMA patients upon
nusinersen treatment

We found a significant decrease in the levels of IL-4
(p < 0.05), IFN-γ (p < 0.05), IL-22 (p < 0.01), IL-23 (p < 0.05),
and IL-33 (p < 0.01), in serum of pediatric SMA patients
after 6 months of therapy when compared to baseline values
(Figures 1–3). In serum of adult SMA patients, a significant
decrease in the levels of IL-4 (p < 0.05), IL-6 (p < 0.05), INF-
γ (p < 0.05), and IL-17A (p < 0.05) after 6 months of treatment

compared to baseline values was found (Figures 1, 2). Notably,
levels of significantly reduced cytokines, except for IL-17A, did
not differ from adult controls levels, thus they were mostly
brought down to normal.

Detection of inflammatory cytokines in
cerebrospinal fluid of pediatric and
adult SMA patients

We observed that CSF of both pediatric and adult
SMA patients contained detectable levels of the 13 cytokines
(Figures 4–6). Interestingly, IL-17A levels were significantly
increased in pediatric patients compared to adult patients
at baseline (p < 0.01) and after treatment (p < 0,05). IL-
17F levels were significantly increased in pediatric patients
compared to adult patients at baseline (p < 0.05), and after
treatment levels were still increased compared to the ones
of adults before treatment (p < 0.05) (Figure 5). Cytokine
increase in pediatric patients was confirmed by data comparison
with the reference value ranges reported by Pranzatelli et al.
(2013) for children affected by non-inflammatory neurological
disorders (Supplementary Table 1). CSF cytokine levels did not
show significant changes after 6 months of nusinersen therapy
compared to the baseline levels in both pediatric and adult SMA
patients (Figures 4–6).

Identification of correlations among
serum and cerebrospinal fluid
cytokines, clinical score of motor
function, and SMN2 copy number

In order to investigate the relationship among the different
cytokines tested in serum and CSF, and specifically to assess
whether their levels were correlated with each other, we
performed Pearsons’ correlation analyses in pediatric and adult
SMA patients at baseline. We observed a positive correlation
between different cytokines in serum (Figure 7), with the
stronger correlation found for the following cytokine pairs: (1)
IL-17a and IL-1β, IFN-γ and IL-4, IL-22 and IL-4, in pediatric
patients; and (2) IFN-γ and IL-4, TNF-α and IL-6, IL-21 and
IL-22, in adult patients.

In CSF, cytokine pairs showing a strong positive correlation
were: (1) IL-1β and IL-22, IL-1 β and IFN- γ, IFN- γ and IL-22,
in pediatric patients; and (2) IL-1β and IL-10; IL-4 with IL-17F,
IL-22, and IL-33; IL-10 with IL-17F, IL-22, IL-23, IL-31 and IL-
33; IL 17a and IFN-γ; IL-17F with -IL-22, IL-23, IL-31 and IL-33;
IL-22 with IL-23, IL-31 and IL-33, in adult patients (Figure 7).

We next performed correlation analyses between the
cytokine levels in serum and those in CSF. In pediatric patients,
we observed that serum IL-6 levels positively correlated with
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TABLE 1 Characteristics of the spinal muscular atrophy (SMA) patients participating in the study.

Features Total (N = 33) Pediatric (N = 21) Adults (N = 12)

Gender

F – n (%) 19 (57.6%) 12 (57.1%) 7 (53.8%)

Age at onset (years)

Mean ± SD 2.76 ± 4.22 1.02 ± 0.75 5.65 ± 5.89

Median (range) 1.04 (0.25–16) 0.83 (0.25–3) 3 (0.75–16)

Disease duration at therapy onset (years)

Mean ± SD 15.42 ± 18.13 3.39 ± 2.85 35.47 ± 14.52

Median (range) 5.84 (0–53.08) 3 (0–10.83) 37.25 (1–53.08)

SMA type – n (%)

1 4 (12.1%) 4 (19%) 0

2 13 (39.4%) 12 (57.1%) 1 (7.7%)

3 16 (48.5%) 5 (23.8%) 11 (84.6%)

SMN2 copy number – n (%)

2 10 (30.3%) 10 (47.6%) 0

3 15 (45.5%) 11 (52.4%) 4 (33.3%)

4 8 (24.2%) 0 8 (66.7%)

SMAmaximummotor function at baseline – n (%)

Non-sitter 5 (15.2%) 4 (19.05%) 1 (8.3%)

Sitter 17 (51.5%) 13 (61.9%) 4 (33.3%)

Walkers 11 (33.3%) 4 (19.05%) 7 (58.3%)

Motor function scores at baseline

HFMSE

Mean ± SD 26.9 ± 19.9 21.3 ± 16.2 34.9 ± 22.5

Median (range) 20 (0–66) 14 (1–57) 44.5 (0–66)

CHOP INTEND

Mean ± SD 31.8 ± 11.2 40.3 ± 14.4

Median (range) 37 (15–38) 46.5 (19–49)

Motor function scores after 6 months of treatment

HFMSE

Mean ± SD 29.0 ± 20.02 24.0 ± 17.8 36.1 ± 21.6

Median (range) 21 (0–66) 17 (2–61) 46 (0–66)

CHOP INTEND

Mean ± SD 40.3 ± 14.4 40.3 ± 14.4

Median (range) 46.5 (19–49) 46.5 (19–49)

HFMSE, Hammersmith Functional Motor Scale Expanded; CHOP INTEND, Children’s Hospital of Philadelphia Infant Test of Neuromuscular Disorders; SD, standard deviation.

those of IL1-β, IL-10, IFN-γ and IL-22 in CSF, and serum IL-
17F levels positively correlated with those of IL-1 β, IFN-γ and
IL-22 in CSF. In adults, a positive correlation was observed
between serum levels of IL-21 and IL-22 with levels of IL-6 in
CSF (Figure 7). Correlation among the levels of the different
cytokines tested is indicative of a common mechanism related
to their production and associated with SMA.

To test whether the identified cytokine levels could be
related to different clinical response to therapy, we performed
regression analyses among serum and CSF cytokine levels
with HFMSE score at baseline and after treatment, and
between cytokine levels with 1HFMSE (i.e., HFMSE score

post treatment – HFMSE pretreatment). No correlation
analysis with CHOP INTEND was performed due to the
small number of SMA type 1 patients. We found that lower
serum levels of IL-23 at baseline were positive predictors
of a better clinical outcome (1HFMSE) after 6 months of
nusinersen therapy in pediatric patients (Spearman rs = −0.53,
p = 0.029). We also found that, after 6 months of nusinersen
therapy, IL-10 expression in pediatric serum positively
correlated with a better HFMSE score (Sperman rs = 0.67,
p = 0.003).

No correlation among cytokines levels and HFMSE score
at baseline and after 6 months, or 1HFMSE, was detected if
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FIGURE 1

Levels of cytokines in the serum of pediatric and adult spinal muscular atrophy (SMA) patients. The concentration (pg/ml) of (A) IL-1β, (B) IL-4,
(C) IL-6, and (D) IL-10 was measured in the serum of pediatric (Ped.; circle, N = 21) and adult (Ad.; square, N = 12) SMA patients at baseline (T0
black) and after 6 months of nusinersen treatment (T6 white), and in healthy controls (triangle) by multiplex immunoassay. Data in the graphs
are reported as mean ± SEM for each sample group. The before-after graphs contains the mean cytokine concentration obtained for each
patient in the duplicate multiplex immunoassays reactions before and after 6 months of nusinersen treatment (T0 and T6). *p < 0.05,
**p < 0.001, p < 0.0001*** by Mann–Whitney test.

the analysis was corrected for SMA type, months at onset and
baseline motor milestone, both in pediatric and adult patient.

Correlation analyses among cytokine levels at baseline and
SMN2 copy numbers demonstrated a significant difference
between patients carrying two and four copies for: IL-4
(p = 0.021) and IL-23 (p = 0.009) in serum, where a higher
concentration of cytokine corresponded to a higher SMN2

copy number; TNF-α (p = 0.036), IL-31 (p = 0.013), and IFN-
γ (p = 0.015) in CSF of patients, where a higher cytokine
level correlated with a lower number of copies. A significant
correlation among patients carrying three and four copies of
SMN2 and cytokine expression at baseline was detected for:
IL-4 (p = 0.005), IL-17A (p = 0.015), and IL-17-F (p = 0.010)
in CSF, with higher cytokine levels in patients carrying lower
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FIGURE 2

Levels of cytokines in the serum of pediatric and adult spinal muscular atrophy (SMA) patients. The concentration (pg/ml) of (A) IFN-γ,
(B) TNF-α, (C) IL-17A, and (D) IL-17F was measured in the serum of pediatric (Ped.; circle, N = 21) and adult (Ad.; square, N = 12) SMA patients at
baseline (T0 black) and after 6 months of nusinersen treatment (T6 white), and in healthy controls (gray triangle) by multiplex immunoassay.
Data in the graphs are reported as mean ± SEM for each sample group. The before-after graphs contains the mean cytokine concentration
obtained for each patient in the duplicate multiplex immunoassays reactions before and after 6 months of nusinersen treatment (T0 and T6).
*p < 0.05, **p < 0.001, p < 0.0001*** by Mann–Whitney test.

SMN2 copy numbers. After 6 months of nusinersen treatment,
IL-31 expression in CSF of SMA patients with two copies of
SMN2 was higher compared to patients carrying three copies
(p = 0.011) and four copies (p = 0.016). Similarly, higher CSF
levels of TNF-α and IL-17F distinguished SMA patients with
two copies of SMN2 from patients with four copies (p = 0.009
and p = 0.035, respectively), and patients with three copies
of SMN2 from patients with four copies (p = 0.047 and
p = 0.060, respectively).

Discussion

Multisystem involvement in SMA has gained prominence
since different therapeutic options are emerging, making the
way for new SMA phenotypes and consequent challenges
in clinical care. Defective immune organs have been found
in preclinical models of SMA (Deguise and Kothary, 2017),
suggesting an involvement of the immune system in the disease.
However, the immune state in SMA patients has not been
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FIGURE 3

Levels of cytokines in the serum of pediatric and adult spinal muscular atrophy (SMA) patients. The concentration (pg/ml) of (A) IL-21, (B) IL-22,
(C) IL-23, (D) IL-31, and (E) IL-33 was measured in the serum of pediatric (Ped.; circle, N = 21) and adult (Ad.; square, N = 12) SMA patients at
baseline (T0 black) and after 6 months of nusinersen treatment (T6 white), and in healthy controls (gray triangle) by multiplex immunoassay.
Data in the graphs are reported as mean ± SEM for each sample group. The before-after graphs contains the mean cytokine concentration
obtained for each patient in the duplicate multiplex immunoassays reactions before and after 6 months of nusinersen treatment (T0 and T6).
*p < 0.05, **p < 0.001, p < 0.0001*** by Mann–Whitney test.
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FIGURE 4

Levels of cytokines in cerebrospinal fluid (CSF) of pediatric and adult spinal muscular atrophy (SMA) patients. The concentration (pg/ml) of
(A) IL-1β, (B) IL-4, (C) IL-6, and (D) IL-10 was measured in the serum of pediatric (Ped.; circle, N = 21) and adult (Ad.; square, N = 13) SMA patients
at baseline (T0 black) and after 6 months of nusinersen treatment (T6 white), and in healthy control (Ad. CTR; gray triangle) by multiplex
immunoassay. Data in the graphs are reported as mean ± SEM for each sample group. The before-after graphs contains the mean cytokine
concentration obtained for each patient in the duplicate multiplex immunoassays reactions before and after 6 months of nusinersen treatment
(T0 and T6). p > 0.05, Mann–Whitney test.

investigated so far. Here, we aimed to longitudinally assess
the levels of innate and adaptive immune factors, selected for
their associated with innate immunity and adaptive immune
cell populations including T-helper (Th) 1, Th2, and Th17 cell
subtypes, in serum and CSF of pediatric and adult SMA patients
pre- and post-nusinersen therapy.

Overall, we found a cytokine inflammatory signature in both
serum and CSF of pediatric and adult SMA patients, suggestive
of inflammation and immune system activation at a peripheral
and central level in our patients’ cohort.

One striking finding was that serum of both pediatric
and adult SMA patients displayed increased levels of IFN-γ,
IL-17a and IL-22, which are signature cytokines of activated

Th1/Th17cells (Damsker et al., 2010). Along with a crucial
role in host defense, these cells are known to be key players
in the pathogenesis of different autoimmune diseases (Tesmer
et al., 2008). Indeed, they sustain pro-inflammatory T cell-
mediated responses by producing inflammatory cytokines,
that in turn activate innate and adaptive immune system
cells. Of note, sustained inflammation caused by Th1/Th17
pathway activation has been, recently, related to disease activity
in neurodegenerative diseases (Zhang et al., 2013; Storelli
et al., 2019), particularly in amyotrophic lateral sclerosis
(Jin et al., 2020).

Spinal muscular atrophy is a heterogeneous disease, ranging
from in utero to adult-onset forms (Wirth, 2021). Our study
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FIGURE 5

Levels of cytokines in cerebrospinal fluid (CSF) of pediatric and adult spinal muscular atrophy (SMA) patients. The concentration (pg/ml) of levels
of (A) IFN-γ, (B) TNF-α, (C) IL-17A, and (D) IL-17F were measured in the serum of pediatric (Ped.; circle, N = 21) and adult (Ad.; square, N = 13)
SMA patients at baseline (T0 black) and after 6 months of nusinersen treatment (T6 white), and in healthy controls (Ad. CTR; gray triangle) by
multiplex immuno assay. Data in the graphs are reported as mean ± SEM for each sample group. The before-after graphs contains the mean
cytokine concentration obtained for each patient in the duplicate multiplex immunoassays reactions before and after 6 months of nusinersen
treatment (T0 and T6). *p < 0.05, **p < 0.001, p < 0.0001*** by Mann–Whitney test.

has been developed in a real-world environment, starting
from the advent of nusinersen, thus it includes a wide age
range, reflecting SMA epidemiology. In agreement with an
expected more active disease in pediatric patients compared
to adult, mostly milder and chronic, SMA forms (Yeo and
Darras, 2020), we found that at baseline (i.e., before nusinersen
treatment) the levels of TNF-α, a pivotal cytokine released
from Th1 and Th17 cells, was increased only in pediatric
patients’ sera. In the same subset, we showed a positive
correlation between IL-1ß and IL-17a, and between TNF-α

and IL-31, another cytokine strictly related to Th17 cells
(Bautista-Herrera et al., 2020).

In line with the Th17 signature observed in SMA serum, we
also detected increased serum levels of IL-1ß, IL-6, and IL-23
in pediatric and adult patients, which are important promoter
of Th1/Th17 development and maintenance (Langrish et al.,
2005; Acosta-Rodriguez et al., 2007; Villegas et al., 2019).
Indeed, IL-1ß and IL-6 are prominent inflammatory response
mediator released by macrophages (Dinarello, 2018); IL-23 is
released by dendritic cells (DCs) and macrophages and, together
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FIGURE 6

Levels of cytokines in cerebrospinal fluid (CSF) of pediatric and adult spinal muscular atrophy (SMA) patients. The concentration (pg/ml) of levels
of (A) IL-21, (B) IL-22, (C) IL-23, (D) IL-31, and (E) IL-33 were measured in the serum of pediatric (Ped.; circle, N = 21) and adult (Ad.; square,
N = 13) SMA patients at baseline (T0 black) and after 6 months of nusinersen treatment (T6 white), and in healthy controls (Ad. CTR; gray
triangle) by multiplex immuno assay. Data in the graphs are reported as mean ± SEM for each sample group. The before-after graphs contains
the mean cytokine concentration obtained for each patient in the duplicate multiplex immunoassays reactions before and after 6 months of
nusinersen treatment (T0 and T6). p > 0.05, Mann–Whitney test.

with other Th17-related cytokines, constitutes a pathway able
to chronically sustain inflammation in several inflammatory
autoimmune diseases, to the extent that it has been considered

as a new therapeutic target for these disorders (Tan et al., 2009).
Interestingly, IL-33, a cytokine released from DCs known to
induce Th17 cells via IL-1β and IL-6, was increased in pediatrics’
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FIGURE 7

The correlation matrix among all cytokines expressed in serum and cerebrospinal fluid (CSF) of pediatric (A) and adult (B) Spinal muscular
atrophy (SMA) patients. Pearson’s correlation coefficients r ≥0.5 or ≤0.5 are shown. White squares lack statistical significance (p > 0.05). The
color in each circle indicates the Pearson’s correlation coefficient r among the variables reported in the two coordinates, as indicated by
colored scale bar.

and adults’ sera, where it was positively correlated with IL-17A
and IL-17F cytokines, respectively (Park et al., 2017).

We also revealed an increase in IL-10 concentration in
sera of our population. IL-10 is an anti-inflammatory cytokine
produced by different cell types, such as T-regulatory cells
(Tregs) and Th2 cells. A positive feedback loop has been
described for Th1 cells, which would produce IL-10 themselves
to limit their pro-inflammatory activity (Trinchieri, 2007),
further supporting a Th1 signature in SMA.

Taken together, all these data suggest the engagement
of the Th1/Th17 pathway in SMA, both in pediatric and
adult population.

Interestingly, after 6 months of nusinersen administration,
most of the cytokines implicated in the Th1/Th17 signature
were significantly reduced in patients’ serum. This response
to therapy was slightly more evident in pediatric patients,
where IFN- γ, IL-22, IL-23, and IL-33 levels were significantly
lower compared to baseline, while in adults IL-6, and IL-
17a decreased after therapy together with IFN- γ. Also,
IL-4 and IL-23 serum levels that distinguished, before

treatment, patients with four SMN2 copy numbers from
patients carrying two copies, no longer showed any difference
after 6 months of nusinersen, suggesting a “normalizing
effect” of the therapy across disease subgroups. Since IL-4
is known for its anti-inflammatory properties and may be
produced by activated immune system cells as an attempt
to counteract inflammation, its reduction after the therapy
may reflect generalized reduction in immune activation as an
effect of nusinersen.

By linear regression analysis we found that a higher baseline
expression of IL-23 in serum correlated with a worse motor
function outcome after treatment in pediatric patients. This
significance further improves considering only SMA type 2
population, a more severe disease form compared to SMA
type 3. This points out a possible role for IL-23 as predictive
biomarkerof response to therapy. We also found that, after
6 months of treatment, pediatric patients presenting a higher IL-
10 concentration on serum showed a better HFMSE score, which
is in line with IL-10 protective role, and makes IL-10 worthy of
attention as a potential pharmacodynamics biomarker.
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Although nusinersen is directly administered within the
central nervous system (CNS) by intrathecal injection, and
it is distributed mostly in the target spinal cord tissue, our
findings suggest a potential beneficial effect of the drug on
peripheral immune system that might be monitored by cytokine
assessment in the serum. This hypothesis is supported by
evidence of nusinersen in peripheral tissues, as liver, kidney,
and muscle (Europa EU, 2017), which suggests that its effect on
peripheral inflammation/immune dysregulation may be due to
a direct impact on immune cells/organs rather than the indirect
result of its intrathecal distribution.

In agreement with the emerging evidence that various
systemic aspects may be altered in SMA, and may benefit from
nusinersen therapy, we also revealed a significant reduction
of IL-4 in serum after treatment. Of note, IL-4 is involved in
direct activation of sensory neurons in atopic inflammation
and, together with IL-31, represents a link between innate
and adaptive immune system and, in turn, between immune
system and the peripheral nervous system (Kader et al., 2021).
Recently, it has been hypothesized that these cytokines display
regulatory effects on neuronal physiology of the sensory nervous
system (Oetjen and Kim, 2018), which is of relevance since
it is emerging that the sensory system, and particularly the
proprioceptive synapses, is defective in SMA and contributes to
motor neurons disfunction (Shorrock et al., 2019).

Concurrently to serum evidence, we were able to detect
the majority of the cytokines at pathological levels also in
the CSF of our SMA patients. Unfortunately, CSF samples,
or datasets of cytokine concentrations in CSF, from control
subjects, such as patients with non-inflammatory neurological
disorders, were not available. Comparison of our pediatric
CSF data with cytokine reference range reported by Pranzatelli
et al. (2013) for children without inflammatory CNS diseases
suggests abnormally increased cytokine levels in our pediatric
SMA patients. Cytokines’ concentrations were overall lower
compared to those observed in serum, except for the noticeable
levels of IL-31 and IL-23. However, the observation of a
pro-inflammatory cytokine (e.g., IL-17A, IL-23, IL-31, IL-
33, TNF-α) profile in CSF of SMA patients is relevant
and indicative of a pathological inflammatory state. Strong
correlations were found between levels of IFN-γ and those
of IL-1β and IL-22, and between IL-17A levels and those
of IL-23, in both pediatric and adult CSFs, which suggests
an activation of the Th1/Th17 cytokine profile also in the
CNS. Interestingly, as learned from other CNS disorders,
Th1/Th17 cells target microglia and astrocytes, promoting
neuroinflammation (Prajeeth et al., 2017). This is in line
with previous studies demonstrating a glial activation in
SMA patients’ spinal cords (Brock and McIlwain, 1984; Kuru
et al., 2009) where astrocyte-specific SMN restoration resulted
in IL-1 β and IL-6 cytokine decrease (Rindt et al., 2015).
Correlation analyses of CSF cytokine levels with SMN2 copy
numbers demonstrated that patients carrying two or three

SMN2 copies (nearly all pediatrics) presented higher levels
of the differently expressed cytokines compared to patients
with four SMN2 copies (entirely adults), underlining a more
active immunological environment in CNS of pediatric patients.
Surprisingly, considered the direct delivery of nusinersen in
the CSF, 6 months after treatment we did not observe a
significant reduction, consistent across patients, in any of the
cytokines investigated. In this regard, we may speculate that
modifications of cytokine pattern in the serum but not in the
CSF after 6 months of nusinersen treatment, may reflect a
more precocious effect on peripheral immunological aspects,
compared to the CNS.

Whether SMN1 deficiency impacts immune organs, and
if immune system activation or motor neuron injury leads
to the release of specific antigens which induce priming of
Th1/Th17 cells need to be clarified. Relying on our data, we
did not find correlations between serum and CSF levels for
each cytokine, at baseline and after treatment, neither relevant
associations with laboratory parameters related to blood-brain
barrier permeability (data not shown). All these data are
not in favor of a cytokine leakage from periphery to CNS.
More extensive investigations are required to further evaluate
neuroinflammation in SMA patients.

The longitudinal assessment of immune soluble factors
proposed, pre- and post-nusinersen therapy, has never been
ruled out in SMA patients. Here, we demonstrated an
inflammatory peripheral signature, that changes upon the
SMN2 modulating treatment, and the presence of inflammatory
mediators in CSF of SMA patients, thus supporting an
inflammatory/immunological contribution to SMA. Of note, we
provide evidence of a possible role for serum IL-23 as predictive
biomarkers of response to nusinersen therapy, and of serum
IL-10 as a potential on-treatment monitoring biomarker.

Despite a relatively small cohort which does not allow
stratification analyses, and the short-term follow-up, we were
able to detect statistical significant differences in the peripheral
pro-inflammatory profile between pediatric and adult patients,
and after treatment. The outcomes of our investigation pave
the way toward further studies in larger patients’ cohorts,
promising to get relevant insights into the immunological
contribution to SMA, for their translation into the clinical
practice. The inflammatory molecules here identified could
indeed represent novel potential therapeutic targets, as well as
reliable biomarkers useful to stratify patients, predict disease
progression and monitor response to therapies, for a better
management of SMA patients.
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