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Essentials
•	 Autism spectrum disorder (ASD) is a heterogeneous and complex neurodevelopmental disorder.
•	 Easily accessible, quantifiable, and reproducible biomarkers have not been found in ASD research.
•	 Blood platelets and neurons contain similar molecular interactors and neurotransmitters.
•	 Platelet-dense granule morphology, content, and function can be useful biomarkers for ASD.
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Abstract
Autism spectrum disorder (ASD) is a clinically heterogeneous neurodevelopmental 
disorder that is caused by gene-environment interactions. To improve its diagnosis 
and treatment, numerous efforts have been undertaken to identify reliable biomark-
ers for autism. None of them have delivered the holy grail that represents a reproduc-
ible, quantifiable, and sensitive biomarker. Though blood platelets are mainly known 
to prevent bleeding, they also play pivotal roles in cancer, inflammation, and neuro-
logical disorders. Platelets could serve as a peripheral biomarker or cellular model for 
autism as they share common biological and molecular characteristics with neurons. 
In particular, platelet-dense granules contain neurotransmitters such as serotonin 
and gamma-aminobutyric acid. Molecular players controlling granule formation and 
secretion are similarly regulated in platelets and neurons. The major platelet integrin 
receptor αIIbβ3 has recently been linked to ASD as a regulator of serotonin trans-
port. Though many studies revealed associations between platelet markers and ASD, 
there is an important knowledge gap in linking these markers with autism and ex-
plaining the altered platelet phenotypes detected in autism patients. The present 
review enumerates studies of different biomarkers detected in ASD using platelets 
and highlights the future needs to bring this research to the next level and advance 
our understanding of this complex disorder.
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1  | INTRODUCTION TO BIOMARKER 
RESEARCH RELATED TO AUTISM

Autism spectrum disorder (ASD) comprises a group of neurodevel-
opmental disorders that include autism, Asperger syndrome, child-
hood disintegrative disorder, and pervasive developmental disorder. 
ASD is characterized by difficulty in social interaction, communica-
tion, and repetitive behavior patterns.1 Normally, most of the symp-
toms start presenting during the first 2 years of life. The prevalence 
of ASD has been steadily growing, and according to recent studies, it 
is as high as 1 in 59 children under the age of 8 in the United States 
2 and around 1 in 100 in the European population.3 This increasing 
prevalence is most probably due to improved diagnostic methods. 
Because early intervention can help manage symptoms and improve 
the quality of life, identification of physiological biomarkers aid-
ing in the early diagnosis of ASD is very relevant. Due to the high 
phenotypic heterogeneity and frequent comorbidities, ASD is often 
classified into 2 types: syndromic ASD, in which autism occurs as a 
comorbidity with known clinical syndromes; and idiopathic ASD, in 
which the patient exhibits only classical ASD features.4,5 Numerous 
studies have focused on the identification of biomarkers that would 
aid diagnosis and predict disease severity or evaluate treatment effi-
cacy. A recent detailed overview of neuroimaging abnormalities and 
diverse metabolic and genetic biomarkers points out that though 
some possible candidates have been put forward, not a single highly 
predictive biomarker to diagnose and follow up ASD has yet been 
found.6 Many biomarker discovery studies try to focus on finding ge-
netic variations linked to or causing the disorder, as it is well known 
that there is a high heritability in ASD, inferred from twin and family 
studies. These genetic studies suggest many possible contributing 
loci and different biological pathways underlying ASD, such as chro-
matin remodeling, synaptic plasticity, and neuronal connectivity.7-9

Biomarker research in ASD is complicated by the wide variability 
in clinical presentation within core symptoms and variables such as 
language, cognition, and comorbid psychiatric or other symptoms. 
Due to the complex nature of the disease, any causative pathway or 
biomarker search would inevitably require a large sample size and 
more in-depth analysis of the genome. Therefore, ASD research, es-
pecially for idiopathic ASD cases, is recently more focused on using 
next-generation sequencing approaches.10,11 But with the discovery 
of more candidate gene variants, the genetic complexity of ASD has 
increased even more, and there is a scarcity of patient-derived ma-
terial or relevant human cell models to study these genes and the 
associated defective molecular pathways. It is impossible to obtain 
neurons from the central nervous system (CNS) of living subjects for 
ex vivo research. Gene expression and imaging studies have been 
performed on postmortem brains, but there are many known limita-
tions of this method, such as post-mortem interval, cause of death, 
storage procedures and biomaterial integrity.12 This has hindered 
research on candidate gene pathways, diagnostic biomarkers, and 
possible therapies for ASD. To overcome these challenges, it is still 
important to use alternative patient-derived cells (blood, fibroblasts, 
and stem cells) or material (cerebral spinal fluid, urine, feces, serum, 

and plasma) to gain more insights into pathophysiology and to dis-
cover biomarkers. This review focuses on studies that have used 
blood platelets as a patient-derived cell model to study ASD.

2  | PARALLELS BETWEEN PLATELETS 
AND NEURONS

Platelets are small anucleate cell fragments circulating in the blood, 
originally derived from megakaryocytes in the bone marrow. While 
the relevance of platelet activation for blood clot formation after 
vascular injury is well established, more exploratory research has 
shown that platelets contribute to the (patho)physiological processes 
important for cancer, inflammation, infection, and neurological dis-
eases.13-16 The parallel between platelets and serotonergic neurons 
was drawn in the early 1970s.17,18 The link with neurological disorders 
still mostly relates to the similarities between the platelet release re-
action of stored agonists following stimulation and the neurotrans-
mitter release following an action potential in a neuron (Figure 1).19 
Platelets and neurons have a strikingly similar calcium-dependent 
activation and secretion mechanism, secretory vesicles (contain-
ing neurotransmitters and activating molecules such as serotonin 
or 5-hydroxytryptamine [5-HT], dopamine, epinephrine, glutamate, 
gamma-aminobutyric acid [GABA], calcium, and ADP and ATP that 
are secreted upon activation), 5-HT transporters (serotonin trans-
porter [SERT] and vesicular monoamine transporter 2 [VMAT2]), and 
cell surface receptors such as receptors for the listed neurotrans-
mitters, integrin β3, ephrin, and many more.19-21 Surprisingly, certain 
neuron-specific markers are expressed in platelets such as reelin 
and amyloid precursor protein.22 Following endocytosis of differ-
ent small molecules and proteins, multivesicular bodies are involved 
in the formation and sorting of granules in both neurons and plate-
lets. Mutations disrupting these cargo sorting pathways have been 
known to cause disorders with bleeding and neurological defects.23 
Even though there are many studies reporting similarities between 
these cell types, existing literature knowledge cannot explain why it 
is so. In fact, they have different embryonic signatures, as neurons 
have an ectoderm origin, while platelets are formed by megakaryo-
cytes that originate from the mesoderm.20,24

5-HT mediates a wide range of neuropsychological processes. 
A very interesting recent review provides detailed insights into the 
5-HT metabolism in and outside the CNS.25 Mammals have 2 major 
sites of 5-HT production, the brain and the gastrointestinal system, 
where 95% of total body 5-HT is found in the enterochromaffin cells 
of the gut, from where it can be released. After its release, 5-HT 
reuptake is coordinated by SERT into epithelial cells, where it is 
enzymatically degraded, or it enters the bloodstream, where it is 
transported into platelets and stored for future use. The blood-brain 
barrier is considered impermeable to 5-HT, though it is expected 
that peripheral 5-HT from the gastrointestinal system is released 
into the blood circulation, also flowing through the brain in the vi-
cinity of neurons.25 However, there is no evidence that peripheral 
5-HT that remains mostly stored in platelets plays any role in the 
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brain.26,27 Platelets do not synthesize 5-HT, but they take it up from 
the circulating blood via SERT (or SLC6A4)28 to package into their 
dense granules via VMAT2 (or SLC18A2)29 (Figure 1). Quantification 
of 5-HT levels in whole blood samples is similar to the values ob-
tained in platelets (200-350 μg/L), while 5-HT plasma levels are esti-
mated to be about 1000 times lower.30 This means that a large part 
of the peripheral 5-HT, once released into the blood, will be stored 
in platelet-dense granules. One of the first biomarkers for ASD was 
elevated blood serotonin, as discussed further in a separate section 
in more detail.

Many studies have shown that platelets are useful cells to gain 
insights in neurological diseases such as Parkinson disease,31,32 
Alzheimer disease,33,34 schizophrenia,24,33 and ASD.16,35 A recent 
review by Pellerin et  al16 illustrates in detail how platelets were 
used to study Fragile X syndrome. Despite the fact that platelets 
are easily accessible blood cells and have diverse structural and 
functional similarities with neurons, studies using platelets in ASD 
research are rather limited (except for the numerous studies that 
performed 5-HT measurements). This is probably due to the spe-
cialized nature of the in vitro tests used to evaluate platelet func-
tion, as typically performed in clinical hemostasis labs for patients 

with bleeding disorders. Their use is limited for patients who do not 
have an obvious bleeding tendency, and the expertise required is 
not available in most ASD research groups. For this review provid-
ing an overview of platelet studies performed for ASD, a PubMed 
search was performed using following search parameters: “platelet 
OR platelets AND autism NOT PECAM NOT Platelet Factor 4.” This 
resulted in 165 publications until the end of 2018 (Figure 2). By re-
moving PECAM and platelet factor 4 in the search terms, only 4 pub-
lications were excluded, and they did not contain data in support of 
the hypothesis that platelets can mimic the neuronal defects causing 
ASD. On the basis of these selected publications, this review pro-
vides an overview of our current knowledge related to platelets and 
autism. We also discuss the perspectives of using this cell type as a 
biomarker for ASD.

3  | PLATELET-DENSE GRANULES 
AND AUTISM

Platelets contain 2 types of specialized granules, alpha granules 
and dense granules, in addition to lysosomes (Figure 1). The more 

F IGURE  1 Platelets and neurons share similar features related to granule activation and secretion. Left panel shows platelets taking 
up 5-HT through SERT and storing it in dense granules via VMAT2. Platelets that are activated via diverse agonists and calcium signaling, 
release their dense granules including 5-HT, which is detected by 5-HT receptors for the amplification of platelet activation. The integrin 
receptor αIIbβ3 becomes activated after initial platelet activation to initiate platelet-platelet interactions via coupling with fibrinogen. 
Right panel shows neurons activated via calcium signaling and the arrival of the action potential, triggering release of synaptic vesicles 
containing neurotransmitters such as 5-HT, which bind to the 5-HT receptors of the postsynaptic neurons to complete neurotransmission. 
The released 5-HT is reabsorbed by the presynaptic neuron via SERT activity and transported back into synaptic vesicles through VMAT2. 
5HT, 5-hydroxytryptamine; LDCV, large dense-core vesicle; SDCV, small dense-core vesicleSERT, serotonin transporter; VMAT2, vesicular 
monoamine transporter 2
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abundant alpha granules (40-80 per platelet) are the largest (200-
500 nm) and comprise several important proteins such as fibrino-
gen, P-selectin, von Willebrand factor, growth factors, and other 
small polypeptides.36 The smaller (~250  nm), scarcely populated 
(3-9 per platelet) dense granules contain signaling molecules (ATP, 
ADP, calcium) and neurotransmitters, of which some are critical for 
secondary platelet activation.20 These dense granules and their 
secretion pathway have been compared to the regulated secre-
tion in neurons.20,21 In short, the neuronal secretion process uses 
mainly 2 types of secretory granules, the large dense-core vesi-
cles (LDCVs) and the small synaptic vesicles (SSVs) (Figure 1). The 
LDCVs contain a variety of proteins, including slow-acting neu-
ropeptides, growth factors, amines, and hormones and could be 
compared to alpha granules in platelets. However, the content of 
LDCVs in neurons and alpha granules in platelets is quite different, 
and no striking homology in their function or regulation has been 
found. A subgroup of the SSVs, the small dense-core vesicles, are 
comparable to dense granules in platelets because their cores ap-
pear similarly dense in electron microscopy images and they both 
contain, at least in part, the same small molecules and neurotrans-
mitters.20,21 Therefore, it is not surprising that mainly platelet-
dense granule contents or their formation or function seem to be 
perturbed in ASD cases, as discussed in the next section.

4  | PLATELET-DENSE GRANULE 
MORPHOLOGY AND AUTISM

Alpha and dense granules are formed in megakaryocytes in the 
bone marrow prior to their transport into forming platelets.37 In 
platelets, granules can release their content following platelet 
activation. It is known that the BEACH (named after Beige and 
Chediak-Higashi) domain-containing proteins are important for 
platelet granule formation and secretion. For instance, genetic 

variants in NBEAL2 cause gray platelet syndrome, a bleeding dis-
order characterized by absence of alpha granules,38 while variants 
in LYST cause Chediak-Higashi syndrome, an immune disorder 
associated with a bleeding tendency characterized by a reduced 
number of dense granules.39 Together with the other BEACH 
domain–containing family members, these proteins are often de-
scribed as playing a role in membrane dynamics and/or intracel-
lular trafficking of endosome- or lysosome‐related proteins and 
vesicles.40 However, exactly how these roles are executed by each 
of these family members remains largely obscure.

Interestingly, NBEA, the gene for the BEACH domain–con-
taining protein neurobeachin (NBEA), was located on the autism-
susceptible region of chromosome 13q, as identified by linkage 
studies.41-43 A de novo chromosomal translocation disrupting 
NBEA was later found in an ASD patient.44 Eight years later, 
Castermans et al45 showed defects in stimulated secretion of ves-
icles from mouse β-TC3 cells that were depleted of NBEA. In ad-
dition, defects in platelet-dense granule morphology were found 
in the ASD patient with the NBEA disruption.45 Electron micros-
copy showed platelets with smaller, more irregular, and differently 
localized dense granule cores when compared to control plate-
lets.45,46 This study suggested the involvement of NBEA in ASD 
via its function in vesicle trafficking, morphology, and secretion. 
Heterozygous NBEA knockout mice suggested NBEA involvement 
in neurotransmitter release and synaptic functioning,46 and these 
mice also presented with defects in social behavior, conditioned 
fear response, spatial learning, and memory.43 Platelets from 
these NBEA knockout mice were smaller than controls and had 
abnormal dense-core halos.47 A proteomics study further revealed 
that these platelets had a reduction in actin-interacting elements, 
which could contribute to the cytoskeletal changes observed in 
the platelets.47 These studies highlight a promising avenue of 
using platelets to study ASD patients. Nonetheless, more studies 
on ASD subjects need to be performed to completely understand 

F IGURE  2 PubMed search data 
for platelet studies related to autism. 
The number of studies in an interval 
of 10 years were plotted from 1970 to 
2018. All platelet studies in autism were 
retrieved using the keywords “platelet 
OR platelets AND autism NOT PECAM 
NOT Platelet Factor 4” are shown in 
blue. All platelet studies related to the 
serotonin metabolism were found using 
the keywords “Platelet OR Platelets AND 
Autism AND serotonin” are shown in red. 
About 80% of all platelet studies have 
focused on the serotonin metabolism, 
while only in the most recent 8 years, 
studies appeared that focused on the 
many other platelet characteristics
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the role of NBEA in platelet-dense granule secretion and function. 
A recent study validated NBEA as a neurodevelopmental disorder 
gene, but patients presented with a broader phenotypic spectrum 
than ASD, including early generalized epilepsy.48 Platelet studies 
were not performed for this cohort.

5  | HYPERSEROTONEMIA IN 
AUTISM PLATELETS

In the search for a biomarker for ASD using platelets, the first stud-
ies appeared in the 1970s, when it was noted that platelet 5-HT 
levels were higher in patients with early-onset autism compared 
to controls.17,18 By refining our PubMed search for studies focus-
ing on the 5-HT metabolism, it is clear that over the past 50 years, 
80% of all the platelet-based research for ASD has focused on this 
topic (Figure 2). To inform the readers about this field, we selected 
research-based articles that each added a unique finding on top 
of measuring 5-HT levels in whole blood, plasma, or platelets, and 
this in cohorts ranging from 17 to 292 ASD cases. These stud-
ies are introduced in Table 1, together with their main conclusion. 
Most of these studies actually confirmed the initial discovery and 
hyperserotonemia was detected in about 17% to 40% of the ASD 
cases using whole blood or platelets. Studies that found normal 
or even lower 5-HT levels in ASD cases used small cohorts (<25 
cases) and plasma samples, therefore excluding platelet-derived 5-
HT. Hyperserotonemia was found to be correlated to age; ethnic-
ity; sex; genetic variants in genes regulating 5-HT uptake (SLC6A4), 
synthesis (TPH1), or degradation (MAOA and MAOB); autoimmun-
ity; gastrointestinal system, cognitive ability; and genetic variation 
in ITGB3, the gene coding for part of the important platelet activa-
tion receptor αIIbβ3 (Table 1). A recent meta-analysis by Gabriele 
et  al,49 comparing 22 previously established studies involving a 
total of 739 autism subjects and 868 controls, revealed signifi-
cantly elevated 5-HT levels in ASD cases compared to controls, 
and this for both whole blood (~23%) and platelet-rich plasma 
(~29%) data sets. According to Gabriele et  al,49 the overall sen-
sitivity of high platelet 5-HT in ASD is quite high (28% in whole 
blood and 22% in platelet-rich plasma when compared across vari-
ous studies). In another study, a combination of 5-HT, N-acetyl 
serotonin (NAS) and melatonin together, resulted in a sensitivity 
of 80% and specificity of 85%, when distinguishing ASD cases 
from controls.50 There are different methods to quantify 5-HT. 
The most widely used are high-performance liquid chromatogra-
phy electrochemical detection (HPLC-ECD) and ELISA.51,52 Both 
methods are sensitive, time consuming, and expensive and give 
comparable results, though ELISA can be slightly more sensitive 
but less specific compared to HPLC-ECD.51,53 Therefore, most 
studies seem to support the hypothesis that blood and/or platelet 
hyperserotonemia could serve as an ASD biomarker, though more 
larger-cohort studies are required.

Different studies have tried to explain the mechanism be-
hind platelet hyperserotonemia detected in ASD. Recognizing 

the importance of SERT in both platelets and CNS, studies were 
performed to assess its potential role in ASD hyperserotonemia. 
It was found that ASD patients express higher levels of SERT on 
platelet membranes while the affinity of SERT for 5-HT remains 
the same, resulting in increased 5-HT internalization.54 Coding 
and noncoding variants in the SERT gene SLC6A4 have been iden-
tified, which are associated with elevated 5-HT levels in ASD.55 
Interestingly, transgenic mice overexpressing the coding gain-of-
function (GOF) variant Ala56 in SERT presented with behavioral 
impairment and hyperserotonemia.56 Therefore, enhanced SERT 
on platelet membranes can account for hyperserotonemia in at 
least some ASD cases, but other contributing factors have also 
been detected. Common variants in ITGB3, which encodes the β-
chain of the platelet activation receptor integrin αIIbβ3 (glycopro-
tein GPIIbIIIa), have been linked to increased SERT activity and 
elevated blood 5-HT levels, as discussed in more detail in the next 
section.57,58 Another reason for whole blood hyperserotonemia 
could be the mildly increased platelet counts noted in some ASD 
studies,17,59,60 though this cannot explain the hyperserotonemia 
detected in most studies.

6  | PLATELET ACTIVATION RECEPTOR 
αIIbβ3  AND AUTISM

Platelet-platelet interaction during their activation is regulated via 
fibrinogen that binds to its membrane receptor integrin αIIbβ3. 
Following mild platelet activation, αIIbβ3 integrins undergo a confor-
mational change to expose their binding site for fibrinogen (Figure 1). 
Numerous platelets are eventually linked by such fibrinogen bridges, 
resulting in a platelet plug.61,62 As mentioned above, the β-chain of the 
αIIbβ3 receptor is encoded by ITGB3 and variants for this gene have 
been associated with elevated blood 5-HT levels in ASD.57,63,64 The 
β3-subunit associates with αIIb to form the integrin αIIbβ3 in platelets, 
and with αv to form the integrin αvβ3 in neurons.65 In platelets, acti-
vated integrin αIIbβ3 interacts directly with the C-terminus of SERT 
and enhances the externalization and function of SERT.66 Similarly, in 
the midbrain and cortical neurons, integrin αvβ3 was also observed to 
be involved in the regulation of SERT.67 Preliminary data from Carter 
et al68 showed that Itgb3 knockout mice were found to have altered 
social and repetitive behavior patterns, and they did not show interest 
toward social novelty. Such behavioral defect has not been validated in 
patients with Glanzmann thrombasthenia with inactivating variants in 
ITGB3, according to the literature.61,69 These patients have a recessive 
bleeding disorder with absent platelet aggregation responses to most 
agonists, but ASD phenotypes have never been reported for these pa-
tients.61 Severe psychomotor retardation was reported in only a single 
patient with Glanzmann thrombasthenia in combination with tuber-
ous sclerosis, which is a multisystemic disorder, sometimes presenting 
with ASD.70 Interestingly, a recent study showed that a variant in the 
ITGB3 gene promoter is associated with enhanced promoter activity in 
megakaryocytes, higher β3-subunit expression in platelets, enhanced 
expression of SERT on the plasma membrane, and elevated 5-HT levels 
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TABLE  1 Literature review on serotonin quantifications using blood or blood-derived substances from patients with autism

Serotonin levels
Number of ASD 
samples

Blood or blood-derived 
substances Study outcome References

1 Normal 6 Platelets Endogenous 5-HT was slightly 
diminished but significant increase 
in platelet/mL plasma; 2-fold higher 
efflux of radioactive 5-HT from ASD 
patient platelets, which could indicate 
defective 5-HT turnover in the brain

Boullin et al18

2 Hyperserotonemia 
— Normal

24 Whole blood 5-HT level and platelet count are 
higher in ASD, while 5-HT level cor-
rected for platelet count was similar 
between ASD and controls

Ritvo et al17

3 Hyperserotonemia 77 Whole blood Higher 5-HT levels in ASD while 
normal in mentally retarded or cogni-
tively impaired cases. Study points to 
the importance of matching for age 
and ethnicity

McBride et al60

4 Hyposerotonemia 10 Plasma Lower 5-HT levels in adults with ASD 
and inversely correlated with Overt 
Aggression Scale score

Spivak et al90

5 Hyposerotonemia 17 Plasma Lower 5-HT levels in mothers of ASD 
cases supporting the hypothesis that 
maternal 5-HT would be a risk factor 
for ASD through effects on fetal brain 
development

Connors et al91

6 Hyperserotonemia 53 Platelets Higher 5-HT levels in 32% of ASD 
cases and a negative correlation with 
their speech development

Hranilovic et al92

7 Hyperserotonemia 109 Platelets Higher 5-HT levels in ASD cases and 
this in association with common 
SLC6A4 and ITGB3 haplotypes, each 
separately but also via a significant 
interaction between those genetic 
markers

Coutinho et al93

8 Hyperserotonemia 23 Platelets Higher 5-HT levels in 17% of PDD 
cases without an elevation in intesti-
nal permeability measured by sugar 
absorption

Kemperman et al94

9 Hyperserotonemia 63 Platelets Association between high 5-HT in 
ASD and common variants in genes 
regulating 5-HT synthesis (TPH1) and 
degradation (MAOA).

Hranilović et al95

10 Hyperserotonemia 50 Serum Higher 5-HT and autoimmunity marker 
anti-myelin-basic protein (anti-MBP) 
levels in ASD but no correction be-
tween both markers

Mostafa et al96

11 Normal 23 Plasma Normal 5-HT levels in plasma point 
out that hyperserotonemia in ASD 
platelets results from the platelet’s 
handling of 5-HT and not from their 
increased exposure to 5-HT

Anderson et al97

12 Hyperserotonemia 279 Whole blood Higher whole blood 5-HT levels in 
40%, lower plasma melatonin in 51%, 
and higher platelet NAS in 47% of 
ASD cases. This study points to a dis-
ruption of the 5-HT/NAS/melatonin 
pathway in ASD

Pagan et al50

(Continues)
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in blood from ASD cases.63 This would mean that ASD is not associated 
with inactivating but rather GOF variants in ITGB3, probably explaining 
the absence of obvious autism phenotypes in patients with Glanzmann 
thrombasthenia. However, a case report with a GOF variant in ITGB3 
was reported with bleeding symptoms and mild thrombocytopenia, 
but a neurological phenotype was not reported.71 Platelets from this 
patient showed enhanced fibrinogen binding but also low αIIbβ3 ex-
pression levels, and this probably will not result in enhanced SERT ex-
pression on the platelet membrane, though it was not studied. Further 
studies are needed that focus on the role of this important platelet 
activation receptor in neuropathology.

7  | PLATELET FUNCTION, COUNT, AND 
SIZE STUDIES IN AUTISM

Using a light-transmission aggregometer, platelets are activated by 
adding an agonist such as ADP, collagen, thrombin, epinephrine or 
thromboxane A2 analog (U46619) that boosts platelet-platelet inter-
actions and the release of their granules to achieve a full activation 
response20,72 (Figure 1). Table 2 presents the few studies that have 

performed platelet activation studies for ASD. In 1988, platelet ag-
gregations were performed for children with infantile autism, and a 
consistent, though not significant, trend of lower platelet responses 
was detected after activation with collagen and ADP.73 About 
20  years later, a study showed a borderline significant decrease in 
ADP-induced platelet aggregation for ASD cases with normal but not 
increased platelet 5-HT levels.74 Recently, detailed platelet function 
studies were performed for a larger cohort of 159 idiopathic ASD 
cases and their first-degree relatives.59 Though the maximal platelet 
aggregation response to epinephrine was not lower for ASD cases, 
its secondary wave response, which is dependent on dense gran-
ule secretion, was more frequently delayed or absent in ASD cases 
compared to controls. In addition, stimulated release of ATP from 
dense granules was reduced in ASD cases and their first-degree rela-
tives compared to unrelated controls following activation with ADP 
and collagen.59 These findings suggest that at least for a subgroup 
of ASD cases, platelet granule secretion and subsequent activation 
is impaired, but it was not clear if this observation is linked to defects 
in 5-HT uptake or release. Again, larger cohort studies are required 
to validate platelet functional parameters. Other platelet parameters 
such as their size (mean platelet volume) and count are not widely 

Serotonin levels
Number of ASD 
samples

Blood or blood-derived 
substances Study outcome References

13 Hyperserotonemia 20 Plasma Higher 5-HT levels in ASD patients and 
their unaffected siblings, suggesting 
heritability of this trait

Bijl et al59

14 Hyperserotonemia 203 Platelets Association between high 5-HT in 
male ASD cases and common vari-
ants in MAOB gene regulating 5-HT 
degradation

Chakraborti et al98

15 Hyperserotonemia 82 Whole blood Correlation between high 5-HT in ASD 
and lower gastrointestinal symptoms

Marler et al99

16 Hyperserotonemia 292 Whole blood The largest study performed to date 
showing higher 5-HT levels but only 
in prepubertal ASD patients (42%) 
and this more likely in males

Shuffrey et al100

17 Hyperserotonemia 213 Whole blood Platelet NAS has higher heritability 
than hyperserotonemia and lowered 
melatonin in ASD

Benabou et al77

18 Hyperserotonemia 181 Whole blood Negative correlation between maternal 
5-HT levels and cognitive abilities in 
ASD

Montgomery 
et al101

19 Hyperserotonemia 176 Platelet rich plasma A promotor SNP in ITGB3 that results 
in enhanced promoter activity during 
megakaryocyte differentiation is 
associated with higher integrin β3 
protein expression and higher platelet 
5-HT levels in ASD patients. ITGB3 
is known to support SERT trafficking 
to the platelet membrane allowing 
enhanced 5-HT uptake in platelets

Gabriele et al63

Abbreviations: 5-HT, 5-hydroxytryptamine; ASD, autism spectrum disorder; NAS, N-acetyl serotonin; PDD, pervasive developmental disorder (part 
of ASD).

TABLE  1  (Continued)
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studied. Bijl et al59 reported only a mild increase in platelet count for 
ASD cases and their siblings.

8  | SEROTONIN DERIVATIVES N-ACETYL 
SEROTONIN AND MELATONIN IN AUTISM

The biosynthesis of melatonin occurs following 5-HT acetylation by 
the enzyme arylalkylamine N-acetyltransferase (AANAT) to NAS, 
which is then methylated by acetylserotonin O-methyltransferase 
(ASMT) to melatonin.75,76 It has been shown in the literature that 
there is a reduction in the plasma level of melatonin in ASD cases.50 
NAS is an important intermediate in the pathway of melatonin bio-
synthesis from 5-HT, and it has been found to be transported to 
platelet-dense granules, along with 5-HT.75 Recent studies found 
increased NAS levels in ASD platelets and that this observation 
was more heritable in ASD families than hyperserotonemia and de-
creased melatonin (Table  1).50,75,77 Increased NAS, together with 
decreased melatonin, probably points to a defect in the melatonin 
synthesis pathway. Indeed, the activities of AANAT and ASMT, the 
2 key enzymes contributing to melatonin synthesis, were reduced 
in postmortem samples of the pineal gland, gut, and platelets of 
ASD cases.75 Furthermore, it was noted that the heritability of re-
duction in ASMT activity was also higher than hyperserotonemia 
but similar to NAS.77 Melatonin has been well studied due to its use 
as a sleep inducer, but more recent studies have shown that NAS 
can regulate mood.78,79 It has also been shown to bind to the tro-
pomyosin receptor kinase B receptor similar to the brain-derived 
neurotrophic factor, suggesting a role in neuronal growth and pro-
liferation.75,79 This was confirmed in hippocampal neurons in sleep-
deprived mice.78,79 Therefore, increased platelet NAS could echo 
its levels in the CNS, which in turn supports an abnormal growth 
acceleration in neural precursor cells from ASD cases as observed 
in a study by Schafer et al.80 Platelet NAS should be measured in 

larger ASD cohorts in addition to 5-HT to evaluate its potential as 
an ASD biomarker.

9  | OTHER NEUROTRANSMITTERS 
STORED IN PLATELETS AND STUDIED 
IN AUTISM

There is very limited evidence of other neurotransmitter changes 
in platelets of ASD patients. In one of the earliest studies focused 
on peripheral biomarkers for autism, Lake et  al81 discovered an 
increased level of plasma norepinephrine, which they attributed 
to the low activity of the enzyme dopamine β-hydroxylase, which 
is responsible for the conversion of dopamine to norepinephrine. 
Ten years later, this observation was confirmed by another study 
that also detected a significant increase of epinephrine in plasma, 
together with a decrease in platelet epinephrine, norepinephrine, 
and dopamine in ASD subjects.82 Such data suggest a broader bi-
oamine metabolism defect in ASD. Following these initial studies 
(performed in only 22 ASD cases), no substantial progress has been 
made regarding the status of these neurotransmitters in larger ASD 
cohorts.

Other platelet neurotransmitters studied in ASD are the major 
inhibitory neurotransmitter GABA and the major excitatory neu-
rotransmitter glutamate. The imbalance in the excitation/inhibition 
pathways of these neurotransmitters has been reported in ASD.83 
Platelets contain glutamate in their dense granules, which is released 
exclusively by activated platelets and this can enhance platelet acti-
vation.84,85 On the other hand, platelet aggregation is influenced by 
GABA, which is only 30% less abundant in platelets compared to cul-
tured neurons.86 Though these neurotransmitters are actively stud-
ied in ASD cases, studies investigating their expression or function 
in autism platelets, are very limited. While early studies suggested 
decreased levels of both GABA and glutamate in ASD platelets,87 

TABLE  2 Literature review on platelet function studies in ASD patients

Functional platelet test Number of ASD samples Agonists Study outcome References

Aggregation 14 ADP, collagen Reduced platelet aggregation with both ago-
nists but did not reach significance due to low 
sample size

Safai-Kutti et al73

Aggregation 7 ADP and 5-HT Reduced 5-HT amplified aggregation indicating 
a defect in platelet 5-HT2 receptor complex

McBridge et al102

Aggregation 17 ADP Marginally significant reduction in aggregation 
in ASD patients with normal platelet 5-HT 
levels indicating that the platelet functional 
defect could be independent of the seroton-
ergic system

Hranilović et al74

ATP secretion 159 ADP, collagen Reduced stimulated release of ATP from plate-
lets of ASD patients and first-degree relatives 
indicating potentially heritable dense granule 
secretion defect

Bijl et al59

Abbreviations: 5-HT, 5-hydroxytryptamine; ASD, autism spectrum disorder.
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subsequent studies have shown an elevation of plasma GABA and 
glutamate levels in ASD.83,88,89

10  | FUTURE PERSPECTIVES USING 
PLATELETS FOR ASD RESEARCH

The exact pathophysiology of ASD has remained elusive over the 
years even though diagnostic and monitoring strategies have im-
proved over time. This is in part due to ASD essentially being a 
spectrum that encompasses several disorders that seem to con-
verge when it comes to the ASD core symptoms. Biomarkers, 
endophenotypes, and patient-derived peripheral cell models can 
prove very useful in understanding ASD, thereby providing better 
stratification along the spectrum. To this end, platelet studies have 
shed more light on the ASD, defined by platelet hyperserotonemia. 
It would be interesting to determine 5-HT and its related markers, 
NAS and melatonin, in very large cohort studies to study associa-
tions with diverse autism characteristics that are now all grouped 
under the term ASD. However, though hyperserotonemia in blood 
and platelets from ASD cases is a consistent observation that is 
over half a century old, the exact underlying mechanism deserves 
further molecular studies. Perhaps the answer lies in the basic bio-
chemical properties shared by platelets and neurons, the reason 
behind which has never been explored in the literature. The small 
steps forward in this field are probably the result of the fact that 
blood and especially platelets are relatively foreign systems to 
most neuroscientists. Some initial studies have been performed 
to explain hyperserotonemia that have focused on genetic factors 
that modify SERT expression or activity to modify 5-HT uptake by 
platelets as described in this review. The main question remains as 
to where the extra 5-HT detected in ASD cases originates. As 95% 
of the total body 5-HT is produced by the enterochromaffin cells 
of the gut, alterations in this metabolism could result in altered 
5-HT uptake in the blood and platelets. It would be interesting to 
study this in Itgb3 knockout mice. Future studies combining micro-
biome and platelet studies in ASD cases could also provide novel 
insights.

Furthermore, studies that focus on platelet functional tests and 
platelet-dense granule formation and morphology, should be under-
taken for larger ASD cohorts and in animal models for known ASD 
genes. It would also be very interesting to know if the defects of 
platelet-dense granules and hyperserotonemia in ASD are related. Due 
to the complex heritability of ASD, the ultimate goal would be to split all 
ASD cases into subgroups with a more specific endophenotype, such 
as having ASD with a platelet-dense granule secretion defect, to assist 
the analysis of next-generation sequencing studies for ASD gene dis-
covery, by the selection of candidate genes related to granule biology.
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