# organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# 1,2:5,6-Di-O-isopropylidene-3-C-methyl*a*-D-allofuranose

# Luana da Silva Magalhães Forezi,<sup>a</sup> Marcos Moitrel Pequeno Silva,<sup>b</sup> Fernanda da Costa Santos,<sup>a</sup>\* Vitor Francisco Ferreira<sup>a</sup> and Maria Cecília Bastos Vieira de Souza<sup>a</sup>

<sup>a</sup>Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, Niterói – RJ, CEP 24020-150, Brazil, and <sup>b</sup>Departamento de Química Inorgânica, Instituto de Química, Universidade Federal Fluminense, Niterói – RJ, CEP 24020-150, Brazil

Correspondence e-mail: fernand@vm.uff.br

Received 16 May 2013; accepted 9 August 2013

Key indicators: single-crystal X-ray study; T = 293 K; mean  $\sigma$ (C–C) = 0.007 Å; disorder in main residue; R factor = 0.046; wR factor = 0.130; data-to-parameter ratio = 15.2.

The title carbohydrate,  $C_{13}H_{22}O_6$ , is a derivative of D-glycose, in which the furanosidic and isopropylidene rings are in twisted conformations. The mean plane of the furanosidic ring makes a dihedral angle of 70.32 (18)° with the mean plane of the fused isopropylidene ring. The methyl groups in the other isopropylidene ring are disordered over two sets of sites, with an occupancy ratio of 0.74 (6):0.26 (6). In the crystal, molecules are linked by O–H···O hydrogen bonds into chains with graph-set notation C(5) along [100]. Weak C–H···O interactions also occur.

### **Related literature**

For background information on this class of compound, see: Bio *et al.* (2004); Canuto *et al.* (2007); Mane *et al.* (2008); Yoneda *et al.* (2011). For details of ring-puckering calculations, see: Cremer & Pople (1975). Graph-set notation for the description of hydrogen-bonding motifs is given by Bernstein *et al.* (1995).



# **Experimental** *Crystal data*

| 99.65 (2)°             |
|------------------------|
| 103.69 (3)°            |
| 98.86 (2)°             |
| 382.0(3)Å <sup>3</sup> |
| 1                      |
| $K\alpha$ radiation    |
|                        |

 $\mu = 0.09 \text{ mm}^{-1}$ T = 293 K

#### Data collection

Nonius KappaCCD diffractometer 9589 measured reflections 2758 independent reflections

## Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.046 \\ wR(F^2) &= 0.130 \\ S &= 1.04 \\ 2758 \text{ reflections} \\ 181 \text{ parameters} \\ 8 \text{ restraints} \\ \text{H-atom parameters constrained} \\ \Delta\rho_{\text{max}} &= 0.21 \text{ e } \text{ Å}^{-3} \end{split}$$

#### Table 1 Hydrogen bond geor

Hydrogen-bond geometry (Å, °).

| $D - H \cdot \cdot \cdot A$ | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|-----------------------------|------|-------------------------|--------------|--------------------------------------|
| $O3-H3\cdots O4^{i}$        | 0.82 | 2.28                    | 3.022 (4)    | 152                                  |
| $C1-H1\cdots O2^{ii}$       | 0.98 | 2.58                    | 3.218 (5)    | 123                                  |
| $C2-H2\cdots O6^{iii}$      | 0.98 | 2.54                    | 3.504 (5)    | 167                                  |

Symmetry codes: (i) x - 1, y, z; (ii) x + 1, y, z; (iii) x, y, z + 1.

Data collection: *COLLECT* (Nonius, 2004); cell refinement: *DIRAX/LSQ* (Duisenberg, 1992); data reduction: *EVALCCD* (Duisenberg *et al.*, 2003); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2013* (Sheldrick, 2013); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *WinGX* (Farrugia, 2012).

This work was supported by the Brazilian agencies FAPERJ, CAPES and CNPq, and by the X-ray diffraction laboratory LDRX-UFF for the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2484).

#### References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 35, 1555–1573.
- Bio, M. M., Xu, F., Waters, M., Williams, J. M., Savary, K. A., Cowden, C. J., Yang, C., Buck, E., Song, Z. J., Tschaen, D., Volante, R. P., Reamer, R. A. & Grabowski, E. J. J. (2004). J. Org. Chem. 69, 6257–6266.
- Canuto, C. V. B. S., Gomes, C. R. B., Marques, I. P., Faro, L. V., Santos, F. C., Frugulhetti, I. C. P. P., Souza, T. M. L., Cunha, A. C., Romeiro, G. A., Ferreira, V. F. & Souza, M. C. B. V. (2007). *Lett. Drug. Des. Discov.* 4, 404– 409.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.
- Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Mane, R. S., Kumar, K. S. A. & Dhavale, D. D. (2008). J. Org. Chem. 73, 3284–3287.
- Nonius (2004). COLLECT. Nonius BV, Delft, The Netherlands.
- Parsons, S. & Flack, H. (2004). Acta Cryst. A60, s61.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2013). SHELXL2013. University of Göttingen, Germany.
- Yoneda, J. D., Velloso, M. H. R., Leal, K. Z., Azeredo, R. B. V., Sugiura, M., Albuquerque, M. G., Santos, F. C., Souza, M. C. B. V., Cunha, A. C., Seidl, P. R., Alencastro, R. B. & Ferreira, V. F. (2011). J. Mol. Struct. 985, 1–4.



 $\Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$ 

Absolute structure: Flack x

to define handedness

calculated using 872 quotients

(Parsons & Flack, 2004). There is

insufficient information present

 $[(I^+) - (I^-)]/[(I^+) + (I^-)]$ 

 $R_{\rm int} = 0.043$ 

2107 reflections with  $I > 2\sigma(I)$ 

# supplementary materials

Acta Cryst. (2013). E69, o1512 [doi:10.1107/S1600536813022447]

# 1,2:5,6-Di-O-isopropylidene-3-C-methyl-α-D-allofuranose

# Luana da Silva Magalhães Forezi, Marcos Moitrel Pequeno Silva, Fernanda da Costa Santos, Vitor Francisco Ferreira and Maria Cecília Bastos Vieira de Souza

# 1. Comment

The structural modification of carbohydrates has been extensively explored for improvement of their pharmacology properties (Bio *et al.*, 2004; Canuto *et al.* (2007); Mane *et al.* 2008; Yoneda *et al.* 2011). As ongoing research in developing potentially new drugs, we report here the structure of 1,2:5,6-Di-O-isopropylidene-3-C-methyl- $\alpha$ -D-allofuranose.

In the title molecule (Fig. 1), the torsion angle formed by atoms O4, C1, C2, O2 is  $101.6 (3)^{\circ}$  and that formed by O1, C1, C2, C3, is  $-130.8 (3)^{\circ}$ .

The structure exhibits disorder in a isopropylidene group (atoms C71A, C72A, C71B and C72B) over two positions. Rings A (O1,C1,C2,O2,C8) and B (C1,C2,C3,C4,O4) adopt a twisted conformation, with ring-puckering parameters q2 = 0.223 (5) Å,  $\varphi 2 = 277$  (1)°; q2 = 0.376 (5) Å,  $\varphi 2 = 89.8$  (6)°, respectively. Ring C (O5,C5,C6,O6,C7) also shows a twist conformation, with ring-puckering parameters q2 = 0.404 (3) Å,  $\varphi 2 = 196.021$  (1)° (Cremer & Pople, 1975).

In the crystal packing, molecules are linked by O—H···O hydrogen bonds into chains with graph-set notation C(5) along [100] (Bernstein *et al.*, 1995). There are also short C—H···O interactions that form a C(7) chain motif along [001] direction (Fig. 2).

# 2. Experimental

The reaction for obtaining the title compound was taken under nitrogen in a tritubulate vessel. To it, 2.64 ml (3.95 mmol) of methyl magnesium bromide 3 *M* diluted in THF (7.9 mmol, 2 eq) was added. Then, under vigorous stirring and in a ice bath, 3.96 mmol (1.02 g) diluted in dry THF was poured into the solution. The reaction took place for 5 h in room temperature. After finishing the reaction, it was slowly added dropwise 10 ml of distilled water and 1 g of Celite, filtering the resultant product in a Celite layer. The THF solvent was removed by heat. The aqueous phase was extracted with  $CH_2Cl_2$  (3 × 30 ml) and the product washed with distilled water (3 × 20 ml), dried with MgSO<sub>4</sub> anhydrous and the solvent eliminated on a vacuum rotator evaporator apparatus. The solid was recrystallized in hexane and the yellow solid product was obtained with 72% yield. (m.p. = 104–105°C) (Bio *et al.*, 2004).

# 3. Refinement

The H atoms were placed at calculated idealized positions and refined using a riding model with individual displacement parameters  $U_{iso}(H) = 1.2 U_{eq} (Csp^2)$  or  $1.5 U_{eq}$  (methyl and hydroxyl groups).

# **Computing details**

Data collection: *COLLECT* (Nonius, 2004); cell refinement: *DIRAX/LSQ* (Duisenberg, 1992); data reduction: *EVALCCD* (Duisenberg *et al.*, 2003); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2013* (Sheldrick, 2013); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to



prepare material for publication: *WinGX* (Farrugia, 2012).

# Figure 1

Ellipsoid plot representation of the molecular structure of compound I with displacement ellipsoids drawn at the 30% probability level. Atoms C71A/B and C72A/B are disordered with fractional occupancies of 0.74 (6):0.26 (6) for the A and B components, respectively.



# Figure 2

A packing diagram of (I), viewed approximately down the *b* axis. Hydrogen-bonds are shown by dashed lines.

# 1,2:5,6-Di-O-isopropylidene-3-C-methyl-α-D-allofuranose

Crystal data

 $C_{13}H_{22}O_6$   $M_r = 274.3$ Triclinic, P1 Hall symbol: P1 a = 5.503 (4) Å b = 8.113 (1) Å c = 9.122 (2) Å a = 99.65 (2)°  $\beta = 103.69$  (3)°  $\gamma = 98.86$  (2)° V = 382.0 (3) Å<sup>3</sup>

#### Data collection

Nonius KappaCCD diffractometer Radiation source: Enraf–Nonius FR590 Graphite monochromator Detector resolution: 9 pixels mm<sup>-1</sup> CCD rotation images, thick slices scans 9589 measured reflections

## Refinement

Refinement on  $F^2$  $w = 1/[\sigma^2(F_0^2) + (0.0729P)^2 + 0.0707P]$ where  $P = (F_0^2 + 2F_c^2)/3$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.046$  $(\Delta/\sigma)_{\rm max} < 0.001$  $wR(F^2) = 0.130$  $\Delta \rho_{\rm max} = 0.21 \ {\rm e} \ {\rm \AA}^{-3}$ S = 1.04 $\Delta \rho_{\rm min} = -0.24 \ {\rm e} \ {\rm \AA}^{-3}$ 2758 reflections Extinction correction: SHELXL2013 (Sheldrick, 181 parameters 2013) 8 restraints Extinction coefficient: 0.20 (3) Hydrogen site location: inferred from Absolute structure: Flack x calculated using 872 neighbouring sites quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & H-atom parameters constrained Flack, 2004). There is insufficient information present to define handedness. Absolute structure parameter: -0.2(5)

## Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Z = 1

F(000) = 148

 $\theta = 3.1 - 27.5^{\circ}$ 

 $\mu = 0.09 \text{ mm}^{-1}$ 

Prism, colourless

 $0.14 \times 0.11 \times 0.08 \text{ mm}$ 

 $\theta_{\text{max}} = 25.7^{\circ}, \ \theta_{\text{min}} = 3.1^{\circ}$ 

2758 independent reflections

2107 reflections with  $I > 2\sigma(I)$ 

T = 293 K

 $R_{\rm int} = 0.043$ 

 $h = -6 \rightarrow 6$ 

 $k = -9 \rightarrow 9$ 

 $l = -11 \rightarrow 11$ 

 $D_{\rm x} = 1.192 {\rm Mg m^{-3}}$ 

Mo *K* $\alpha$  radiation,  $\lambda = 0.71073$  Å

Cell parameters from 3284 reflections

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

|    | x           | У           | Ζ          | $U_{ m iso}$ */ $U_{ m eq}$ | Occ. (<1) |
|----|-------------|-------------|------------|-----------------------------|-----------|
| 01 | 0.2339 (6)  | -0.0979 (4) | 0.6028 (5) | 0.0646 (10)                 |           |
| O2 | -0.0659 (5) | 0.0519 (3)  | 0.6425 (3) | 0.0456 (8)                  |           |
| O3 | -0.0994 (5) | 0.3540 (4)  | 0.5720 (3) | 0.0434 (7)                  |           |
| H3 | -0.2119     | 0.2677      | 0.5383     | 0.065*                      |           |
| 04 | 0.3788 (5)  | 0.1260 (4)  | 0.4944 (3) | 0.0446 (7)                  |           |
| O5 | 0.0585 (6)  | 0.3883 (5)  | 0.2656 (4) | 0.0633 (10)                 |           |

| O6   | 0.2663 (8)   | 0.3148 (8)  | 0.0861 (5)   | 0.1016 (17) |          |
|------|--------------|-------------|--------------|-------------|----------|
| C1   | 0.3517 (7)   | 0.0751 (5)  | 0.6312 (5)   | 0.0394 (9)  |          |
| H1   | 0.5169       | 0.0992      | 0.7088       | 0.047*      |          |
| C2   | 0.1689 (7)   | 0.1724 (5)  | 0.6883 (4)   | 0.0357 (9)  |          |
| H2   | 0.2256       | 0.2197      | 0.7997       | 0.054*      |          |
| C3   | 0.1409 (6)   | 0.3087 (5)  | 0.5930 (4)   | 0.0327 (9)  |          |
| C4   | 0.1819 (7)   | 0.2156 (5)  | 0.4429 (5)   | 0.0397 (9)  |          |
| H4   | 0.0255       | 0.1324      | 0.3853       | 0.048*      |          |
| C5   | 0.2672 (8)   | 0.3188 (6)  | 0.3367 (5)   | 0.0486 (11) |          |
| Н5   | 0.4124       | 0.411       | 0.3948       | 0.058*      |          |
| C6   | 0.3295 (12)  | 0.2203 (10) | 0.2017 (6)   | 0.0787 (18) |          |
| H6A  | 0.5092       | 0.2151      | 0.2255       | 0.094*      |          |
| H6B  | 0.2282       | 0.1051      | 0.1701       | 0.094*      |          |
| C7   | 0.0949 (10)  | 0.4150 (9)  | 0.1214 (6)   | 0.0727 (17) |          |
| C71A | 0.222 (7)    | 0.598 (3)   | 0.144 (3)    | 0.149 (7)   | 0.74 (6) |
| H71A | 0.0946       | 0.6662      | 0.1244       | 0.223*      | 0.74 (6) |
| H71C | 0.3259       | 0.6077      | 0.0732       | 0.223*      | 0.74 (6) |
| H71B | 0.3279       | 0.6382      | 0.2478       | 0.223*      | 0.74 (6) |
| C72A | -0.147 (3)   | 0.345 (4)   | -0.0032 (17) | 0.116 (6)   | 0.74 (6) |
| H72A | -0.1074      | 0.3085      | -0.099       | 0.174*      | 0.74 (6) |
| H72B | -0.2456      | 0.4326      | -0.0132      | 0.174*      | 0.74 (6) |
| H72C | -0.2427      | 0.2503      | 0.0222       | 0.174*      | 0.74 (6) |
| C71B | 0.204 (18)   | 0.595 (8)   | 0.107 (11)   | 0.149 (7)   | 0.26 (6) |
| H71D | 0.1085       | 0.6732      | 0.145        | 0.223*      | 0.26 (6) |
| H71E | 0.1935       | 0.5954      | 0.0005       | 0.223*      | 0.26 (6) |
| H71F | 0.3798       | 0.6279      | 0.1663       | 0.223*      | 0.26 (6) |
| C72B | -0.180 (6)   | 0.404 (11)  | 0.027 (6)    | 0.116 (6)   | 0.26 (6) |
| H72D | -0.1971      | 0.3568      | -0.0794      | 0.174*      | 0.26 (6) |
| H72E | -0.2186      | 0.5155      | 0.0375       | 0.174*      | 0.26 (6) |
| H72F | -0.2952      | 0.3311      | 0.0647       | 0.174*      | 0.26 (6) |
| C8   | -0.0148 (8)  | -0.1149 (6) | 0.6267 (6)   | 0.0517 (12) |          |
| C81  | -0.2032 (11) | -0.2263 (8) | 0.4845 (8)   | 0.0820 (17) |          |
| H81A | -0.1132      | -0.2828     | 0.4198       | 0.123*      |          |
| H81B | -0.3017      | -0.1573     | 0.429        | 0.123*      |          |
| H81C | -0.3152      | -0.31       | 0.5137       | 0.123*      |          |
| C82  | -0.0177 (13) | -0.1798 (8) | 0.7692 (8)   | 0.0823 (18) |          |
| H82A | 0.1478       | -0.2012     | 0.8139       | 0.123*      |          |
| H82C | -0.1428      | -0.2839     | 0.7441       | 0.123*      |          |
| H82B | -0.0598      | -0.0963     | 0.8418       | 0.123*      |          |
| C9   | 0.3413 (8)   | 0.4681 (5)  | 0.6694 (5)   | 0.0454 (10) |          |
| H9C  | 0.3209       | 0.5524      | 0.6076       | 0.068*      |          |
| H9B  | 0.5079       | 0.4417      | 0.6796       | 0.068*      |          |
| H9A  | 0.3227       | 0.5117      | 0.7699       | 0.068*      |          |

Atomic displacement parameters  $(\mathring{A}^2)$ 

|    | $U^{11}$    | U <sup>22</sup> | $U^{33}$    | $U^{12}$    | $U^{13}$    | $U^{23}$    |
|----|-------------|-----------------|-------------|-------------|-------------|-------------|
| 01 | 0.0496 (18) | 0.0411 (18)     | 0.120 (3)   | 0.0181 (14) | 0.0450 (19) | 0.0236 (18) |
| O2 | 0.0326 (14) | 0.0361 (15)     | 0.079 (2)   | 0.0128 (12) | 0.0242 (13) | 0.0242 (14) |
| 03 | 0.0304 (14) | 0.0420 (16)     | 0.0656 (19) | 0.0149 (12) | 0.0176 (13) | 0.0193 (14) |

Acta Cryst. (2013). E69, o1512

# supplementary materials

| O4   | 0.0368 (14) | 0.0536 (17) | 0.0531 (17) | 0.0194 (13) | 0.0218 (12) | 0.0149 (14) |
|------|-------------|-------------|-------------|-------------|-------------|-------------|
| 05   | 0.066 (2)   | 0.102 (3)   | 0.0433 (17) | 0.0418 (19) | 0.0250 (15) | 0.0373 (17) |
| O6   | 0.079 (3)   | 0.203 (5)   | 0.059 (2)   | 0.070 (3)   | 0.039 (2)   | 0.056 (3)   |
| C1   | 0.031 (2)   | 0.043 (2)   | 0.052 (2)   | 0.0133 (17) | 0.0156 (17) | 0.0175 (19) |
| C2   | 0.0308 (19) | 0.041 (2)   | 0.040 (2)   | 0.0105 (16) | 0.0139 (16) | 0.0117 (17) |
| C3   | 0.0270 (18) | 0.037 (2)   | 0.038 (2)   | 0.0114 (16) | 0.0119 (15) | 0.0107 (17) |
| C4   | 0.0302 (19) | 0.048 (2)   | 0.041 (2)   | 0.0087 (17) | 0.0079 (16) | 0.0101 (18) |
| C5   | 0.039 (2)   | 0.070 (3)   | 0.042 (2)   | 0.014 (2)   | 0.0138 (19) | 0.021 (2)   |
| C6   | 0.078 (4)   | 0.122 (5)   | 0.061 (3)   | 0.045 (4)   | 0.038 (3)   | 0.037 (3)   |
| C7   | 0.055 (3)   | 0.132 (5)   | 0.045 (3)   | 0.030 (3)   | 0.019 (2)   | 0.037 (3)   |
| C71A | 0.239 (13)  | 0.140 (8)   | 0.076 (15)  | 0.001 (8)   | 0.059 (11)  | 0.059 (8)   |
| C72A | 0.057 (5)   | 0.26 (2)    | 0.048 (6)   | 0.069 (7)   | 0.023 (4)   | 0.033 (8)   |
| C71B | 0.239 (13)  | 0.140 (8)   | 0.076 (15)  | 0.001 (8)   | 0.059 (11)  | 0.059 (8)   |
| C72B | 0.057 (5)   | 0.26 (2)    | 0.048 (6)   | 0.069 (7)   | 0.023 (4)   | 0.033 (8)   |
| C8   | 0.043 (2)   | 0.041 (2)   | 0.083 (3)   | 0.017 (2)   | 0.031 (2)   | 0.021 (2)   |
| C81  | 0.066 (4)   | 0.056 (3)   | 0.115 (5)   | 0.002 (3)   | 0.025 (3)   | 0.005 (3)   |
| C82  | 0.097 (4)   | 0.073 (4)   | 0.112 (5)   | 0.041 (3)   | 0.055 (4)   | 0.056 (4)   |
| С9   | 0.043 (2)   | 0.038 (2)   | 0.056 (2)   | 0.0101 (18) | 0.0146 (18) | 0.0080 (18) |
|      |             |             |             |             |             |             |

Geometric parameters (Å, °)

| O1—C1    | 1.405 (5)  | C7—C71B      | 1.53 (3)  |
|----------|------------|--------------|-----------|
| O1—C8    | 1.426 (5)  | C7—C72B      | 1.53 (2)  |
| O2—C8    | 1.415 (5)  | C71A—H71A    | 0.96      |
| O2—C2    | 1.421 (5)  | С71А—Н71С    | 0.96      |
| O3—C3    | 1.405 (4)  | C71A—H71B    | 0.96      |
| O3—H3    | 0.82       | С72А—Н72А    | 0.96      |
| O4—C1    | 1.412 (5)  | С72А—Н72В    | 0.96      |
| O4—C4    | 1.428 (5)  | С72А—Н72С    | 0.96      |
| O5—C7    | 1.422 (6)  | C71B—H71D    | 0.96      |
| O5—C5    | 1.423 (5)  | C71B—H71E    | 0.96      |
| O6—C7    | 1.395 (8)  | C71B—H71F    | 0.96      |
| O6—C6    | 1.415 (8)  | C72B—H72D    | 0.96      |
| C1—C2    | 1.504 (5)  | С72В—Н72Е    | 0.96      |
| C1—H1    | 0.98       | C72B—H72F    | 0.96      |
| C2—C3    | 1.521 (5)  | C8—C82       | 1.485 (8) |
| С2—Н2    | 0.98       | C8—C81       | 1.503 (8) |
| С3—С9    | 1.506 (6)  | C81—H81A     | 0.96      |
| C3—C4    | 1.532 (6)  | C81—H81B     | 0.96      |
| C4—C5    | 1.493 (5)  | C81—H81C     | 0.96      |
| C4—H4    | 0.98       | C82—H82A     | 0.96      |
| C5—C6    | 1.492 (7)  | C82—H82C     | 0.96      |
| С5—Н5    | 0.98       | C82—H82B     | 0.96      |
| С6—Н6А   | 0.97       | С9—Н9С       | 0.96      |
| С6—Н6В   | 0.97       | С9—Н9В       | 0.96      |
| C7—C72A  | 1.489 (12) | С9—Н9А       | 0.96      |
| C7—C71A  | 1.502 (16) |              |           |
| C1—O1—C8 | 110.7 (3)  | O5—C7—C72B   | 102 (2)   |
| C8—O2—C2 | 109.1 (3)  | C71B—C7—C72B | 97 (2)    |

| С3—О3—Н3     | 109.5      | C7—C71A—H71A   | 109.5     |
|--------------|------------|----------------|-----------|
| C1           | 109.0 (3)  | C7—C71A—H71C   | 109.5     |
| C7—O5—C5     | 106.9 (4)  | H71A—C71A—H71C | 109.5     |
| C7—O6—C6     | 109.5 (4)  | C7—C71A—H71B   | 109.5     |
| 01—C1—O4     | 111.8 (4)  | H71A—C71A—H71B | 109.5     |
| O1—C1—C2     | 105.2 (3)  | H71C—C71A—H71B | 109.5     |
| O4—C1—C2     | 106.8 (3)  | C7—C72A—H72A   | 109.5     |
| O1—C1—H1     | 110.9      | C7—C72A—H72B   | 109.5     |
| O4—C1—H1     | 110.9      | H72A—C72A—H72B | 109.5     |
| C2—C1—H1     | 110.9      | C7—C72A—H72C   | 109.5     |
| O2—C2—C1     | 104.0 (3)  | H72A—C72A—H72C | 109.5     |
| O2—C2—C3     | 108.0 (3)  | H72B—C72A—H72C | 109.5     |
| C1—C2—C3     | 105.1 (3)  | C7—C71B—H71D   | 109.5     |
| O2—C2—H2     | 113        | C7—C71B—H71E   | 109.5     |
| C1—C2—H2     | 113        | H71D—C71B—H71E | 109.5     |
| С3—С2—Н2     | 113        | C7—C71B—H71F   | 109.5     |
| O3—C3—C9     | 107.8 (3)  | H71D—C71B—H71F | 109.5     |
| O3—C3—C2     | 112.6 (3)  | H71E—C71B—H71F | 109.5     |
| C9—C3—C2     | 110.7 (3)  | C7—C72B—H72D   | 109.5     |
| O3—C3—C4     | 112.9 (3)  | С7—С72В—Н72Е   | 109.5     |
| C9—C3—C4     | 112.8 (3)  | H72D—C72B—H72E | 109.5     |
| C2—C3—C4     | 100.0 (3)  | C7—C72B—H72F   | 109.5     |
| O4—C4—C5     | 107.2 (3)  | H72D—C72B—H72F | 109.5     |
| O4—C4—C3     | 103.8 (3)  | H72E—C72B—H72F | 109.5     |
| C5—C4—C3     | 118.7 (3)  | O2—C8—O1       | 105.1 (3) |
| O4—C4—H4     | 108.9      | O2—C8—C82      | 110.5 (4) |
| C5—C4—H4     | 108.9      | O1—C8—C82      | 110.4 (4) |
| С3—С4—Н4     | 108.9      | O2—C8—C81      | 108.5 (4) |
| O5—C5—C6     | 102.8 (4)  | O1—C8—C81      | 108.6 (4) |
| O5—C5—C4     | 108.1 (3)  | C82—C8—C81     | 113.3 (5) |
| C6—C5—C4     | 115.4 (4)  | C8—C81—H81A    | 109.5     |
| O5—C5—H5     | 110.1      | C8—C81—H81B    | 109.5     |
| С6—С5—Н5     | 110.1      | H81A—C81—H81B  | 109.5     |
| С4—С5—Н5     | 110.1      | C8—C81—H81C    | 109.5     |
| O6—C6—C5     | 103.3 (5)  | H81A—C81—H81C  | 109.5     |
| O6—C6—H6A    | 111.1      | H81B—C81—H81C  | 109.5     |
| С5—С6—Н6А    | 111.1      | C8—C82—H82A    | 109.5     |
| O6—C6—H6B    | 111.1      | C8—C82—H82C    | 109.5     |
| С5—С6—Н6В    | 111.1      | H82A—C82—H82C  | 109.5     |
| H6A—C6—H6B   | 109.1      | C8—C82—H82B    | 109.5     |
| O6—C7—O5     | 106.7 (4)  | H82A—C82—H82B  | 109.5     |
| O6—C7—C72A   | 105.2 (14) | H82C—C82—H82B  | 109.5     |
| O5—C7—C72A   | 110.0 (8)  | С3—С9—Н9С      | 109.5     |
| O6—C7—C71A   | 107.4 (16) | С3—С9—Н9В      | 109.5     |
| O5—C7—C71A   | 107.9 (12) | Н9С—С9—Н9В     | 109.5     |
| C72A—C7—C71A | 118.9 (19) | С3—С9—Н9А      | 109.5     |
| O6—C7—C71B   | 106 (5)    | Н9С—С9—Н9А     | 109.5     |
| O5—C7—C71B   | 119 (4)    | Н9В—С9—Н9А     | 109.5     |
| O6—C7—C72B   | 127 (3)    |                |           |

| C8-01-C1-04                | -111.3 (4)            | C7—O5—C5—C4   | -153.6 (4)  |
|----------------------------|-----------------------|---------------|-------------|
| C8-01-C1-C2                | 4.3 (5)               | O4—C4—C5—O5   | 171.2 (4)   |
| C4-04-C1-01                | 100.8 (3)             | C3—C4—C5—O5   | -71.9 (4)   |
| C4—O4—C1—C2                | -13.8 (4)             | O4—C4—C5—C6   | 56.8 (5)    |
| C8—O2—C2—C1                | 24.8 (4)              | C3—C4—C5—C6   | 173.7 (4)   |
| C8—O2—C2—C3                | 136.1 (3)             | C7—O6—C6—C5   | -21.4 (7)   |
| 01—C1—C2—O2                | -17.4 (4)             | O5—C5—C6—O6   | 31.7 (6)    |
| O4—C1—C2—O2                | 101.6 (3)             | C4—C5—C6—O6   | 149.1 (4)   |
| O1—C1—C2—C3                | -130.8 (3)            | C6—O6—C7—O5   | 2.5 (7)     |
| O4—C1—C2—C3                | -11.8 (4)             | C6—O6—C7—C72A | -114.4 (10) |
| O2—C2—C3—O3                | 39.9 (4)              | C6—O6—C7—C71A | 118.0 (13)  |
| C1—C2—C3—O3                | 150.4 (3)             | C6—O6—C7—C71B | 130 (3)     |
| O2—C2—C3—C9                | 160.6 (3)             | C6—O6—C7—C72B | -117 (3)    |
| C1—C2—C3—C9                | -88.8 (4)             | C5—O5—C7—O6   | 18.7 (6)    |
| O2—C2—C3—C4                | -80.2 (3)             | C5—O5—C7—C72A | 132.4 (15)  |
| C1—C2—C3—C4                | 30.3 (4)              | C5—O5—C7—C71A | -96.4 (17)  |
| C1                         | 160.1 (3)             | C5—O5—C7—C71B | -101 (5)    |
| C1                         | 33.7 (4)              | С5—О5—С7—С72В | 154 (3)     |
| O3—C3—C4—O4                | -158.5 (3)            | C2—O2—C8—O1   | -22.4 (5)   |
| C9—C3—C4—O4                | 78.9 (4)              | C2—O2—C8—C82  | 96.6 (5)    |
| C2—C3—C4—O4                | -38.6 (3)             | C2—O2—C8—C81  | -138.5 (4)  |
| O3—C3—C4—C5                | 82.7 (4)              | C1—O1—C8—O2   | 10.6 (5)    |
| C9—C3—C4—C5                | -39.8 (4)             | C1—O1—C8—C82  | -108.5 (5)  |
| C2—C3—C4—C5                | -157.4 (3)            | C1—O1—C8—C81  | 126.6 (4)   |
| C7—O5—C5—C6                | -31.1 (6)             |               |             |
| C2-C3-C4-C5<br>C7-O5-C5-C6 | -157.4(3)<br>-31.1(6) | C1            | 126         |

Hydrogen-bond geometry (Å, °)

| D—H···A                | D—H  | H···A | D····A    | D—H···A |
|------------------------|------|-------|-----------|---------|
| O3—H3…O4 <sup>i</sup>  | 0.82 | 2.28  | 3.022 (4) | 152     |
| C1—H1…O2 <sup>ii</sup> | 0.98 | 2.58  | 3.218 (5) | 123     |
| С2—Н2…Обііі            | 0.98 | 2.54  | 3.504 (5) | 167     |

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) *x*+1, *y*, *z*; (iii) *x*, *y*, *z*+1.