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Abstract: Oncolytic herpes simplex virus (oHSV) is a therapeutic modality that has seen substantial
success for the treatment of cancer, though much remains to be improved. Commonly attenuated
through the deletion or alteration of the γ134.5 neurovirulence gene, the basis for the success of oHSV
relies in part on the malignant silencing of cellular pathways critical for limiting these viruses in
healthy host tissue. However, only recently have the molecular mechanisms underlying the success
of these treatments begun to emerge. Further clarification of these mechanisms can strengthen
rational design approaches to develop the next generation of oHSV. Herein, we review our current
understanding of the molecular basis for tumor susceptibility to γ134.5-attenuated oHSV, with
particular focus on the malignant suppression of nucleic acid sensing, along with strategies meant to
improve the clinical efficacy of these therapeutic viruses.

Keywords: herpes simplex virus; oncolytic virus; virotherapy; interferon; STING; T-VEC;
immunotherapy

1. Introduction

Cancer arises due to genetic or epigenetic changes that activate oncogenes, inacti-
vate tumor-suppressor genes, or suppress innate immune genes. Although advantageous
for proliferation or immune escape, such alterations often make cancer cells vulnerable
to attack by oncolytic viruses [1]. To date, the most clinically advanced oncolytic virus
is talimogene laherparepvec (T-VEC), which is a genetically engineered herpes simplex
virus 1 (HSV) that has received international approval for the treatment of advanced
melanoma [2–4]. T-VEC represents a significant milestone in the translational development
of oncolytic immunotherapy and has inspired numerous and diverse oHSV platforms to
emerge. Underlying the success of these oncolytic agents are common principles stemming
from fundamental virus–host interactions exploited to destroy malignant tissue while
leaving healthy tissue unharmed. In this review, we discuss recent progress in intracel-
lular nucleic acid sensing machineries relevant to developing oncolytic viruses based on
engineering of the γ134.5 gene.

2. Selectively Engineered HSV as an Oncolytic Virus

HSV-1 is a large, enveloped DNA virus with a 150 kB length genome. The HSV
genome is arranged in two regions of unique sequence (UL and US) flanked by two terminal
repeated regions (TR) and one internal repeated region (IR) (Figure 1). Upon infection of
mucosa, HSV will undergo lytic replication involving the sequential expression of three
sets of viral genes: Immediate Early (α), Early (β), and Late (γ), leading to the production
of infectious virions [5,6]. Following this, the virus will penetrate peripheral neurons to
establish life-long latent infection, where HSV-1 undergoes periodic lytic reactivation in
response to stress and other environmental factors [5,7].

The large genome and well-established biology of HSV-1 make it readily amendable
to genetic manipulation for therapeutic use. A collection of effective antivirals, such as
acyclovir, add an additional layer of safety on top of genetic attenuation. Several genes
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have been subjected to manipulation as the basis for the attenuation of oHSV. Among the
most frequently modified is the γ134.5 gene, which encodes an accessory factor required
for neurovirulence [8,9]. HSV γ134.5 is present in two copies per viral genome within the
inverted repeat regions [10]. The γ134.5 protein is multifunctional, with roles regulating
protein synthesis, autophagy, nucleic acid sensing, and viral egress [11–20]. Importantly,
these roles map to two functionally distinct domains, an amino-terminal domain and a
carboxyl-terminal domain, which are connected by a triplet amino acid repeat linker region
(Ala-Thr-Pro) (Figure 1). The triplet repeats are a constant feature of the γ134.5 protein
in HSV-1, but the number of repeats can vary among different strains [21]. Numerous
studies have demonstrated the safety of both HSV deleted of γ134.5 (∆γ134.5) and γ134.5-
attenuated viruses at high doses of intracerebral inoculation in HSV-susceptible mice [8,9].
Additionally, to date, completed clinical trials involving γ134.5-attentuated oncolytics
ranging from Phase I to III demonstrate significant clinical benefits with limited adverse
side effects (Table 1).
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of HSV-1 DNA, L and S, each consist of unique sequences, UL and US, respectively, flanked by inverted repeats (TR and
IR). The reiterated sequences flanking UL, are designated as ab and b’a’, whereas the repeats flanking US, are designated
a’c’ and ca. The expanded portions beneath denote the γ134.5 gene, which encodes a virulence factor with a large amino-
terminal domain, a variable linker region, and a carboxyl-terminal domain. Known functions of γ134.5 are outlined.
The C-terminal domain of γ134.5 mediates the dephosphorylation of host eIF2, preventing shut-off of protein synthesis.
The N terminal domain of γ134.5 targets STING and Beclin 1, inhibiting host DNA sensing and autophagy, respectively.
Intact γ134.5 is needed to modulate RIG-I, IKK, and PKC, inhibiting RNA sensing, DC maturation, and enabling laminar
reorganization/viral egress.

3. HSV Grapples with the Host Cytokine Response

HSV infection triggers the activation of host Pathogen Recognition Receptors (PRRs),
which are responsible for initiating an antiviral response [22]. Among these PRRs are Toll-
like receptors, which are transmembrane proteins on the cell surface and within endosomal
compartments that detect the presence of extracellular Pathogen-Associated Molecular
Patterns (PAMPs) such as LPS, dsDNA, dsRNA, and viral glycoproteins [23]. Additionally,
the host has several intracellular nucleic acid sensors including RIG-I (RNA) [24] and cGAS
(dsDNA) [25,26], among others. Activation of these sensing pathways converge on two
critical proteins for initiating an anti-pathogen response, TANK Binding Kinase 1 (TBK-1),
and Stimulator of Interferon Genes (STING). TBK-1 and STING will form a complex to
activate IRF3 and IKK, which initiate Type I Interferon (IFNα/β) production and NF-κB
signaling, respectively [22]. IFN and NF-κB will initiate the transcription of hundreds of
genes to combat infection, attempting to create a non-permissive environment for pathogen
replication while simultaneously secreting extracellular cytokines to direct the immune
system toward the site of infection and initiate an adaptive immune response [27].

Wild-type HSV is capable of replication within an IFN-primed environment, and
replication is severely restricted upon deletion of γ134.5 [28]. As such, studies over the last
decade have drawn light on how γ134.5 overcomes IFN restriction at multiple levels of the
immune response. At the level of nucleic acid sensing, γ134.5 has been shown to directly
bind and inhibit RIG-I [15]. Concurrently, γ134.5 inhibits downstream adaptors, TBK-1 and
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STING, which are critical for innate immune signaling and IFN production [14,16]. Should
IFN prime cells through upregulation of Interferon Stimulated Genes (ISGs) important for
limiting HSV infection, such as dsRNA-dependent Protein Kinase (PKR), γ134.5 and other
viral proteins can block PKR and ISG activity to facilitate viral replication [28]. Addition-
ally, γ134.5 inhibits host autophagy, which is capable of degrading HSV capsids [13,29,30].
γ134.5-mediated antagonism of TBK-1 and IKK in dendritic cells (DCs) results in impaired
DC maturation, antigen presentation, and subsequent T lymphocyte activation [18]. Ulti-
mately, γ134.5 contributes to the creation of an immunosuppressed environment permissive
to HSV replication. However, in the absence of functional γ134.5, as is the case for many
oHSV, unperturbed PKR, IFN, and NF-κB signaling can readily restrict replication, creating
the need for additional accommodation to facilitate oncolytic replication.

4. Tumor Susceptibility to ∆γ134.5 oHSV Replication

Tumor susceptibility to ∆γ134.5 oHSV partially stems from the malignant suppres-
sion of antiviral pathways needed to limit replication in normal tissues [1]. Malignant
antagonism of PKR was the first mechanism identified that could explain ∆γ134.5 oHSV
replication in cancerous tissue [31]. In addition to PKR restriction, cGAS/STING DNA
sensing is critical for limiting HSV infection, and recently, several studies have identified
mechanisms in which cancer perturbs cGAS/STING signaling, providing an opportunity
for ∆γ134.5 oncolytic replication [32–35].

4.1. PKR Pathway Regulation

PKR is a dsRNA sensing serine threonine kinase constitutively expressed across a
number of cell types that is upregulated in response to IFN stimulation [36]. PKR has
several antiviral and anti-proliferative functions including shutdown of protein transla-
tion, activation of NF-κB signaling, activation of autophagy, and induction of apoptosis,
making it a critical target for both virus and pre-malignant tissue [37]. Notably, PKR
catalyzes the phosphorylation of eIF2α, which is a cellular protein required for the recy-
cling of eIF2β. eIF2β carries the initial Met-tRNA needed for translation initiation. The
phosphorylation of eIF2α at serine 51 greatly enhances eIF2α binding affinity for eIF2β,
preventing GDP-GTP exchange factors from recycling eIF2β into the active GTP state
needed for translation initiation [38]. Upon the detection of dsRNA, PKR will dimerize,
inducing trans-autophosphorylation, which enables PKR to phosphorylate eIF2α at serine
51, resulting in shutdown of protein synthesis [36] (Figure 2).

The HSV genome contains many complementary transcriptional units thought to
serve as a dsRNA source to activate PKR [39]. A major function ascribed to γ134.5 pertains
to its ability to maintain protein synthesis during late stages of infection [11]. This involves
the C terminal domain of γ134.5, which shares homology with host GADD34. The C
terminal domain acts as a mediator to recruit both host Protein Phosphatase 1 α (PP1α) and
eIF2α, facilitating the dephosphorylation of eIF2α by PP1α and preventing the shutdown
of protein synthesis [12,40]. The importance of inhibition of PKR in HSV infection is evident
in several studies showing that ∆γ134.5 replication and virulence are restored to wild-type
levels in PKR −/− mice [41–43]. Although PKR’s status as a tumor suppressor is tenuous,
showing both tumor suppressive and oncogenic activity [44,45], subsets of tumors are
known to have perturbed PKR, providing an opportunity for ∆γ134.5 oncolytic replication
in the absence of this restrictive antiviral factor.

Several known oncogenes and tumor suppressors influence PKR activity in the can-
cerous environment [31,37,46,47]. Approximately 19% of cancers exhibit Ras mutations,
predominantly resulting in unregulated cellular proliferation [48]. Within this pathway,
MEK, a MAPKK, has been shown to inhibit PKR activity [31]. Ras-transformation itself
has been implicated to increase replication of wild-type HSV [49]. However, Smith et al.
provide evidence in human cancer cell lines identifying tumor susceptibility to ∆γ134.5
oncolytic replication being correlated with MEK activity rather than Ras genotype in addi-



Viruses 2021, 13, 1408 4 of 16

tion to being inversely correlated with PKR activation [31]. Pharmacological and genetic
inhibition of MEK restores PKR expression and results in reduced ∆γ134.5 viral titers [31].

The IFN response is at least partially perturbed in 65–70% of cancers [1], underscoring
the selection pressure to inhibit these pathways for tumor development. PKR is a critical
ISG for ∆γ134.5 virus to overcome for efficient replication [28,41], indicating PKR has an
important role in the story of malignant susceptibility to oHSV replication. Although
the inhibition of IFN effectors such as PKR provides a precise method to facilitate viral
replication or tumor progression, an alternative approach for HSV or pre-malignancy
to achieve immune suppression is to target pathways responsible for initiating the IFN
response and IFN production.
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Figure 2. Intracellular Nucleic Acid Sensing by the STING and PKR Pathways. HSV infection results in the release of
capsid into cells where viral dsDNA can activate cGAS. Additionally, dsDNA from several sources, including mitochondrial
DNA (mtDNA), exosomal DNA, micronuclei, and reactivated retroelements can serve to activate cGAS. Once activated,
cGAS will synthesize the cyclic dinucleotide c-GMP-AMP (cGAMP), which activates STING. Then, STING translocates
from the endoplasmic reticulum to the Golgi apparatus. Oligomerized STING facilitates the trans-autophosphorylation
of TBK-1 and subsequent recruitment of IRF3 to the STING signaling complex. The phosphorylation of IRF3 results in
its dimerization and translocation to the nucleus for initiation of IFNα and IFNβ production. As infection progresses,
viral DNA will circularize in the nucleus and undergo rolling circle replication. The onset of viral replication is thought to
produce highly complementary viral dsRNA, which can activate PKR. The activation of PKR results in dimerization and
trans-autophosphorylation. Then, activated PKR can phosphorylate eIF2α and shut down protein translation. In malignant
cells, several mechanisms to silence intracellular nucleic acid sensing may operate. Hypermethylation of cGAS/STING
promoters, inhibition of the TBK1-STING interaction by mutant p53, and TBK1 dissociation from STING by HER2 via AKT1
can prevent IRF3 activation. Additionally, unregulated Ras signaling can lead to constitutive activation of MEK1/2, which
can inhibit PKR activation.

4.2. STING Pathway Regulation

Intracellular DNA sensing through cGAS/STING is a critical pathway for IFN pro-
duction in response to both HSV infection and in pre-malignant environments [25,50].
Although the mechanism for HSV viral DNA exposure to the cytosol is unknown, HSV
capsids can be degraded in a proteasome-dependent manner yielding cytosolic viral ds-
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DNA for cGAS activation [51,52]. High concentrations of cytosolic dsDNA results in the
release of cGAS from phosphatidylinositol 4,5 bisphosphate at the plasma membrane [53].
cGAS will dimerize and bind dsDNA in a sequence-independent manner [54]. Binding to
long dsDNA results in optimal conformational changes for the production of cyclic GMP-
AMP, a cyclic dinucleotide (CDN) capable of potently activating STING [55–57]. CDNs are
commonly found as secondary messengers in bacteria and are also capable of activating
STING [58]. CDNs bind to STING via its cytoplasmic domain and induce STING oligomer-
ization and translocation from the endoplasmic reticulum to the perinuclear Golgi [59,60].
At the Golgi, STING undergoes post-translational modification, after which STING can
recruit TBK-1 [61]. Oligomerized STING brings TBK-1 proteins into proximity, inducing
the trans-autophosphorylation and activation of TBK-1. This allows for the recruitment
and activation of IRF3, which will then dimerize and translocate to the nucleus to initiate
Type I IFN production [62] (Figure 2). DNA sensing and subsequent IFN production
places strong selection pressure on HSV to inhibit potent activation of the immune system.
Several HSV proteins antagonize various steps of DNA sensing, from the degradation of
cGAS itself (vhs) [63] to alteration of STING post-translational modifications (VP1-2) [64] to
inhibition of STING translocation and TBK-1 binding (γ134.5) [14,16], among other modes
of inhibition [65–68]. Each of these virus–host interactions contribute to the inhibition of
DNA sensing and facilitate successful HSV infection.

Notably, cancer exhibits a heavy reliance on genomic instability for tumor progres-
sion [69]. Genomic instability can lead to the formation of micronuclei prone to rupture,
reactivation of endogenous retroelements, and cytosolic localization of mitochondrial DNA;
each of these dsDNA sources can serve to activate cGAS/STING [70–74]. The activation
of cGAS/STING DNA sensing is thought to be antitumorigenic, as the resulting IFN pro-
duction can alert the immune system to identify and clear pre-malignant cells. Recent
evidence has identified several mechanisms malignancy uses to perturb DNA sensing at
multiple levels, including epigenetic silencing of cGAS/STING [33], mutant p53 inhibition
of TBK-1 recruitment [34], and HER2 inhibition of STING signaling complex formation [35]
(Figure 2).

DNA methylation, histone modifications, and non-coding RNAs represent epigenetic
mechanisms commonly commandeered by cancer to alter its expression profile. DNA
hypermethylation near promoter regions generally silences expression, whereas demethy-
lated DNA is generally activating [75]. The hypermethylation of cGAS/STING promoters
was initially implicated in a pair of studies analyzing the role of STING in colorectal cancer
and melanoma cell lines [76,77]. Further in silico analysis revealed seven of 32 TCGA tumor
types (bladder urothelial carcinoma, breast invasive carcinoma, colon adenocarcinoma,
head and neck squamous cell carcinoma, lung adenocarcinoma, lung squamous carcinoma,
and prostate adenocarcinoma) have significantly increased promoter methylation in either
cGAS or STING as compared to matched normal tissue [33]. Interestingly, increased methy-
lation of RIG-I and MDA5 genes was not seen in any of the 32 TCGA tumor types [33].
This is in line with previous studies indicating a majority of the melanoma and colorectal
cancer cell lines analyzed have intact IFN production in response to poly IC dsRNA stim-
ulation [76,77]. Recently, it has been identified that the use of demethylating agents can
enhance cGAS/STING expression in silenced melanoma cell lines [78]. This reversal results
in improved T lymphocyte recognition and increased IFN-γ production in an in vitro co-
culture system [78]. Although much less prevalent (< 1% of tumors within TCGA database),
it should be noted that several missense mutants of cGAS and STING were identified in
the TCGA database [33]. In vitro reconstitution of mutant cGAS/STING in cGAS −/− or
STING −/−MEF cells revealed that mutants had significantly reduced capacity to activate
an IFNβ-luciferase promoter and show increased viral replication of ∆γ134.5 virus, further
demonstrating the opportunity presented by cGAS/STING inhibition for oHSV [33].

DNA methylation contrasts with histone modifications as methyl moieties can be
activating or inactivating depending on position and context [75]. Histone modifiers such
as Lysine Demethylase 5 (KDM5) have been identified to inhibit STING expression in breast
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cancer [79]. Interestingly, another histone modifier, SUV39H1, is redirected by the Human
Papilloma Virus oncogenic protein E7 to suppress STING expression [80]. Genetic and
pharmacological inhibition of KDM5 or SUV39H1 results in increased STING expression
and type I IFN production in breast cancer and HPV-transformed cells, respectively, in
response to dsDNA treatment [79,80].

Widely known for its roles in apoptosis and tumor suppression, the transcription
factor p53 is one of the most commonly mutated genes across cancer types: 47% ovarian,
43% colorectal, 40% head and neck, 38% lung, 35% melanoma, and 32% pancreatic [81,82].
Several in silico analyses have correlated p53 inactivation with immunosuppressed tumor
phenotypes and decreased immune cell infiltration [83–85], but only recently has the role
for mutant p53 in the suppression of cGAS–STING–TBK–IRF3 signaling been demon-
strated [34]. Ghosh et al. found that nine forms of p53, which were mutated in either the
DNA binding region or its structural domain region, were capable of binding TBK-1 in a
cell transfection system. All nine p53 mutants reduced IRF3 activation by at least 60%, but
three mutants show near complete abrogation of IRF3 activation. One mutant displaying
near complete inhibition of IRF3 activation, p53R249S, was further characterized. The inter-
action between p53R249S and TBK-1 is sufficient to suppress IRF3-mediated apoptosis and
IFN production in response to dsDNA stimulation. IFN reduction resulted in decreased
CD4+ and CD8+ T lymphocyte infiltration in syngeneic mouse models of 4T1 breast cancer
engineered with mutated p53R249S—as compared to wild-type p53 in non-modified 4T1.
The extrinsic production of IFNβ was critical for the infiltration of tumors by CD4+ and
CD8+ T lymphocytes. A lack of IFNβ, resultant from mutated p53R249S binding to TBK-1,
leads to increased infiltration of immunosuppressive, M2 polarized macrophage in tumor
tissues. Interestingly, mutant p53 interaction also blocks IFN production in response to
poly IC and LPS stimulation, showing that the blockade of TBK-1 activity extends to other
innate immune signaling pathways reliant on TBK-1 [34].

HER2 is a ligand-independent receptor tyrosine kinase. Upon activation, HER2
will homo/heterodimerize with other HER-family proteins at the cell surface, where it
will then recruit and activate downstream effectors to influence cell proliferation and
survival [86]. HER2 is mutated into a constitutively active form in ≈3.5% of cancers [87].
Recently, Wu et al. have identified HER2 as a potent inhibitor of STING signaling [35].
The intracellular domain of HER2 binds with the TBK-1-interacting C-terminal tail of
STING. While this interaction is partially inhibitory itself, HER2 functions to recruit AKT1
to the STING signaling complex. AKT1 phosphorylates TBK-1 at serine 510, inhibiting
TBK-1′s ability to bind in the STING complex, resulting in a significant decrease in IRF3
activation and subsequent production of ISGs. Importantly, constitutive STING signaling
reduces tumor size in a mouse xenograft model using B16 melanoma, and tumor reduction
is emulated when HER2 inhibitors are administered. Additionally, constitutively active
STING increased CD4+ and CD8+ T lymphocyte infiltration, and the expression of HER2
significantly reduces infiltration in the B16 xenograft model [35].

5. Improving Tumor Selective Replication

While inhibition of cGAS/STING and PKR can provide an opportunity for ∆γ134.5
oncolytic replication, early evidence regarding first-generation oHSV such as HSV1716,
R3616, and G207 show a wide range of replication efficiencies across tumor types [88–91].
The dichotomous role of PKR in tumor progression suggests that PKR is a barrier that
must be overcome for efficient ∆γ134.5 oHSV replication in many tumor types [44,45],
and studies characterizing cGAS/STING in melanoma, colorectal, and ovarian cancer
cell lines have identified that epigenetic silencing, while prevalent and measurable, is not
ubiquitous [76,77,92]. These studies have also indicated that activity of dsRNA sensing for
the most part remains intact within these malignant cell lines [76,77,92]. Active PKR, TBK-1,
cGAS/STING, and RIG-I all have the potential to restrict ∆γ134.5 replication [14–16,41],
and the heterogenous inhibition of these pathways across cancer types provides a possible
explanation for the replication variability observed with first-generation ∆γ134.5 oncolytics.
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Thus, several strategies have evolved from first-generation oHSV to enhance oncolytic
replication and ultimately improve therapeutic efficacy (Table 1). Examined in further
detail here are examples of oHSV that attempt to restore select functions of γ134.5 to
enhance oncolytic replication. The selective restoration of γ134.5 has been the basis for
using α expression of Us11, chimeric oncolytic HSV/HCMV hybrids, partial deletion of
γ134.5, and tumor-selective expression of γ134.5 or γ134.5 homologs to enhance oncolytic
replication without restoring wild-type pathogenicity.

Table 1. Clinical stage oncolytic HSV based on γ134.5 engineering.

Virus Modifications Clinical Trials PMID Reference

Seprehvir (HSV1716) Deletion of two copies of γ134.5, HSV-1 strain
17

NCT00931931,
NCT01721018,
NCT02031965

1848598 [9]

NV1020 (R7020)

Deletion of the HSV IR region (deletion of
UL56, one copy of ICP0, ICP4, and γ134.5),

insertion of US2-2, US2-3, US2-4, and US2-5
derived from HSV-2

NCT00149396,
NCT00012155 2842408 [93]

G207 Deletion of two copies of γ134.5, insertion of
lacZ into ICP6

NCT04482933,
NCT03911388,
NCT02457845,
NCT00028158,
NCT00157703

7585221 [94]

RP1
Deletion two copies of γ134.5, deletion of
ICP47 (α expression of Us11), insertion of

GALV fusogenic protein; insertion of GM-CSF

NCT04050436,
NCT03767348,
NCT04349436

31399043 [95]

RP2

Deletion of two copies of γ134.5, deletion of
ICP47 (α expression of Us11), insertion of

GALV fusogenic protein, insertion of
anti-CTLA4 antibody

NCT04336241 31399043 [95]

RP3
Deletion of two copies of γ134.5, deletion of
ICP47, insertion of GALV fusogenic protein,
insertion of proprietary stimulatory agents

NCT04735978 33072862 [96]

M032 Deletion of two copies of γ134.5, expression
of IL-12 NCT02062827 27314913 [97]

VG161

Deletion of two copies of γ134.5; insertion of
IL-12, IL-15, IL-15RA, and TF-Fc peptide

capable of disrupting PD-1/PD-L1
interactions

NCT04758897,
NCT04806464 33182232 [98]

ONCR-177

Deletion of the IR region, null ICP47 mutation;
mutations in gB and UL37; insertion of

miR-124-3p; insertion of miR-T cassettes
targeting HSV-1 genes ICP4, ICP27, UL8, and
γ134.5; insertion of anti-CTLA4 (ipilimumab),

FLT3LG, CCL4, IL12, IL12B, anti-PD-1

NCT04348916 33355229 [99]

talimogene
laherparepvec (T-VEC)

Deletion of two copies of γ134.5, deletion of
ICP47 (α expression of Us11), insertion of

GM-CSF

>50 Trials in
clinicaltrials.gov, Select

Trials: NCT00402025,
NCT00289016,
NCT00769704,
NCT02263508,
NCT02366195

12595888 [100]

clinicaltrials.gov
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Table 1. Cont.

Virus Modifications Clinical Trials PMID Reference

OH2
HSV-2 backbone: Deletion of two copies of

γ134.5, ICP47 deletion (α expression of Us11),
insertion of GM-CSF

NCT04637698,
NCT04616443,
NCT04386967,
NCT03866525,
NCT04755543

24671154 [101]

G47∆ Deletion of two copies of γ134.5, deletion of
ICP6, deletion of ICP47 (α expression of Us11)

UMIN000002661,
UMIN000010463,
UMIN000011636,
UMIN000034063

11353831 [102]

C134 Deletion of two copies of γ134.5, insertion of
HCMV IRS1 NCT03657576 15994764 [103]

rQNestin34.5v.2 Single copy of γ134.5 under the nestin
promoter NCT03152318 32373649 [104]

5.1. α Expression of Us11

Us11 is a 21 kDa late-stage viral protein whose expression typically coincides with
the onset of viral DNA replication [105]. Since their discovery, several functional overlaps
between γ134.5 and Us11 have been identified. Both exhibit inhibitory activity toward
PKR [12,106], autophagy [13,107], RIG-I [15,108], and both contribute to full IFN resistance
in late stages of HSV infection [109]. In hindsight, these overlaps make it clear why the
serial evolution of ∆γ134.5 HSV in non-permissive glioma can select for α expression of
Us11 [110,111]. α expression of Us11 can partially yet substantially restore viral replication
without enhancing pathogenicity. As such, several oHSV use α expression of Us11 as a
strategy to enhance oncolysis (Table 1).

T-VEC contains several modifications, including α expression of Us11 [100]. T-VEC
has undergone clinical trials for the treatment of a myriad of solid tumors (Table 1). Ap-
proved as a standalone therapeutic for melanoma, many ongoing clinical trials use T-VEC
in combination with either traditional cancer therapies (surgery and radiation) or with im-
mune checkpoint blockade inhibitors [2]. G47∆ is an oHSV built upon the G207 backbone,
containing deletions in both copies of γ134.5 as well as the insertion of lacZ into the ICP6
gene along with the deletion of ICP47 yielding α expression of Us11 [102]. G47∆ shows
enhanced in vitro replication and therapeutic efficacy in preclinical models as compared
to G207, and this inspired several clinical trials in Japan for the treatment of glioblastoma,
prostate cancer, olfactory neuroblastoma, and malignant mesothelioma (Table 1).

5.2. Chimeric oHSV

Another approach to improve oncolytic replication is to utilize non-native viral pro-
teins functionally similar to γ134.5 or proteins to perturb angiogenesis [112]. One such
virus, C134, expresses IRS1, derived from Human Cytomegalovirus (HCMV). IRS1 is a
dsRNA binding protein capable of binding to and blocking PKR-mediated shutdown of
protein synthesis in the context of ∆γ134.5 infection [103,113] but is unable to prevent
IRF3 signaling when expressed in the ∆γ134.5 backbone [114]. These functions serve to
enhance the replication of C134 in several glioma models [115]. Preclinical testing of C134
in Aotus nancymaae demonstrated safety in this model [116], and in 2019, C134 entered
Phase I clinical trials enrolling 24 patients for the treatment of glioblastoma multiforme set
to complete in late 2024 (Table 1).

5.3. Tumor-Selective Expression of γ134.5

Several oHSVs utilize tumor-selective promoters to express γ134.5. The selective
expression of γ134.5 allows for increased viral spread and replication within transcrip-
tionally targeted tissues. To date, these viruses have been developed using an oncolytic
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backbone deficient in both copies of γ134.5; then, a single copy of γ134.5 is reintroduced
under tumor-selective promoters for proteins such as b-myb and nestin [117,118]. Nestin
is an intermediate filament expressed specifically in glioma. Several oHSV use the nestin
promoter, including rQNestinv.2, which is set to complete a Phase 1 clinical trial in July 2021
for the treatment of recurrent glioma. NG34 is a recent experimental oncolytic virus using
the nestin promoter to selectively express host GADD34 [119]. GADD34 is homologous to
the γ134.5 C-terminal domain and functions in the cell to negatively regulate eIF2α kinases
such as PKR. Interestingly, chemotherapy and radiation have been shown to upregulate
GADD34, which specifically enhances therapeutic effect of other single deletion γ134.5
oHSVs [120,121]. ONCR-177 is another oHSV that employs miRNA to selectively inhibit
the expression of γ134.5 in normal tissues and thereby enables tumor-selective viral replica-
tion [122]. In addition to tumor-selective expression of γ134.5 itself, tumor selectivity can be
achieved through an alteration of HSV tropism. Retargeting HSV to tumor biomarkers has
an advantage through the selective expression of wild-type viral proteins such as γ134.5,
which can facilitate replication in targeted tissue. One example involves the alteration of
oHSV entry proteins to target cancer cells expressing HER2 [123,124].

5.4. Partial Deletion of γ134.5

Three decades of research have mapped numerous functions within the γ134.5 protein.
The TBK-1, STING, IKK, and Beclin 1 interaction regions all lie within the N-terminal
domain of γ134.5 [13,14,17,18]. ∆N146 is an experimental oncolytic virus in which the N-
terminal domain of γ134.5 has been deleted but retains two copies of the γ134.5 C-terminal
domain. ∆N146 has been shown to inhibit translational shutdown, overall contributing to
enhanced replication in a number of tumor cells lines and enhanced therapeutic efficacy in
4T1 syngeneic tumor models as compared to first-generation oHSV [125]. The oncolytic
virus ∆68H-6 contains a deletion of amino acids 68–87 of γ134.5 along with a deletion
of ICP6 [126]. This region binds to Beclin 1 to prevent autophagy [13] but also overlaps
with regions on γ134.5 needed for viral egress and TBK-1 binding [16,127]. ∆68H-6 was
shown to extend the survival time in a U87 glioma mouse xenograft model as compared to
HSV1716 [126].

6. Improving Antitumor Immunity

It is now well recognized that in addition to tumor-selective replication, robust im-
mune activation is critical for therapeutic efficacy of oHSV. In addition to ISGs to directly
combat infection, IFN also stimulates the production of cytokines to recruit Dendritic Cells
(DCs), Macrophages, and T lymphocytes to a site of infection. DCs and Macrophages are
Antigen Presenting Cells (APCs) that phagocytose malignant or infected cells and process
antigen peptides for presentation to B and T lymphocytes for activation [128].

To establish an immune-suppressed environment, the γ134.5 protein can inhibit DC
maturation through the abrogation of TBK-1 and IKK activation of IFN and NF-κB, im-
pairing antigen presentation and T lymphocyte activation during HSV infection [18,129].
Similarly, the malignant inhibition of cGAS/STING signaling through epigenetic silencing,
mutant p53, or HER2 results in the simultaneous suppression of T lymphocyte infiltration
in in vivo tumor models [34,35,78]. The activation of tumor endogenous STING has been
identified as an important component for inducing antitumor immune responses [130].
The malignant suppression of cGAS/STING provides an opportunity for oncolytic repli-
cation, but the absence of STING signaling can restrict immunogenic cell death that is
associated with robust activation of the immune response [130–132]. In addition to si-
lencing of antitumor immune activation at the molecular level through cGAS/STING
inhibition, malignancy has developed mechanisms of immunosuppression at the cellu-
lar level through the overexpression of immune checkpoint molecules (PD1, PDL1, and
CTLA4) that normally act to prevent overactive T lymphocyte responses [133]. While this
immunosuppressed environment provides an opportunity for oHSV replication, hampered
APC activation and T lymphocyte target recognition can lead to ineffective antitumor
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responses [134]. Thus, many oHSV have been engineered to express cellular cytokines and
chemokines to circumvent these crippled innate immune signaling pathways and enhance
immune cell stimulation (Table 1).

DCs are major producers of IL-12, which is a cytokine that is capable of enhancing the
activation and proliferation of cytotoxic T lymphocytes and NK cells, resulting in increased
IFN-γ, a Type II IFN, production from these cell types [135]. IFN-γ can upregulate MHC
I expression in tumor cells and transform immunosuppressive M2 macrophage into the
immunostimulatory M1 subtype [136]. Although the systemic administration of IL-12
results in serious adverse side effects in humans [136], several oHSV, including M032,
encode IL-12 for localized tumor expression (Table 1). M032 has recently entered a Phase
I clinical trial for the treatment of glioma [97]. GM-CSF is another cytokine frequently
expressed in oHSV. GM-CSF enhances the activation, proliferation, and recruitment of
APCs from bone marrow [137]. In addition to α expression of Us11, T-VEC encodes two
copies of GM-CSF in an effort to improve APC activation and antigen presentation in an
environment replete with tumor antigens from viral oncolysis [100]. APCs ultimately prime
cytotoxic T lymphocytes, which are major contributors to the antitumor response [138],
and numerous studies have identified positive correlations between infiltrating cytotoxic T
lymphocytes and improved therapeutic outcomes [134].

To further examine the immune effectors driving antitumor responses with T-VEC
monotherapy, a recently completed Phase II clinical trial analyzed the correlates between
immune cell infiltration and objective response rate in individuals with stage IIIB-IVM1a
melanoma [139]. The study recorded an objective response rate of 28% and a complete
response rate of 14%, which is on par with previous T-VEC melanoma trials [139–141].
Intriguingly, there was a 2.4-fold increase in T lymphocyte infiltration in non-injected
lesions 6 weeks after initial treatment yet, CD4+ or CD8+ T lymphocyte infiltration did not
correlate with the objective response rate [139]. Notably, activated T lymphocytes secreting
IFN-γ can upregulate PDL1 expression in the epithelium as a negative feedback mechanism
to control hyperactivation [133]. Exploratory analysis revealed detectable PDL1 expression
in non-injected lesions of 10/50 patients at baseline, and this increased to 28/50 patients
after 6 weeks of T-VEC treatment. This is suggestive of adaptive resistance to T lymphocyte
infiltration in which malignancy upregulates immune checkpoints in non-injected lesions
of patients treated with T-VEC [139]. This study reinforces combination therapy approaches
using immune checkpoint inhibitors (anti-PD1/PDL1) and provides initial evidence to ex-
plain the synergistic effects seen when combining T-VEC with checkpoint blockade (Phase
1b: T-VEC in combination with anti-PD1 for advanced melanoma: objective response rate
62%, complete response rate 33%) [142]. In addition, these trials make clinical stage oHSVs
such as RP2, ONCR-177, and VG161 particularly exciting as these viruses, among other
modifications, encode PD1 antagonist peptides or anti-PD1/CTLA4 monoclonal antibodies,
possibly providing a unique angle to combat malignancy in the tumor microenvironment
(Table 1).

7. Perspectives

The clinical efficacy of T-VEC has led to the explosive growth of γ134.5-attenuated
oHSV development and subsequent clinical trials. While this growth will ultimately be
beneficial for cancer therapy, much remains to be improved, especially for patients with
advanced disease. A multitude of possible cancer genotypes and phenotypes yields a
myriad of possible mechanisms of action for individual oHSVs to exert therapeutic effect.
The recent studies regarding the malignant abrogation of IFN responses reviewed here
provide a glimpse into the molecular and cellular determinants of tumor susceptibility
to γ134.5-attenuated oHSV. Further understanding of the complex layer of virus–host
interactions underlying tumor selective replication and antitumor immunity will be critical
for development of the next generation of oHSV as well as providing essential information
for better patient stratification criteria to improve clinical outcomes.
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