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A B S T R A C T   

Maintaining tight junction integrity significantly contributes to epithelial barrier function. If the 
barrier function is destroyed, the permeability of the cells increases, and the movement of the 
pathogens is promoted, thereby further increasing the susceptibility to secondary infection. 
Ginsenoside components have multiple biological activities, including antiviral effects. In this 
study, we examined the protective effects of ginsenoside Re against rhinovirus-induced tight 
junction disruption in primary human nasal epithelial cells (HNE). Incubation with human 
rhinovirus resulted in marked disruption of tight junction proteins (ZO-1, E-cadherin, claudin-1, 
and occludin) in human nasal epithelial cells. Rhinovirus-induced disruption of tight junction 
proteins was strongly inhibited by the treatment of cells with ginsenoside Re. Indeed, significant 
amounts of reactive oxygen species (ROS) have been detected in human nasal epithelial cells co- 
incubated with rhinovirus. Moreover, rhinovirus-induced ROS generation was markedly reduced 
by the ginsenoside Re. However, ginsenosides Rb1 and Rc did not inhibit tight junction disruption 
or ROS generation in nasal epithelial cells following incubation with rhinovirus. Furthermore, 
incubation with rhinovirus resulted in a marked decrease in protein phosphatase activity and an 
increase in protein tyrosine phosphorylation levels in nasal epithelial cells. Treatment of cells 
with ginsenoside Re inhibited rhinovirus-induced inactivation of phosphatases and phosphory-
lation of tyrosine. Our results identified ginsenoside Re as an effective compound that prevented 
rhinovirus-induced tight junction disruption in human nasal epithelial cells.   

1. Introduction 

Panax ginseng C.A. Meyer has many beneficial functions, including anti-cancer, anti-oxidant, anti-aging, and immunostimulatory 
properties. While Korean red ginseng (KRG) is made by repeated steaming and drying of Panax ginseng, the same components undergo 
chemical transformation and fortification [1]. Anti-stress [2], anti-oxidant [3], anti-microbial [4], and anti-viral properties [5] of KRG 
have been established in previous studies. Red ginseng acidic polysaccharides and ginsenosides, which are components of KRG, are 
known to improve immune system function [6]. Moreover, the antiviral activities of ginseng against the influenza virus [7], norovirus 
[8], and HBV [9] have recently been reported. 
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Ginsenosides are the major active components of ginseng and exhibit anti-inflammatory effects [10]. These components can be 
divided into three major groups: protopanaxadiol, protopanaxatriol, and oleanolic acid derivatives [11]. Ginsenoside Re is a major 
active protopanaxatriol-type compound present in the root and stem leaves of ginseng. Protopanaxatriol-type ginsenoside Re has been 
shown to undergo transformation into Rg1, F1, and aglycon ginsenoside-PPT (PPT) [12]. Ginsenoside Re exhibits not only neuro-
protective activities but also antioxidant effects, and also demonstrates immunomodulatory therapeutic properties [13,14] and 
anti-inflammatory effects [15]. A previous study showed that Ginsenoside Re exerts anti-inflammatory effects by inhibiting NO and 
NF-κB signaling in LPS-activated N9 microglial cells [16]. 

Human rhinovirus (HRV) is one of the most important etiological agents of the common cold [17]. Although HRV-induced upper 
respiratory illnesses are usually mild and self-limiting, there is increasing evidence linking HRV infection to more serious medical 
complications, including asthma exacerbation [18]. Previous studies have reported that rhinovirus disrupts barrier function by 
altering tight junction components in epithelial cells [19,20]. Moreover, there is recent evidence that the generation of intracellular 
reactive oxygen species (ROS) plays an important role in tight junction disruption by rhinoviruses in nasal epithelial cells [21]. 

Reactive oxygen species are cytotoxic, but they may also act as secondary messengers in intracellular signaling, and excessive ROS 
can induce stimulation of pro-inflammatory genes, tissue damage, and cell differentiation [22,23]. ROS induce the disruption of tight 
junctions in a variety of epithelial tissues [24,25]. In addition, oxidants may increase protein tyrosine phosphorylation by inhibiting 
protein tyrosine phosphatase (PTPase), thereby increasing barrier disruption [26]. 

Previously, we reported that phosphatase inhibition by ROS was associated with tight junction disruption by RV in nasal epithelial 
cells [21]. Based on previous research, we investigated whether ginsenoside Re prevents ROS production and prevents protein tyrosine 
phosphatase (PTPs) inactivation to protect the epithelial barrier function from disruption by RV. 

Several studies have reported the anti-viral effects of other ginsenosides but not Re. Therefore, we examined the effect of ginse-
noside Re on the HRV 16-induced increase in tight junction disruption in human nasal epithelial cells and provided insight into its 
molecular mechanism. This study provides further evidence supporting ginsenoside Re as a potential anti-inflammatory drug and 
facilitates the development of new therapeutic strategies. 

2. Material and methods 

2.1. Reagents and antibodies 

Ginsenoside Re, Rb1, and Rc were purchased from the Ambo Institute (Daejeon, Korea). Diphenyleneiodonium (DPI) was obtained 
from EMD Biosciences (Darmstadt, Germany). H2DCFDA was purchased from Molecular Probes (Eugene, OR). Antibody against 
occludin was purchased from Abcam (Cambridge, UK). Antibodies against ZO-1, claudin, E-cadherin, phosphotyrosine proteins and 
β-actin (Rabbit) were purchased from Cell Signaling Technology (Beverly, MA, USA). Unless otherwise specified, reagents were 
purchased from Merck/Sigma-Aldrich (Darmstadt, Germany). 

2.2. Primary cell culture 

The present study was approved by the Institutional Review Board of Gachon University Gil Medical Center (No. GCIRB2014-362). 
Human nasal mucosal tissues were collected from patients who underwent inferior turbinectomy. The cell culture method used in the 
experiment was described in a previous paper published by the author of this study [21]. 

2.3. Cell viability assay 

To analysis cell viability, HNE cells were incubated with ginsenosides Re, Rb1, and Rc for 2 h at 37 ◦C. After incubation, cell 
viability was measured using an EZ-Cytox cell viability assay kit (Daeil Lab, Seoul, Korea) according to the manufacturer’s instructions. 

2.4. HRV 16 infection and ginsenoside treatment 

Primary HNE cells at passage two were used for the experiments. HRV16 stocks were amplified and purified based on the published 
protocol [21]. HNE cells were incubated with HRV16 (5 × 105 TCID50/mL) for 4 h at 33 ◦C. After incubation, the suspension was 
removed and the cells were washed with PBS, which was replaced by fresh medium at the end of the washing step. HRV16-infected 
HNE cells were cultured for 24, 48, and 72 h in the presence or absence of ginsenosides Re, Rb1, and Rc. 

2.5. Immunoblotting 

HNE cells infected with or without HRV16, were incubated in the absence or presence of ginsenosides for 72 h. After incubation, the 
cells were lysed with RIPA buffer on ice for 10 min as previously described [21]. Equal amounts of protein were subjected to SDS-PAGE 
and subsequently electrotransferred onto PVDF membranes. The membranes were blocked with 5% nonfat dry milk in Tris-buffered 
saline Tween 20 at room temperature for 1 h, followed by incubation with proper primary antibodies against ZO-1, occludin, claudin, 
E-cadherin, phospho-tyrosine protein, or β-actin at 4 ◦C overnight. The membranes were then incubated with HRP-conjugated 
anti-rabbit or mouse antibody at room temperature for 1 h. Immunoreactivity was detected using an ECL detection system (Bio--
Rad, CA, USA). 
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2.6. Measurement of TEER 

To analysis transepithelial electrical resistance by HRV16, HNE cells were cultured in the inner chambers of Transwell inserts (0.4 
μm) (Corning Life Sciences, MA, USA). After incubation, HNE cells infected with or without HRV16, were incubated in the absence or 
presence of ginsenosides for 72 h. TEER of HNE cells was measured using an EVOM ohm-voltameter (World Precision Instruments, FL, 
USA). For calculation, the resistance value of the blank was subtracted from that of covered with cells. The values were expressed in 
standard units of ohms per cm2. 

2.7. Measurement of ROS generation 

Intracellular ROS production in HNE cells was measured using the green fluorescence probe, H2DCF-DA. In brief, HNE cells were 
cultured for 24 h with or without HRV 16 in a CO2 incubator at 33 ◦C. After incubation, HNE cells were stained at 37 ◦C for 30 min with 
H2DCF-DA (1 μM), which is rapidly oxidized to highly fluorescent DCF in the presence of intracellular H2O2. Cells were washed twice 
with PBS, and DCF fluorescence was measured by FACScan (Becton Dickinson, CA, USA) and fluorescence microscopy (Zeiss, Ober-
kochen, Germany). To flow cytometric analysis, at least 10,000 gated events were analyzed for each sample. Fluorescence microscopy 
was analyzed using a magnification of × 200. To examine the effect of ginsenoside components on HRV 16-induced ROS production in 
HNE cells, cells were treated with ginsenosides Re, Rb1, and Rc. 

2.8. Measurement of phosphatase activity 

To elucidate the tyrosine phosphatase activity of HNE cells induced by HRV 16, HNE cells were incubated with HRV 16 at 33 ◦C for 
48 h. To examine the effect of ginsenoside Re on the reduction in phosphatase activity induced by HRV 16 in HNE cells, cells were 
treated with ginsenoside Re. After incubation, phosphatase activity was measured using a non-Radioactive Tyrosine Phosphatase 
Assay System kit (Promega, Madison, WI) according to the manufacturer’s instructions. 

2.9. Statistical analysis 

All reactions were expressed as the mean ± standard deviation (SD) from 3 to 5 independent experiments. Statistical analysis was 
performed using Student’s t-test. In all analyses, P < 0.05 was considered statistically significant. 

Fig. 1. Effect of ginsenoside components on the viability of human nasal epithelial (HNE) cells. (A)–(C) Chemical structure of ginsenoside Re, Rb1, 
and Rc. (D) Human nasal epithelial cells were incubated in the presence or absence of ginsenoside Re, Rb1, and Rc (50 μg/mL to 200 μg/mL) for 72 
h. Bar graph indicates the effect of ginsenoside Re, Rb1, and Rc on HNE cell viability. The values were expressed as mean ± SEM of three inde-
pendent experiments. *P < 0.005 vs. untreated HNE cells. 
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3. Results 

3.1. Effect of ginsenoside components on viability of HNE cells 

Ginsenosides are composed generally of the protopanaxadiol (PPD) and protopanaxatriol (PPT) groups. The two groups are 
distinguished according to the position of the sugar moities attached to the dammarane-type triterpine. As shown in Fig. 1A–C, 
ginsenoside Re belongs to the PPT group, while Rb1 and Rc belong to the PPD group. The cytotoxicity of ginsenoside components (Re, 
Rb1, and Rc) in HNE cells was determined by cell viability analysis. As shown in Fig. 1D, ginsenosides Re, Rb1, and Rc had no cytotoxic 
effects at a dose of 100 μg/mL. However, ginsenoside Rc exhibited cytotoxicity at a higher concentration (200 μg/mL). 

Fig. 2. Effect of ginsenoside components on tight junction disruption of HNE cells induced by human rhinovirus 16 (HRV 16). HNE cells were 
incubated for 72 h at 37 ◦C with or without HRV 16 in the absence or presence of ginsenoside Re, Rb1, and Rc (50 μg/mL and 100 μg/mL). After 
incubation, proteins in whole-cell lysates were subjected to SDS-PAGE and subsequently western blotted with anti-occludin, anti-ZO-1, anti-claudin, 
and anti-E-cadherin antibodies. β-Actin was used as a loading control. Figures are representative of three independent experiments, each showing 
similar results. 
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3.2. Effects of ginsenoside Re on tight junction disruption 

To examine the potential effect of ginsenoside components in tight junction disruption induced by HRV 16, we treated HNE cells 
with ginsenosides Re, Rb1, and Rc. As shown in Fig. 2A and B the treatment of ginsenoside Re prevented HRV 16-induced disruption of 
tight junction proteins in HNE cells. In particular, at 100 μg/mL, ginsenoside Re almost reversed the expression of ZO-1, E-cadherin, 
and occludin among the tight junction proteins. In contrast, tight junction disruption by HRV 16 was not effectively inhibited by 
treatment with ginsenoside Rb1and Rc (Fig. 2C–F). 

3.3. Effects of ginsenoside Re on TEER in the HNE cells 

To examine the potential effect of ginsenoside components in TEER reduction induced by HRV 16, we treated HNE cells with 
ginsenosides Re, Rb1, and Rc. As shown in Fig. 3, the treatment of ginsenoside Re prevented HRV 16-induced TEER reduction in HNE 
cells. In particular, at 100 μg/mL, ginsenoside Re almost reversed the decrease of TEER. In contrast, TEER reduction by HRV 16 was not 
effectively inhibited by treatment with ginsenoside Rb1and Rc. 

3.4. Effects of ginsenoside Re on ROS production 

Next, to investigate the effect of ginsenoside components in ROS generation induced by HRV 16, we treated HNE cells with gin-
senosides Re, Rb1, and Rc. Treatment with 100 μg/mL ginsenoside Re prominently prevented HRV 16-induced ROS generation in HNE 
cells (Fig. 4A and B). We also investigated whether ginsenosides Rb1 and Rc inhibited HRV16-induced ROS production. As shown in 
Fig. 5A and B, ROS generation by HRV 16 was not efficiently inhibited by treatment with ginsenosides Rb1 and Rc in HNE cells. In 
addition, as shown in the fluorescence microscopy results in Fig. 5C, treatment with 100 μg/mL ginsenoside Re almost completely 
abolished the production of intracellular ROS in HNE cells. In contrast, HRV-induced ROS production was not inhibited by treatment 
with ginsenosides Rb1 and Rc. 

3.5. ROS-dependent phosphatase inhibition and increase of phospho-tyrosine protein levels 

Our previous study demonstrated that HRV 16-induced ROS is responsible for the increase in protein phosphorylation via the 
inhibition of phosphatases [21]. Therefore, we investigated the inhibitory effect of ginsenoside Re on the inhibition of ROS-dependent 
phosphatase and increase in phosphorylated tyrosine protein levels by HRV16. As shown in Fig. 6A, HNE cells incubated with HRV 16 
showed significantly reduction in phosphatase activity as compared to the cells incubated with medium alone. Treatment with 100 
μg/mL ginsenoside Re effectively recovered phosphatase inhibition in HNE cells infected with HRV 16, similar to DPI. Next, we 
investigated the inhibitory effect of ginsenoside Re in the increase in phospho-tyrosine protein levels induced by HRV 16. As shown in 
Fig. 6B, treatment with 100 μg/mL ginsenoside Re prominently prevented HRV 16-induced the increase in phospho-tyrosine band 
levels in HNE cells. 

4. Discussion 

Ginsenosides are considered key components of ginseng that functions against a variety of diseases. Among ginsenosides, Re is 
known to have anti-inflammatory, antioxidant, and antiviral effects [27–29]. In this study, we found that ginsenoside Re could restore 
disruption of tight junction in HNE cells by preventing ROS-mediated phosphatase inactivation by HRV 16. 

Tight junctions form the intercellular barrier, which acts as the physical barrier against allergen and pathogen infection, and 
maintains homeostasis in epithelial cells [30]. Human nasal epithelial tight junctions maintain function by cytoplasmic tight junction 
proteins, including ZO-1, and junctional adhesion molecules (JAMs), occludin, and claudins [31]. A recent study reported that nasal 
epithelial barrier disruption was caused by the downregulation of ZO-1, occludin, E-cadherin, and claudin-1 expression by human 

Fig. 3. Effect of ginsenoside components on TEER of HNE cells induced by human rhinovirus 16 (HRV 16). HNE cells were incubated for 72 h at 
37 ◦C with or without HRV 16 in the absence or presence of ginsenoside Re, Rb1, and Rc (50 μg/mL and 100 μg/mL). TEER values for individual 
transwells derived from HNE cells infected with HRV 16 are shown. The background signal was subtracted (using TEER values from a blank 
Transwell), and data were normalized to controls. 
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rhinovirus 16 [21]. Herein, we established tight junction disruption, characterized by a decrease in the expression of tight junction 
proteins claudin-1, ZO-1, E-cadherin, and occludin in HNE cells infected with HRV 16, and the results are also supported by our 
previous study demonstrating that HRV 16 infection led to tight junction disruption in human nasal epithelial cells [32]. 

P. ginseng has been a traditional medicine used in Korea and China for more than 5000 years [33]. Steamed and fermented ginseng 
produces red ginseng with a chemical composition that is different than the original ginseng. Many saponins, including ginsenoside, 
have been shown to have various useful effects, including antiviral activity. There are reports that ginsenosides cause adjuvant effects 
when used in combination with several vaccines, including influenza and parvovirus vaccines [7,34]. However, there are no previous 
reports on the antiviral activity of ginsenosides against human rhinovirus. 

Ginsenoside Re has many protective effects on skin barrier function, such as ameliorating cornified cell envelope formation, 
filaggrin levels, caspase-14 activity [28], and downregulation of UVB-induced oxidative stress [35]. In the present study, we confirmed 
that ginsenoside Re restores tight junction protein expression by upregulating the tight junction-related proteins claudin-1, ZO-1, 
E-cadherin, and occludin in HRV16-induced nasal epithelial tight junction dysfunction. 

After confirming the tight junction protection properties of ginsenoside Re, we focused on elucidating the underlying molecular 
mechanisms. 

According to our previous study, HRV16 inhibits tight junction protein expression levels by producing ROS in human nasal 
epithelial cells [21]. We further investigated how ginsenoside Re inhibits tight junction disruption by focusing on ROS signaling. Our 
data exhibited that ginsenoside Re significantly reduced ROS production in HRV16-induced HNE cells, which may disrupt downstream 
signal transduction. 

ROS are considered important components of many disorders and have been studied in various disease models. Ginsenoside Re 
demonstrates antioxidative properties through the upregulation of some antioxidant components, including total GSH and SOD, in 
HaCaT keratinocytes [36]. Re also prevents oxidative stress in cardiomyocytes [14]. Oxidative stress has been reported to regulate 
protein tyrosine phosphorylation by inhibiting phosphatase activity, resulting in Caco2 and T84 cells [37]. In particular, the tyrosine 
phosphorylation of proteins controlled by protein tyrosine phosphatases (PTPs) plays a crucial role in the pathogenesis of various 
disorders [38]. Therefore, regulation of PTPs is very important for cell signaling. To further analyze whether ginsenoside Re is involved 
in tyrosine phosphatase inactivation, we used ginsenoside Re and the ROS inhibitor DPI in HNE cells. Previous reports have shown that 
DPI inhibits ROS and is widely used in mechanistic studies. It can be inferred that the test compound plays a biological function by 
inhibiting ROS if the compound shows an inhibitory effect similar to that of DPI [21]. In this study, HRV16-induced inhibition of 

Fig. 4. A, B. The effect of ginsenoside Re on ROS generation induced by HRV 16. HNE cells were co-incubated for 24 h with HRV 16 in the absence 
or presence of ginsenoside Re (50 and 100 μg/mL) and the intracellular ROS production was analyzed by flow cytometry. Data are presented as the 
means ± SEM from three independent experiments. *, P < 0.005. 
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tyrosine phosphatases was reversed in the presence of the ginsenosides Re and DPI. The results showed that Re and DPI blocked the 
inhibitory effect of HRV16 on phosphatase activity, indicating that phosphatase activity was regulated by ROS. 

We reported ROS is involved in tight junction disruption of human nasal epithelial cells induced by HRV16 in a previous paper [21]. 
In that report, the causal relationship between ROS, phosphatase activity, and p-tyr was revealed, and based on that study, the 
inhibitory effect of ginsenoside Re was confirmed. In the present study, we also found that ginsenoside Re blocked the increase in 
phospho-tyrosine protein levels and phosphatase inhibition, as well as ROS generation and tight junction disruption in HRV 
16-infected human nasal epithelial cells. In particular, Re inhibited tight junction disruption and ROS generation, whereas Rc and Rb1 
failed to suppress both. 

In conclusion, we demonstrated for the first time that ginsenoside Re inhibits HRV16-induced tight junction disruption by inac-
tivating ROS-mediated phosphatases in HNE cells (Fig. 7). Further studies on the detailed regulatory role of ginsenoside Re in this 
process will be helpful in obtaining a better understanding of HRV-induced inflammatory responses in HNE cells and facilitate the 
development of novel therapeutic strategies. 

Fig. 5. A, B. The effect of ginsenoside Rb1 and Rc on ROS generation induced by HRV 16. HNE cells were co-incubated for 24 h with HRV 16 in the 
absence or presence of ginsenoside Rb1 and Rc (50 and 100 μg/mL) and the intracellular ROS production was analyzed by flow cytometry. Data are 
presented as the means ± SEM from three independent experiments. *, P < 0.005. C. Visualization of intracellular ROS accumulation in HNE cells 
incubated with HRV 16. HNE cells were co-incubated for 24 h with HRV 16 in the absence or presence of ginsenoside Re, Rb1, and Rc (50 and 100 
μg/mL). The production of intracellular ROS in HNE cells was observed by inverted fluorescence microscopy (magnification × 200). 
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Fig. 6. Ginsenoside Re inhibits the HRV 16-induced inactivation of phosphatases and phosphorylation of protein tyrosine. HNE cells were incubated 
for 48 and 72 h at 37 ◦C with or without HRV 16 in the absence or presence of ginsenoside Re (50 μg/mL and 100 μg/mL). A. After incubation, 
PTPase activity was measured as described in Materials and Methods. Data are presented as the mean ± SEM from three independent experiments. 
*, P < 0.005. B. Whole-cell lysates were subjected to SDS-PAGE and probed with anti-phospho-tyrosine antibody. The figure is representative of 
three experiments showing similar results. 

Fig. 7. Schematic diagram of effects of Ginsenoside Re on tight junction disruption in human nasal epithelial cells induced by HRV 16. After 
rhinovirus infection to nasal epithelial cells, there is a rapid increase in intracellular ROS. The generated ROS then extensively inactivates phos-
phatases. This inhibition of phosphatases results in marked increases in protein tyrosine phosphorylation, and the increase in phospho-tyrosine 
proteins contributes to the disruption of tight junction proteins. Ginsenoside Re can inhibit tight junction disruption through ROS suppression 
and phosphatases recovery. 
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