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A B S T R A C T   

One challenge in the engineering of biological systems is to be able to recognise the cellular stress states of 
bacterial hosts, as these stress states can lead to suboptimal growth and lower yields of target products. To enable 
the design of genetic circuits for reporting or mitigating the stress states, it is important to identify a relatively 
reduced set of gene biomarkers that can reliably indicate relevant cellular growth states in bacteria. Recent 
advances in high-throughput omics technologies have enhanced the identification of molecular biomarkers 
specific states in bacteria, motivating computational methods that can identify robust biomarkers for experi-
mental characterisation and verification. Focused on identifying gene expression biomarkers to sense various 
stress states in Bacillus subtilis, this study aimed to design a knowledge integration strategy for the selection of a 
robust biomarker panel that generalises on external datasets and experiments. We developed a recommendation 
system that ranks the candidate biomarker panels based on complementary information from machine learning 
model, gene regulatory network and co-expression network. We identified a recommended biomarker panel 
showing high stress sensing power for a variety of conditions both in the dataset used for biomarker identifi-
cation (mean f1-score achieved at 0.99), as well as in a range of independent datasets (mean f1-score achieved at 
0.98). We discovered a significant correlation between stress sensing power and evaluation metrics such as the 
number of associated regulators in a B. subtilis gene regulatory network (GRN) and the number of associated 
modules in a B. subtilis co-expression network (CEN). GRNs and CENs provide information relevant to the di-
versity of biological processes encoded by biomarker genes. We demonstrate that quantitatively relating 
meaningful evaluation metrics with stress sensing power has the potential for recognising biomarkers that show 
better sensitivity and robustness to an extended set of stress conditions and enable a more reliable biomarker 
panel selection.   

1. Introduction 

Bioengineering applications often use bacteria as the host organisms 
to create high-value products such as pharmaceuticals, biofuels, fine 
chemicals, etc. [1]. While grown under optimal user-defined conditions, 
bacteria still undergo periods of cellular stresses that may lead to sub-
optimal growth and lower yields of target products [2–4]. One of the 
goals of the biotechnology industry is to recognise these detrimental 
cellular states so that strategies for mitigating the damage can be engi-
neered [5,6]. Detrimental states can be characterised and recognised 
using a variety of techniques, from morphological and biochemical as-
says [7,8] to omics methods [9]. In the context of omics methods, panels 

of genes whose expression are indicative of certain cellular states can be 
used as transcriptional biomarkers. 

By measuring the expression of a few key biomarker genes using 
amplicon panels [10,11] or qPCR [12,13], instead of characterising the 
global transcription using genome-scale RNA-seq or Microarray, the 
cellular states can be assayed at reduced costs. Moreover, while these 
sequencing measures are not easily carried out in real-time, having 
cellular state biomarkers is particularly attractive for single-cell mea-
surement technologies that seek to develop ‘live cell’ biosensors using 
flow cytometry [14,15] or microfluidics systems [16–18]. These ‘live 
cell’ biosensors require the biomarker panels to be small, consisting of 
only a few key genes. Small biomarker panels are essential because live 
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monitoring of cellular state currently relies on the use of reporter genes, 
for which a limited number of distinct systems are available. 

Transcriptomic methods such as microarrays and RNA-seq are used 
to reveal gene expression patterns under different environmental con-
ditions. These experiments can provide the genome-scale data necessary 
to identify transcriptional biomarkers for distinguishing physiological 
and biochemical states in a bacterial cell. Statistical tests such as dif-
ferential expression analysis have discovered the biomarker genes 
indicative of certain stress states for model bacteria used in the 
biotechnology industry, e.g., Escherichia coli [19,20] and Bacillus subtilis 
[21,22]. Other biomarker studies in biomedical domains [23–25] have 
exploited the massive transcriptomics data by applying machine 
learning methods such as classification and feature selection models 
[26]. We recently proposed a pipeline of machine learning models to 
extract diverse cellular states from condition-dependent transcriptomics 
data and identify gene biomarkers that can classify different stress states 
for B. subtilis [27]. 

Transcriptomics data are high dimensional, with the number of 
features vastly exceeding the number of samples. Hence it is likely to 
discover multiple sets of gene features that can potentially serve as 
biomarkers to discriminate samples in groups of interest. To assess these 
candidate biomarker panels, most studies on biomarker discovery have 
applied a single criterion, e.g., fold change in differential expression 
analysis [28] or cross-validation performance in machine learning 
model [29]. Our previous study [27] highlighted a minimal biomarker 
panel that achieved the highest performance in discriminating different 
cellular states for B. subtilis. However, individual scoring criteria are 
inherently biased as they capture limited information. A good biomarker 
panel for an in vivo validation should present multiple properties, for 
example, good discriminative capacity between cellular states and high 
relevance in the gene regulatory control of the organism. Therefore, 
there is a need for better panel selection methods that can rank candi-
date biomarker panels by integrating a variety of data-driven and 
domain-based criteria, to select a robust and reproducible biomarker 
panel. 

One source of information that can be used to assess biomarkers, but 
has often been neglected, are models of gene regulation such as gene 
regulatory networks (GRN). A gene regulatory network is a collection of 
molecular species and their interactions, which together govern gene 
expression levels of mRNA and control gene-product abundance. GRNs 
play an important role in all kinds of cellular processes, including cell 
cycle, metabolism, and signal transduction. A well-curated GRN has 
already been described for B. subtilis [30]. This GRN has been rigorously 
validated experimentally and includes thousands of genes and hundreds 
of regulatory factors. GRNs such as this can reveal the regulatory circuits 
that are modulated by the identified biomarker genes, or which can, 
in-turn, regulate biomarker gene expression. By mapping biomarkers in 
a GRN it is possible to assess the diversity of cellular processes that the 
biomarkers are involved in. 

As our current knowledge of regulatory interactions within the cell is 
still limited, co-expression networks (CEN), which are inferred from the 
correlations of expression patterns across different conditions [31,32] 
can also provide additional information about transcriptional relation-
ships between genes and their products. By grouping genes that are 
highly interconnected we can identify modules of genes with similar 
functions and relate the genes of unknown function to well-studied 
genes [33]. Therefore, CEN can be used to study the functional di-
versity of biomarkers as a supplementary method to complement GRNs. 

We hypothesised that to identify a robust biomarker panel, a 
multimodal approach combining prior known information about gene 
interaction and co-expression with computational data-driven methods 
is crucial. We designed a two-step approach to rank and select a robust 
biomarker panel comprising key genes. Firstly, we applied the Bacillus 
subtilis biomarker identification model (BIM), which we developed 
previously, to obtain a pool of candidate biomarker panels with satis-
factorily high performance in predicting the stress state of a sample. 

Secondly, for each biomarker panel we integrated complementary in-
formation from BIM, GRN and CEN, developing a recommendation 
system to identify the biomarker panel with a few key genes to sense 
stress conditions. We successfully validated the robustness of the rec-
ommended panel on nine external datasets covering 10 stress condi-
tions. These findings suggest that our in silico biomarker 
recommendation system, integrating multi-source knowledge and data- 
driven techniques, can facilitate in vitro experiments to sense cellular 
states for monitoring stress conditions in B. subtilis. 

2. Material and methods 

2.1. Datasets and data processing 

For discovering biomarker panels, we used a tiling array dataset [34] 
that assays the transcriptomes of B. subtilis strain BSB1 measured under 
diverse conditions, including alternative nutrient shifts, lifestyle 
changes and adaptation to various stimuli. The wide range of conditions 
can lead to distinct transcriptional states in bacteria. Some of these 
conditions can cause bacterial stress, enabling the identification of 
biomarker genes specific to different stress states. Although, more 
recently, RNA-seq technology has also generated many transcriptomics 
datasets containing different conditions respectively, the integration of 
these small datasets was challenging since they are experimentally more 
diverse and would introduce between-experiment noise when included. 
The unified tiling array dataset from Nicolas and co-workers (referred to 
as the Nicolas dataset) was preferable for exploring the transcriptional 
profiles across conditions as between-experiment noises were minimised 
by conducting all experiments following standard operating procedures 
and estimating the gene expression quantities using the same signal 
processing protocols. The experimental procedures and signal process-
ing protocols are described in Supplementary Material SOM1-2 from 
Ref. [34]. 

Nicolas and co-workers computed an aggregate expression index for 
each of 5875 transcribed regions as the median log 2 expression signal 
intensity of probes lying entirely within the corresponding region. These 
expression values were pre-processed with quantile normalisation that 
makes the data distribution across samples identical for reducing the 
between-sample variations. The raw data in Gene Expression Omnibus 
(GSE27219) and pre-processed data was made available at: 

http://genome.jouy.inra.fr/basysbio/bsubtranscriptome. 
To enable the discovery of relevant cellularlieing states using unsu-

pervised machine learning, we further processed data using the pro-
cessing steps as elaborately explained in our previous work [27]. Briefly, 
these steps included: a) filtering genes that were invariant across con-
ditions; b) removing genes and samples related to late-stage sporulation 
conditions, as sporulation produces a very strong transcriptional 
response across a large number of genes that would mask many other 
cellular states we are interested in capturing; c) normalising the 
expression quantities by subtracting the corresponding reference con-
ditions within each experiment; to produce a processed 
condition-dependent gene expression data (Fig. 1a) for downstream 
analysis. The data processed using the above steps, containing 2536 
genes and 180 samples, can be downloaded from: 

https://github.com/neverbehym/biomaker-recommendation-syste 
m. 

We also used nine condition-specific gene expression datasets 
(Fig. 1g) for the validation of the biomarker identification model. These 
external datasets, independent from Nicolas dataset used for model 
training, were generated over past years using RNA-seq data or Micro-
array data in multi-centres including our own laboratory. Each external 
datasets consisted of mRNA samples collected under a test condition 
treated with a specific environmental stress perturbation as opposed to a 
control condition without the treatment. The details of experimental 
conditions and Gene Expression Omnibus (GEO) session IDs for all 
datasets used in this study can be found in Supplementary Table 1. While 
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most tests conditions in the external datasets were seen in Nicolas 
dataset, some conditions were new and not studied in Nicolas dataset. 
The selection of these external datasets allowed us to validate the gen-
eralisability of the identified biomarker panel on data collected by 
different technologies, which include independent samples grown in 
conditions present in the training data and in additional conditions not 
present in the training data. 

2.2. Overall approach 

We proposed a in silico pipeline (Fig. 1) to select a small and robust 
biomarker panel to sense a variety of stress states for B. subtilis. We used 
the Nicolas dataset (Fig. 1a) for training a recommendation system and a 
set of external datasets (Fig. 1g) for validation of the recommended 
biomarker panel. Nine evaluation metrics were derived from a 
Biomarker Identification Model (Fig. 1b), a Gene Regulatory Network 
(Fig. 1c) and a Co-Expression Network (Fig. 1d), and a stress sensing 
index was calculated by applying a Stress Sensing Model (Fig. 1e). The 
recommendation system (Fig. 1f) can select a biomarker panel from a 
pool of candidate panels by ranking the panels based on the evaluation 
metrics and coupling these evaluation metrics with the stress sensing 
index. We reported the performance of the selected biomarker panel to 
predict an extended list of conditions from external datasets for vali-
dation (Fig. 1h). 

2.3. Biomarker identification model 

In our previous study [27], we proposed a Biomarker Identification 
Model (BIM), which was applied to the Nicolas dataset to discover 
biomarker panels indicative of the cellular states for B. subtilis. This BIM 
first discovers different cellular states introduced by a wide range of 
conditions using UMAP dimension reduction [35] and Leiden clustering 
[36] methods. The BIM then identifies panels of biomarkers indicative of 
these cellular states using our RGIFE model [37], a recursive feature 
elimination-style feature selection algorithm. Here we improved the 
BIM to enable the identification of a sufficient number of biomarker 
panels of small size and high predictive performance by performing an 
additional feature elimination and evaluation process (Algorithm 1). On 

each of the 500 biomarker panels of different sizes and prediction per-
formances we identified from our previous work [27], we iteratively 
removed individual genes while optimising cross-validation perfor-
mance until reaching the desired panel size ranging from min_feature_size 
to max_feature_size. Here the cross-validation performance was 
computed as the micro f1-score in 10-folds stratified cross-validation 
test. We set min_feature_size as 5, which was the minimal size of the 
initial 500 biomarker panels returned by RGIFE. We set max_feature_size 
as 10 as this was the smallest number of genes required to achieve a 
f1-score of 1. We retained the panels with cross-validation performance 
more than performance_threshold of 0.9 to ensure a high prediction ca-
pacity for all candidate biomarker panels. This enabled as many as 949 
candidate panels for the evaluation of our biomarker recommendation 
methods. 

We extracted three metrics from this refined BIM to evaluate 
candidate biomarker panels (Fig. 1b): a) Performance is used to measure 
the prediction performance of a given biomarker panel on distinct 
cellular states in the Biomarker Identification Model. It is calculated as 
10-folds cross-validation f1-score for predicting ten cellular states with 
Random Forest classifier. b) Frequency reflects the consistency of a 
biomarker panel being selected across multiple repetitions of running 
BIM starting from different random states. As a high-throughput dataset 
tends to give false positive results, a biomarker panel with a higher 
Frequency value is expected to have less chance of being spurious signals. 
We first computed, for each gene, the frequency of appearing in the pool 
of candidate biomarker panels and then calculated Frequency as the 
average frequency values across all genes in a panel. c) Effect Size 
evaluates the overall strength of differential expressions in the bio-
markers between distinct cellular states. A biomarker panel with a 
higher Effect Size value will likely make a reporter system with stronger 
signals. It is calculated as the average value of EffectSizegene for all genes 
in each biomarker panel. As defined in Equation (1), μi − μj

s(i,j) is used to 
compute Cohen’s d score, which measures the standardised difference in 
biomarker expression between two cellular states i and j.   

Fig. 1. Overall approach. a) Nicolas dataset, which 
measures condition-dependent gene expression pro-
files using Tiling array technology, is used for 
biomarker identification and optimisation. b) A 
Biomarker Identification Model (BIM) is used to 
identify a pool of candidate biomarker panels and 
extract biomarker evaluation metrics: Performance, 
Frequency, Effect Size. c) A Gene Regulatory Network 
(GRN) is used to extract biomarker evaluation met-
rics: Distance, number of Regulator, Closeness. d) A Co- 
Expression Network (CEN) is used to extract 
biomarker evaluation metrics: Distance, number of 
Module, Betweenness. e) A Stress Sensing model (SSM) 
produces a stress sensing index for each candidate 
biomarker panel. The stress sensing index is calcu-
lated as the average f1-score performance on pre-
dicting N stress conditions in the Condition- 
dependent gene expression data. f) The recommen-
dation system takes a set of candidate biomarker 
panels as input and recommends an optimal 
biomarker panel. This recommendation system is 
trained to relate evaluation metrics with the stress 
sensing index. g) A set of external datasets, collected 
in different centres with RNA-seq and Microarray 
technologies, are used for validation. h) Validation on 
external datasets is performed by assessing the per-
formance of the recommended biomarker panel pre-
dicting M conditions included in the condition- 
specific gene expression datasets.   
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2.4. Gene regulatory network 

To assess the diversity of cellular processes in which the biomarkers are 
involved with prior knowledge, we curated a gene regulatory network for 
B. subtilis by incorporating the network reconstructed by Faria and co- 
workers [30] with the latest Subtiwiki regulon database (http://subtiwiki 
.uni-goettingen.de/v3/regulation/export). This network consists of 6704 
edges, indicating the interactions between 294 regulators and 2816 tar-
geted genes under various mechanisms such as transcriptional factors, RNA 
switches, riboswitches, and small regulatory RNAs (Supplementary 
Table 2). The network comprises 35 components, with the largest one 
containing 2798 nodes. 

We extracted three evaluation metrics from GRN (Fig. 1c): a) Num-
ber of regulators is the number of transcriptional regulators in GRN 
associated with the genes from a given biomarker panel. b) Distance 
indicates how distant any two genes from a given biomarker panel are in 
GRN. The distance between connected genes is calculated as the number 
of least hops in the network. The distance between unconnected genes is 
set as m+1, where m is the largest distance between any two connected 
genes in the network. c) Closeness is calculated as the average node 
closeness centrality across genes from a given biomarker panel in GRN. 

2.5. Co-expression network 

To study the functional diversity of biomarkers diagnostic of the 
transcriptional relationships discovered in GRNs, we constructed the co- 
expression network (CEN) that captures the expression similarity pat-
terns across conditions. We applied weighted gene co-expression 
network analysis using the R package WGCNA [32]. The resulting 

network is a fully connected and weighted network, with nodes being 
studied genes and edges reflecting the similarity of gene expression 
profiles across various conditions. First, we computed the adjacency 
value a(i,j) as in Equation (2), where s(i,j) is similarity strength based on 
Pearson correlation and β is soft-thresholding power index. We tuned the 
parameter β = 4 to maximise the scale-free topology criterion [38]. 
Second, we identified modules, i.e., clusters of highly connected genes, 
with the Dynamic Tree Cut method [39]. We tuned the parameters 
detectCutHeight, mergeCutHeight, minModuleSize in blockwiseModules 
function to maximise the average Overlap score across all modules in a 
network. The Overlap score for a given module is calculated in Equation 
(3), where Overlapm measures the overlap level between modulem and a 
most concordant regulon in the GRN. We identified 55 modules with 
similar co-expression patterns as indicated by different colours, leaving 
245 genes unassigned (grey). We summarised the profiles of these 
modules by studying the central genes with high intramodular connec-
tivity, the highly overlapped regulons, and the overrepresented biolog-
ical process in Gene Ontology. Please find the details in Supplementary 
Table 3. 

a(i,j) = sβ
(i,j) (2)  

Overlapm =

{
2| ∩ (modulem, regulonn)|

|modulem| + | regulonn|
: n= 1,…,N

}

(3) 

We extracted three evaluation metrics from the CEN (Fig. 1d): The 
number of module (#Module) is the number of different modules in the 
CEN that are associated with the genes from a given biomarker panel. 
Distance measures the average distance between pairs of biomarker 

EffectSizegene =max
{

min
{⃒
⃒
⃒
⃒
μi − μj

s(i,j)

⃒
⃒
⃒
⃒ : j∕= i, j∈ [1, 10]

}

: i∈ [1, 10]
}

, S(i,j) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(ni − 1)S2

i +
(
nj − 1

)
S2

j

ni + nj − 2

√

(1)   
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genes in the CEN. The cost of each edge is calculated as the inverse of co- 
expression strength, and the distance between two genes is set as the 
least sum of costs for the path connecting them. Betweenness is the 
average node betweenness centrality of biomarker genes in the CEN. 

2.6. Stress sensing model 

The Stress Sensing Model (SSM) is used to measure the overall per-
formance of a biomarker panel in predicting stress states induced by a 
variety of test conditions (Fig. 1e). While BIM identifies biomarkers 
indicative of different cellular states revealed by applying unsupervised 
machine learning methods on condition-dependent transcriptomes, SSM 
assesses the biomarkers using the condition labels provided. We first 
applied the Linear Support Vector Machine (SVM) model to classify gene 
expression patterns of a biomarker under each test condition from their 
gene expression patterns under the corresponding control condition. We 
computed the cross-validation f1-score performance to reflect the single- 
stress sensing power of this biomarker panel. We then computed the 
stress sensing index that reflects the multi-stress sensing power as the 
average f1-score performance across all test conditions. We applied 
SMM to measure the multi-stress sensing power of a pool of candidate 
biomarker panels identified by BIM, assessing the overall prediction 
performance in 13 test conditions included in Nicolas dataset (Table 1a). 

To mitigate the over-optimistic estimation of prediction performance 
due to limited dataset sizes, we performed 100 repetitions of the leave 
one out cross-validation and applied Synthetic Minority Over-sampling 
Technique (SMOTE) [40] to oversample the minority class to the same 
size as the majority class in the training process. 

2.7. Recommendation system 

We built a recommendation system (Fig. 1f) that takes a pool of 
candidate biomarker panels as input and produces a recommended 
panel as the output. There are four modules in the recommendation 
system, i.e., Biomarker Identification Model (BIM), Gene Regulatory 
Network (GRN), Co-Expression Network (CEN) and Stress Sensing 
Model (SSM) as described in sections 2.3 to 2.6. We trained a regression 
model with Elastic Net regularisation to predict the stress sensing index 
of a biomarker panel with 9 evaluation metrics generated from BIM, 
GRN, CEN. Except for the GRN, all other modules used the Nicolas 
dataset as their source. The list of candidate biomarker panels, the 
evaluation metrics and stress sensing indices for all panels are provided 
in https://github.com/neverbehym/biomaker-recommendation-syste 
m/data. The Elastic Net Regression Model is illustrated in Equation 
(4), where α is the mixing parameter between L1 regularisation and L2 
regularisation, λ is coefficient shrinkage parameter. We tuned the model 
parameters λ = 0.2, α = 1e-4 to optimise the 10-folds cross-validation 

performance. A recommendation score was calculated as the predicted 
stress sensing index value (Equation (5)) for each candidate biomarker 
panel. The recommendation system then selects the panel with the 
highest recommendation scores as the optimal biomarker panel. 

Lenet(β̂)=

∑n

i=1
(yi − xi β̂)2

2n
+ λ

(
1 − α

2
∑m

j=1
β̂

2
j + α

∑m

j=1

⃒
⃒β̂j

⃒
⃒

)

(4)  

RecommedationScorei = xiβ (5) 

To understand the respective impact of each evaluation metric on the 
recommendation system, we calculated the SHapley Additive exPlana-
tions (SHAP) values [41], reflecting the overall importance of each 
feature in a linear regression model. While model coefficients can also 
describe how the response values will change on the value of an input 
feature, the coefficients depend on the scale of the input features. Taking 
the distribution of feature values in regard, SHAP values are computed 
as the difference between the expected model output and the partial 
dependence plot at the feature’s value, and thus can better measure 
feature impacts on the model. 

2.8. External validation 

We ran external validation (Fig. 1h) to test the robustness of the 
optimal biomarker panel selected by the recommendation system (see in 
2.7) on several B. subtilis gene expression datasets independent of Nic-
olas dataset used for model training. We estimated the stress sensing 
power of the recommended biomarker panel specific to the conditions 
covered in these external datasets (Table 1b) by applying the stress 
sensing model (see in 2.6). 

To assess the ability of the recommendation system to prioritise an 
optimal biomarker panel over other candidate biomarkers and random 
genes, we computed the stress sensing index for the remaining candidate 
biomarker panels and a set of random gene panels in comparison with 
the recommended biomarker panel. This set of random gene panels was 
generated by repeatedly random sampling an equal number of genes as 
in each candidate biomarker panel. 

3. Results 

3.1. Assessment of the evaluate metrics for candidate biomarker panels 

We discovered 949 candidate biomarker panels that can discriminate 
10 cellular states in B. subtilis by rigorously running the Biomarker 
identification model (see 2.3). These candidate biomarker panels have 
all achieved classification performance of more than 0.9 (f1-score) in 
cross-validation tests. The sizes of these panels, i.e., the number of genes 

Table 1 
a) Conditions studied in the Nicolas datasets during the training process. b) Conditions studied in the external datasets during the validation process, in which some are 
similar to the conditions covered in the training dataset while some are different.  

a) Test Conditions Sample Size b) Test Conditions Covered in Nicolas 
dataset 

Sample Size 

Test Control Test Control 

Nicolas 
dataset 

Anaerobic 6 3 

External 
datasets 

Antibiotic (amphotericin, SynAnt49, 
YydF) 

N 9 9 
Antibiotic (Mitomycin) 6 6 
Biofilm 4 5 Cold Y 5 4 
Cold 6 6 Deep Starvation N 3 4 
Germination 8 6 Glycine betaine N 6 6 
Heat 6 6 Hydroxyurea N 6 6 
Low motility 8 6 Heat Y 12 9 
Oxidative (Diamide, H2O2, 
Paraquat) 

15 6 Oxidative (H2O2) Y 5 5 
Potassium N 4 4 

Salinity 6 6 Pressure N 11 5 
Shift from glucose 25 9 Salinity Y 6 6 
Shift to glucose 24 5     
Starvation 9 8     
Stationary 9 9      
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each biomarker panel consists of, ranged from 6 to 10. 
We derived a set of metrics that evaluated different properties of the 

candidate biomarker panels: Performance for classification performance 
to distinguish different cellular states; Frequency for the stability of genes 
being selected as a biomarker; Effects Size for the strength of distin-
guishability; Number of regulators (#Regulators) and Number of modules 
(#modules) for the diverse biological modalities in GRN and CEN; Dis-
tance-GRN and Distance-CEN for the coverage diameter in GRN and CEN; 
Closeness and Betweenness for the significance by centrality measure-
ments in GRN and CEN. These evaluation metrics varied across candi-
date biomarker panels, with large dynamic ranges seen in the 
distribution (Fig. 2a). The correlation analysis between these metrics 
and stress sensing index (Fig. 2b) and the correlation analysis within 
these metrics (Fig. 2c) indicated they are complementary measurements 
and that individually they are not sufficiently predictive of stress sensing 
power. The initial assessment of this set of selected metrics showed the 
potential in predicting the stress sensing power of the biomarkers by 
incorporating them in a computational model. 

3.2. Recommendation system to select a robust biomarker panel 

To build a recommendation system capable of selecting the optimal 
biomarker panel based on evaluation metrics and stress sensing index, 
we trained a regression model with Elastic Net regularisation to couple 
the evaluation metrics with the stress sensing index (Fig. 3a–b). We 
observed a significant correlation (Spearman rho = 0.44, p-val-
ue<0.001) between the actual stress sensing index and predicted stress 
sensing index produced by the trained regression model (Fig. 3c). The 
trained model assigned a recommendation score as the predicted stress 
sensing index (Equation (5)) to each candidate biomarker panel. Panel 
661, which achieved the highest score, was selected as the recom-
mended panel (Fig. 3d). This recommended biomarker panel showed 
great prediction performance in classifying 13 stress conditions covered 
in Nicolas dataset, with mean f1-score achieved at 0.99 (i.e. actual stress 
sensing index). 

We analysed the respective impact of each evaluation metric on the 
outcome of the recommendation system, i.e., recommendation score 
(Fig. 3e). Number of regulators, which reflects how diverse the tran-
scriptional regulatory parts are associated with the biomarker genes, 
showed the most significant impact on the model. The recommendation 
system gives a higher score for a biomarker panel consisting of genes 
that are involved in more regulatory parts. Number of Modules, which 
indicates the coverage of different modules in the co-expression 
network, similarly presented a positive correlation with the recom-
mendation scores. Performance, Frequency, Effect Size, as the evaluation 

metrics extracted from the Biomarker identification model, respectively 
indicates the prediction power for classifying distinct cellular states, the 
uniqueness in candidate solutions, the strength of differential expres-
sion, were the remaining features among the top 5 contributors for 
ranking the candidate biomarker panels. 

3.3. Validation of the recommended biomarker panel on external datasets 

We validated the performance of the recommended biomarker panel 
on external datasets to classify samples grown under 10 test conditions 
from the samples grown under the corresponding control conditions 
(Table 1b). Despite variations observed in distributions of classification 
performance across candidate biomarker panels for all conditions, the 
recommended biomarker panel achieved 100% prediction accuracy for 
7 conditions and still good prediction performance for the remaining 3 
conditions (Fig. 4a). Note that half of the conditions (e.g., Pressure, 
Hydroxyurea, Potassium, Glycine betaine) we tested here were not 
covered in Nicolas dataset used for the model training. This shows that 
the proposed knowledge-based recommendation system holds the po-
tential of prioritising biomarker genes responsive to an extended set of 
treatment conditions that were not seen in the biomarker identification 
process. 

To summarise the overall stress sensing power of a given biomarker 
panel, we averaged the prediction performance over all test conditions 
as the stress sensing index. We found that the stress sensing index for the 
recommended panel (0.98) is higher than 98% of the candidate 
biomarker panels and 99.5% of the random gene panels (Fig. 4b). 

3.4. Biological characterisation of the recommended biomarker panel 

By training the recommendation system to predicate the stress 
sensing power of biomarker panels with evaluation metrics, we selected 
the biomarker panel with the highest predicted stress sensing index for 
in-vitro validation. As shown in Table 2, this recommended biomarker 
panel consists of 10 genes with various functions corresponding to DNA 
repair, endopeptidase activity, the synthesis of essential proteins, etc. 
These recommended biomarker genes presented varying alterations in 
transcription in response to different stress conditions, which combined 
can be used to distinguish a specific stress condition (Fig. 5a). 

The evaluation metrics #Regulators and #Modules, which have 
shown a significant impact on the stress sensing power of the biomarkers 
in the recommendation system, are relevant to the diversity of biological 
processes that biomarker genes are entailed. Therefore, studying 
involved regulatory parts and co-expression modalities can reveal the 
functional profiles of the biomarkers. We extracted the smallest 

Fig. 2. Evaluation metrics for biomarker panels. a) The distribution plots for different evaluation metrics. b) The Spearman correlation between each evaluation 
metric and stress sensing index is shown as the dot with the line indicates a 95% confidence interval. c) The correlation map between 9 evaluation metrics. 
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Fig. 3. Recommendation of an optimal biomarker 
panel. a) The heatmap of 9 evaluation metrics for 
949 panels. These metrics, derived from the 
Biomarker Identification model (BIM), Gene Regula-
tory Network (GRN) and Co-Expression Network 
(GEN), are Z-score standardised. b) The heatmap of 
classification performances (f1-score) in distinguish-
ing 13 stress conditions respectively from control 
conditions, based on which stress sensing index is 
computed. The feature metrics of the biomarker 
panels are fitted in a linear regression model with 
Elastic Net regularisation to predict the stress sensing 
index based on 13 conditions. c) The scatter plot of 
predicted stress sensing index against actual stress 
sensing index. The Spearman correlation is 0.44 with 
significant effect (p-value <0.001). d) The bar plot of 
RecommendScore in 949 candidate biomarker panels, 
sorted in descending order. The system selects Panel 
661 with highest Recommend Score as the recom-
mended biomarker panel. e) The SHAP summary plot 
of feature importance given by the trained regression 
model. All the instances are displayed as dots, with 
the colour indicating the original feature value and 
the x-axis SHAP value indicating the impact of this 
feature metric on the model.   

Fig. 4. Validation performance of recommended 
biomarker panel on external datasets. a) A group 
of scatter histograms with each shows the distribution 
of validation performance (f1-score calculated on an 
external dataset) for a specific condition across 949 
candidate biomarker panels. The hue of a dot reflects 
the frequency of occurrence for the corresponding 
value range. The validation performance of the rec-
ommended biomarker panel is marked as brown 
vertical lines with the value listed at the right for each 
condition. b) The grey histogram shows the distri-
bution of stress sensing index across random gene 
panels, computed using external datasets. The green 
histogram shows the distribution of stress sensing 
index across candidate biomarker panels. A brown 
line marks the stress sensing index for the recom-
mended biomarker panel.   
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component that connects the biomarkers from the Gene Regulatory 
Network, in which 20 sigma factors or transcriptional regulators were 
found associated with the regulations of these biomarker genes (Fig. 5b). 
This includes sigA for household regulation, sigB for the general stress 
response, sigH for transiting to stationary growth phase, sigM/sigV/sigX 
for extracytoplasmic functions, ccpA/codY/tnrA for carbon, nitrogen or 
amino acid regulations, lexA/ctsR for DNA repair or heat shock response, 
etc. In complementary analysis, we also studied the Co-expression 
Network’s subnet consisting of biomarkers and their closest neigh-
bours (Fig. 5c). We found that 6 biomarker genes belong to unique 
modules while 4 are from the largest module (turquoise, 440 genes). As 
seen in the Supplementary Table 3B, these modules are associated with 
diverse biological processes, ranging from alternative carbon meta-
bolism, various amino acid biosynthesis to protein repair and regulation 
of cell morphogenesis, etc. 

Table 2 
Gene functions and products of the recommended biomarker panel.  

Gene 
name 

Gene function Gene product 

yhaR  putative dehydratase 
ogt DNA repair O6-methylguanine DNA 

alkyltransferase 
pbpX endopeptidase penicillin-binding protein X 
gltA glutamate biosynthesis glutamate synthase (large subunit) 
yocC  conserved hypothetical protein 
era ribosome assembly GTP-binding protein 
ilvB biosynthesis of branched-chain 

amino acids 
acetolactate synthase (large 
subunit) 

uvrC DNA repair after UV damage excinuclease ABC (subunit C) 
clpP protein degradation ATP-dependent Clp protease 

proteolytic subunit 
pucI purine utilization allantoin permease  

Fig. 5. The functional profiles of recommended 
biomarker genes. a) The line charts show the fold 
changes of 10 biomarker gene expressions in test 
conditions against the control conditions. We tested 
13 treatment conditions in the original training 
dataset and 10 in external datasets. b) The smallest 
component of Gene Regulatory Network that con-
nects the recommended biomarker genes (highlighted 
in bold borderline). The node size is proportional to 
node degree centrality in this network. An edge in-
dicates the regulation from a source node to a target 
node, with the orange line denoting suppression and 
green denoting activation. c) A subnet of Co- 
expression Network composed of recommended 
biomarker genes highlighted in bold borderline and 
their closest neighbour genes. The edge line width 
represents the adjacent value, thicker edge meaning 
higher similarity in co-expression patterns and longer 
distance in the network. The node colour indicates 
the specific modules to which it belongs.   
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4. Discussion 

The objective of this study was to propose a computational method 
for selecting a robust biomarker panel that can be reproducibly applied 
in future studies to predict a wider range of stress conditions for 
B. subtilis. From the Nicolas dataset which includes the B. subtilis tran-
scriptomes collected in many conditions and a biomarker identification 
model which selects gene signatures to discriminate distinct cellular 
states, we obtained the candidate biomarker panels for multi-stress 
conditions. By quantitatively relating a collection of evaluation met-
rics that capture complementary information of the biomarker with the 
stress sensing power of the biomarkers in a regression model, we built a 
biomarker recommendation system which ranks the candidate 
biomarker panels. The recommended biomarker panel, selected by 
computational models that were trained with Nicolas dataset, showed 
great performance to predict 10 stress conditions in external datasets. 
While in this work we have focused on a specific application domain, 
multi-stress sensing panel for B. subtilis, our pipeline is general-purpose 
and could be applied to comparable datasets of different species or 
cellular states. 

Although the accumulation of large-scale omics data recently has 
enabled the discovery of molecular biomarkers with high prediction 
performance, the high-dimensionality and high-noise characteristics of 
omics data have also posed challenges in stability and reproducibility of 
the machine learning methods applied. It is not uncommon to find little 
overlap between existing biomarker solutions produced by different 
datasets or different methods. The biomarker recommendation system 
we presented in this paper adopts a knowledge-based strategy that as-
sesses the existing solutions using prior knowledge and multi-source 
criteria. The knowledge–based strategy and recommendation system 
proposed here can be readily applied to any biomarker discovery study 
where multiple biomarker solutions achieving comparable performance 
by traditional data-driven criteria, e.g., prediction accuracy, may be 
produced. 

The key to successfully identifying biomarker solutions with 
improved robustness and confidence, however, lies in selecting of a set 
of effective evaluation metrics to assess biomarkers. In the case of 
identifying biomarkers indicative of various stress states in bacteria, it is 
important to utilise knowledge that can reveal the functional diversity of 
biomarker genes. Therefore, we incorporated the metrics extracted Gene 
Regulatory Network and Co-expression Network that are potentially 
relevant to diverse biological processes the biomarker genes may be 
involved in, which is likely the reason why the recommended biomarker 
panel showed great prediction accuracy in extended stress conditions 
including even conditions unseen in training data. We also want to 
highlight that this recommendation system can be adapted to incorpo-
rate any new evaluation metrics that are complementary and relevant. 

While the recommended biomarker panel showed great prediction 
accuracy in diverse stress conditions from several independent datasets, 
the effectiveness of our results is constrained by the validation datasets 
used. Although we have maximally explored the relevant B. subtilis gene 
expression profiles that are publicly available for external validation, 
these datasets are all small, consisting of few samples grown under a 
single stress condition versus the corresponding control samples. They 
also vary on assay platforms (including RNA-seq and Microarray) and 
bacteria strains (ranging from wide type to BSB1 and JH642). To verify 
the efficacy of the putative biomarkers it is essential to perform in-vitro 
validation in addition to in-silico validation. Our future work includes 
performing RT-qPCR assays to test the predictive power of the identified 
biomarker panel to discriminate a number of stress conditions of 
interests. 

To summarise, we showed that we could identify a robust biomarker 
that achieved improved prediction accuracy in external datasets by 
quantitatively evaluating the candidate biomarkers based on multi- 
source criteria incorporating various data-driven metrics and prior 
biological knowledge. Therefore, the in silico methods we proposed in 

this paper can be applied to recommend an optimal biomarker panel 
indicative of various stress states in Bacillus subtilis for in vitro validation 
and implementation with increased confidence. 
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