
How Do Pollen Allergens Sensitize?
Svetlana V. Guryanova1,2, Ekaterina I. Finkina1, Daria N. Melnikova1, Ivan V. Bogdanov1,
Barbara Bohle3 and Tatiana V. Ovchinnikova1,4*

1Science-Educational Center, M. M. Shemyakin & Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of
Sciences, Moscow, Russia, 2Medical Institute, Peoples’ Friendship University of Russia, The Ministry of Science and Higher
Education of the Russian Federation, Moscow, Russia, 3Department of Pathophysiology and Allergy Research, Center for
Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria, 4Department of Biotechnology, I.M.
Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia

Plant pollen is one of the main sources of allergens causing allergic diseases such as
allergic rhinitis and asthma. Several allergens in plant pollen are panallergens which are also
present in other allergen sources. As a result, sensitized individuals may also experience
food allergies. The mechanism of sensitization and development of allergic inflammation is
a consequence of the interaction of allergens with a large number of molecular factors that
often are acting in a complex with other compounds, for example low-molecular-mass
ligands, which contribute to the induction a type 2-driven response of immune system. In
this review, special attention is paid not only to properties of allergens but also to an
important role of their interaction with lipids and other hydrophobic molecules in pollen
sensitization. The reactions of epithelial cells lining the nasal and bronchial mucosa and of
other immunocompetent cells will also be considered, in particular the mechanisms of the
activation of B and T lymphocytes and the formation of allergen-specific antibody
responses.
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1 INTRODUCTION

Allergic diseases (AD) are a global public health problem and, according to experts from the World
Allergy Organization, the number of patients with allergic diseases increases by 50% every 10 years
(Pawankar et al., 2008) and by 2050 about 4 billion people will suffer from allergy (EAACI et al.,
2014).

The mechanism of sensitization and development of allergic inflammation is a consequence of the
interaction of a large number of molecular factors with allergens that differ in structure and often are
acting in a complex with high- and low-molecular compounds, representatives of the microbial
community, as well as under the influence of external environment.

Plant pollen is one of the main sources of allergens causing allergic diseases such as allergic
rhinitis, asthma, conjunctivitis and dermatitis. Allergic rhinitis caused by pollen has proven to be
the most common allergic pathology in most countries. Currently, the prevalence of allergic
rhinitis, depending on the region, is 10%–40% and continues to grow all over the world (Brożek
et al., 2017). In Europe, a survey of 140 thousand people aged from 20 to 44 years from 22
countries within the framework of the European Community Respiratory Health Survey
(ECRHS) established the prevalence of allergic rhinitis from 9.5% to 40.9% of the total adult
population, while 16.2%–44.5% had an increased sensitivity to common aeroallergens (Heinrich
et al., 2002). In 2000, the number of people in the United States suffering from allergic rhinitis
has been from 20 to 40 million and it has almost doubled in 10 years (Skoner, 2001), thus
amounting in 2010 to 60 million people (Meltzer et al., 2012), although allergens are very
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different in various climatic zones. In a large-scale study by the
Global Asthma and Allergy European Network (GA2LEN), a
significant correlation was demonstrated between
development of allergic diseases and sensitization to pollen.
The level of clinically significant sensitization to plant pollen
was observed in all countries and amounted to 60% of all
patients with allergic pathology (Burbach et al., 2009). Pollen
sensitization very often precedes food allergy (Eriksson, 1978;
Calkhoven et al., 1987; Bircher et al., 1994), which can be
severe (Chivato et al., 1996; Wuthrich and Ballmer-Weber,
2001).

Sensitization to pollen allergens is the most common cause of
allergic rhinitis (Asher et al., 2006; WAO, 2016; Brożek et al.,
2017; Wang et al., 2018). According to the data of European
Academy of Allergy and Clinical Immunology (EAACI) about
21%–32% of population suffer from pollen allergens (Brożek
et al., 2017). The report of the International Study of Asthma
and Allergies in Childhood (ISAAC) declared the prevalence of
plant pollen allergy in children aged from 13 to 14 years old, and
in total 22.1% of children have pollen allergy (WAO, 2016).

Sensitization to pollen allergens that occurs in early childhood
may remain unnoticed and afterwards may cause allergic diseases
(Wong et al., 2012; Lourenço et al., 2020). When analyzing the
results of 6,220 skin prick tests, European doctors also found an
increase in sensitization to pollen allergens with age. Over the past
20 years, the total amount of sensitization to weed pollen has
increased significantly, as well as an increase in polysensitization,
mainly in young patients (Forkel et al., 2020).

Allergenic pollen comes from three main plant groups—trees,
grasses, and weeds. Allergy patients may be sensitive to pollen
from one or more plant taxa. Panallergens presenting in plant
pollen sensitize the human immune system and contribute to the
development of reactions to several allergens (Bohle, 2007;
Westman et al., 2020). In a study of 936 patients with allergic
rhinitis, 52% were found to be allergic to tree, mugwort and grass
pollen, while monoallergenic sensitization to birch pollen was
observed in 24%, to mugwort pollen—in 10%, and to grass
pollen—in 4% (Osterballe et al., 2005). As a result of
sensitization, there is a predisposition not only to food
allergies (Osterballe et al., 2005), but also to asthma (Taylor
et al., 2007; Shrestha et al., 2018; De Roos et al., 2020) and
dermatitis (Wassmann - Otto et al., 2018; Kim et al., 2019). A
differentiated distribution of clinically significant sensitization
was demonstrated depending on the type of allergen and country,
but it turned out that birch pollen was the most common allergen
in Europe; more than 20% of Europeans with allergic pathology
suffer from birch pollen allergy (Burbach et al., 2009). The
prevailing effect of birch pollen on the course of pollinosis was
also found in China: 83% of people suffering from pollinosis in
spring were sensitized to birch pollen (Li et al., 2020). In general,
over 100 million people worldwide are allergic to the birch pollen
possibly due to a high content of pollen grains in the air during
pollination (more than 20,000 per 1 m3) (Aglas et al., 2018;
D’Amato et al., 2007).

It is now known that weather, climate, environmental
conditions, and human activities have a significant impact on
the amount and diversity of pollen (Radauer and Breiteneder,

2006; Damialis et al., 2019). Climate change affects the course of
pollen seasons, the distribution of plant species and the content of
allergens in pollen grains. In turn, human activities have led both
to the introduction of allergenic nonendemic plants and to
increased levels of air pollutants that cause respiratory allergies
(Ghiani et al., 2012). Pollutants can break down the pollen cell
wall, allowing the allergen to be released into the environment
and enter the lower respiratory tract (Sinha et al., 2014). On the
other hand, the allergenic potential of allergens can be increased
by contact with chemicals.

The present review summarizes contemporary outlooks on
pollen sensitization of immune system resulting in allergic
diseases.

2 CHARACTERIZATION OF POLLEN
ALLERGENS

2.1 Classification of Pollen Allergens
Plant allergens from tree, grass and weed pollen belong to diverse
protein classes the most significant of which are Bet v 1 homologs,
lipid transfer proteins (LTPs), profilins, polcalcins, β-expansins
and group 5 allergens. Due to a high structural homology of the
same class representatives, as well as owing to the presence not
only in tree and grass pollen, but also in plant food, some of the
abovementioned allergens are panallergens causing pollen-pollen
and pollen-food cross-allergic reactions (Osterballe et al., 2005;
Bohle, 2007; Sinha et al., 2014; Vizzardelli et al., 2020; Westman
et al., 2020). This happens as a result of the similarity of the
epitopes of the allergens of the same class and cross-linking of IgE
on granulocytes, which are formed in response to sensitization.

Bet v 1 homologs as well as LTPs belong to a large family of
pathogenesis-related proteins (PR-proteins, PR-10 and PR-14,
respectively). These proteins are present constitutively in
different plant organs and tissues as well as in pollen, but the
induction of their synthesis occurs in response to stress. Another
common characteristic of Bet v 1 homologs and LTPs is the
presence of an intrinsic hydrophobic cavity in their structure
which allows these proteins to bind different hydrophobic
molecules (Finkina et al., 2017). Ligand-biding capacity and
specificity may differ for allergens of the same class
conforming to volume and shape of a hydrophobic cavity.
Recent data showed that ligand-binding played an important
role in sensitization and manifestation of allergenic properties of
Bet v 1 homologs and LTPs (Fujimoto et al., 1998; Chruszcz et al.,
2021). IgE antibodies to Bet v 1 cross-react with homologues
allergens from pollen of such trees as alder (Aln g 1), hazel (Cor a
1), beech (Fag s 1), chestnut (Cas s 1) and others (Grilo et al.,
2021) as well as with Bet v 1-like proteins from nuts, fruits and
vegetables, particularly, with the peanut Ara h 8 apple Mal d 1
(Vanekkrebitz et al., 1995; Bohle et al., 2003), carrot Dau c 1
(Zulehner et al., 2017), causing oral allergy syndrome (OAS)
(Costa et al., 2022) in 70% of birch allergic patients (Högerle et al.,
2022). Symptoms of OAS usually appear immediately after plant
food consumption and mainly affect oropharyngeal area, but
such severe reactions as anaphylaxis also may take place (Högerle
et al., 2022). The spatial structures of Bet v 1-like allergens are
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similar to each other and consist of both β-sheets and α-helixes
forming together Y-shaped hydrophobic cavity (van Loon and
van Kammen, 1970; Fujimoto et al., 1998; Pasternak et al., 2006).
Bet v 1 homologs bind such hydrophobic ligands as cytokinins,
flavonoids, and sterols (Radauer et al., 2008; Clemente et al., 2012;
Aglas et al., 2020). It was shown that natural ligands of two major
pollen allergens—the birch Bet v 1 and hazel Cor a 1, are
flavonoids (quercetin-3-O-sophoroside (Q3OS) and quercetin-
3-O-(2″-O-β-D-glucopyranosyl)-β-D-galactopyranoside,
respectively), (Table 1). Minor pollen allergens (Bet v 2-7, Ole 2-
11, Cor a 6, Jun a 3, Jun a 4, Jun o 4, Jun v 3, Syr v 3) also
demonstrate pollen-pollen and pollen-food reactivity. As
supposed, these pollen allergens may take part in plant
reproduction via binding and storage of functionally inert
glycosylated flavonoids (Soh et al., 2019).

In contrast with Bet v 1 homologs, plant LTPs (namely, the
proteins of the first subclass, LTP1s) are true food allergens due to
their stability to heating, gastroduodenal digestion and food
processing for preservation (Volpicella et al., 2015; Finkina et al.,
2017; Petersen et al., 2017). LTPs are the major plant allergens of the
Rosaceae family for patients not sensitized to birch pollen (Aruanno
et al., 2020). LTP-related allergy may be mediated by primary
sensitization with a food allergen with or without contribution of
pollen allergy or primary allergic sensitization to pollen (Aruanno
et al., 2020; Scheurer et al., 2021). The peach major allergen Pru p 3
belonging to the LTP class causes food-food and food-pollen cross-
allergic reactions in many cases.

LTPs have predominantly α-helical structure with internal
tunnel-like cavity and can bind a wide range of hydrophobic
ligands, including saturated and unsaturated fatty acids (FAs)—
decanoic [C10], lauric [C12], myristic [C14], palmitic [C16],
stearic [C18], palmitoleic [C16:1, cis-9], oleic [C18:1, cis-9],
ricinoleic [C18:1, cis-9, 12-OH], elaidic [C18:1, trans-9],
linoleic [C18:2, cis-9,12], and linoleinic [C18:3 cis-9,12,15]
acids (Scheurer and Schülke, 2018); different phospholipids -
lysophospholipids LLPC [C12], LMPC [C14], LMPG [C14],
LPPC [C16] and LPPG [C16], as well as phosphatidylcholine
(PC), DMPG [C14/C14]; phytosphingosine [C18], ergosterol,
jasmonic acid and others (Charvolin et al., 1999; Volpicella
et al., 2015; Scheurer and Schülke, 2018). As proposed, CPT-
PHS might play a role in flower and fruit development and the
complex of LTP with this ligandmight prevent double pollination
and defend against herbivores until the seed had fully matured
(Cubells-Baeza et al., 2017). Recently chemically identical natural
ligands have been identified also for the wheat allergen Tri a 14
and for three pollen allergenic LTPs—mugwort Art v 3, pellitory
Par j 2, and olive Ole e 7 (Gonzalez-Klein et al., 2021).

Profilins and polcalcins (or pollen calcium-binding proteins)
are ubiquitous pollen allergens, occurring in almost all plant
families (Hauser et al., 2010; Rodríguez del Río et al., 2018). At the
same time, profilins are present not only in pollen (for example,
the birch Bet v 2, the timothy Phl p 12, the mugwort Art v 4), but
also in fruits and seeds of different plants (including the appleMal
d 4, the soy bean Gly m 3, the orange Cit s 2, the melon Cuc m 2)

TABLE 1 | Major pollen allergens and cross-reactivity.

Proteins of Pollen
allergens

Major allergens Cross-Reactive allergens

Pollen Fruits Vegetables Other

Bet v 1-related proteins Alder (Aln g 1) Gold kiwi (Act c 8) Celery (Api g 1) Hazelnut (Cor a 1)
Birch (Bet v 1) Kiwi (Act d 8) Carrot (Dau c 1) Soy (Gly m 4)
Hornbeam (Car b 1) Kiwi (Act d 11) Tomato (Sola

l 4)
Mung bean (Vig
r 1)

Chestnut (Cas s 1) Peanut (Ara h 8) Strawberry (Fra a 1)
Hazel (Cor a 1) Apple (Mal d 1) Apricot (Pru ar 1) Sweet cherry

(Pru av 1)
Beech (Fag s 1) Peach (Pru p 1)
Hophornbeam (Ost c 1) Pear (Pyr c 1)
Oak (Que a 1) Red raspberry (Rub i 1)

Ole-e-1 related proteins Ash (Fra e 1) Sweet beet (Beta v 1)
Privet (Lig v 1) Pigweed (Che a 1)
Lilac (Syr v 1) Rye grass (Lol p 11)

Timothy grass (Phl
p 11)
English plantain (Pla
l 1)
Russian thistle
(Sal k5)

Pectate lyases Japanese cypress (Cha
o 1)

Ragweed (Amb a 1)

Japanese cedar (Cry j 1) Mugwort (Art v 6)
Cypress (Cup a 1)
Common cypress (Cup
s 1)
Mountain cedar (Jun a 1)
Eastern red cedar (Jun
v 1)
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and, as above-mentioned Bet v 1 homologs, are responsible for
pollen-associated food allergic reactions (Valenta et al., 1992; van
Ree et al., 1992; Fäh et al., 1995; Rihs et al., 1999; Reindl et al.,
2002; Radauer and Breiteneder, 2006). However, due to the low
stability of profilins, as a rule, mild allergic symptoms occur
(Offermann et al., 2016). Despite their ubiquity the prevalence of
sensitization to pollen allergens of profilin and polcalcin classes is
usually low. For example, in contrast with Bet v 1, recognized by
IgE from sera of most of birch allergic patients, the profilin Bet v 2
and the calcium-binding proteins Bet v 3 and Bet v 4 are minor
allergens with frequencies of sensitization below 20% (Radauer
and Breiteneder, 2006). It is important to note that structurally
similar profilins as well as calcium-binding proteins (in particular
calmodulins and calmodulin-like proteins) are also found in
other eukaryotes including humans. As believed, low allergenic
potential of profilins and calcium-binding proteins might also be
due to the presence of similar proteins in human cells and
suppression of the immune response to these allergens
(Radauer and Breiteneder, 2006). Profilins in their structure
contain both α-helices and β-sheets and can bind a variety of
different ligands including actin, proline-rich peptides,
polyphosphoinositides and others. It is known that these
proteins take part in generation of cytoskeleton, but also may
be involved in many complex molecular processes in plants as
well as in signal transduction (Radauer and Breiteneder, 2006;
Hauser et al., 2010). Polcalcins have a typical α-helix protein fold
and contain two (for instance, the birch Bet v 4, the timothy Phl p
7), three (the birch Bet v 3) or four (the prickly juniper Jun o 4, the
olive Ole e 8) calcium-binding EF-hand (helix-loop-helix) motifs
in their structure (Hauser et al., 2010). It is important to note that
the major IgE epitopes of polcalcins are not located in conserved
calcium-binding regions (Ricciardi et al., 2022), but calcium
binding to EF-hand motifs leads to conformational changes in
protein structures and affects stability and IgE-binding capacity
of the allergens of this class (Parody et al., 2013). As proposed, in
plants polcalcins might take part in the control of intracellular
calcium levels during pollen germination (Hauser et al., 2010).

The major grass pollen allergens are β-expansins or the group
1 allergens as well as the group 5 allergens with ribonuclease
activity (Hrabina et al., 2008). Phl p 1 and Phl p 5 from timothy
grass are well studied allergens of these classes causing IgE
reactivity in most of grass pollen allergic patients (Pablos
et al., 2016). β-Expansins are found in a wide variety of
Poaceae grasses, but not in other taxonomically unrelated
plants. Besides, these proteins (the Bermuda grass Cyn d 1,
the rye grass Lol p 1, the maize Zea m 1, and others) are the
most relevant pollen allergens in tropical and subtropical areas
where temperate trees such as birch and beech are absent and the
grasses of Panicoideae and Chloridoideae subfamilies are
predominate (Aud-In et al., 2019). Unlike β-expansins, the
group 5 allergens are present only in grasses of the Pooideae
subfamily. Expansins are glycoproteins divided into four families
according to the sequence similarity: α–expansins (EXPA),
β–expansins (EXPB), expansin-like A (EXLA), and expansin-
like B (EXLB). Both α-expansins and β-expansins possess cell wall
loosening activity, but only β-expansins accumulate in grass
pollen in significant amounts and are relevant allergens,

which, due to a low homology, do not cross-react with
representatives of other families. Probable biological function
of β–expansins is cell wall loosening during growth of the pollen
tube towards the ovary (Sampedro and Cosgrove, 2005). The
group 5 allergens cause severe asthma attacks in sensitized
patients. High allergenic activity of these allergens may be due
to the features of their structure which consists of two similar
flexibly-connected IgE-reactive domains (Göbl et al., 2017). The
group 5 allergens possess the ribonuclease activity and, as
supposed, in plants might play a role in pollen germination
(Göbl et al., 2017).

Some clinically relevant pollen allergens also belong to the
classes of defensin-like proteins and pectate lyases. Along with
Bet v 1 homologs and LTPs, plant defensins constitute another
class of PR-proteins (PR-12). Defensins are small peptides with a
pronounced antimicrobial activity which are present in various
organs and play an important role in plant defense from
phytopathogens. Some pollen defensins may act as allergens
(Guryanova and Ovchinnikova, 2022). Defensin-like proteins
containing an additional C-terminal domain enriched by
hydroxylated and O-glycated proline residues are present in
plant pollen and possess allergenic properties (Finkina and
Ovchinnikova, 2018). The mugwort Art v 1 is the most
studied pollen allergen of this class. The ragweed Amb a 4, the
feverfew Par h 1 as well as some proteins from different Artemisia
species are characterized as cross-reactive Art v 1-like pollen
allergens (Pablos et al., 2019). Pectate lyase allergens are enzymes
which cleave galacturonic acid-containing polysaccharide chains
and in pollen possibly take part in tissue remodeling and in pollen
tube outgrowth. The clinically relevant pollen allergens of this
class are the ragweed Amb a 1, the mugwort Art v 6, the cypress
Cup a 1, the Mountain cedar Jun a 1, and the Japanese cedar Cry j
1, some of which cross-react to each other (Pichler et al., 2015).

2.2 Structure of Pollen Grains
The pollen grain has a complex architecture in which pollen
allergenic proteins are embedded in a heterogeneous matrix of
many bioactive molecules that are co-delivered during allergic
sensitization. Conventionally, two parts of the pollen grain can be
distinguished: the inner, which is represented by proteins,
metabolites, lipids, adenosine, flavonoids and the outer,
including viruses, bacteria, fungi and particles from air
pollutants (Figure 1) (Gilles et al., 2012).

Studies of the transcriptome of pollen, which is a male
gametophyte, have shown that the number of expressed genes
ranges from 3,400 to 18,500, depending on the plant species
(Rutley and Twell, 2015). Comparative analysis revealed that the
soybean (Glycine max) pollen transcriptome was enriched with
cell wall modifying enzymes, signaling genes and transporters, as
well as heat shock proteins, in contrast to Arabidopsis, in which
they were not activated (Wang et al., 2008; Haerizadeh et al.,
2009). It is noteworthy that after 45 min of cultivation of pollen
grains in an in vitro medium, the number of activated genes
increased threefold (Wang et al., 2008). Thus, during the
hydration of pollen that occurs on the mucous membranes
when interacting with human biological fluids, the diversity of
pollen proteins may increase the pathological process. This
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assumption can be confirmed by an extremely interesting
observation: the occurrence of asthma epidemics, sometimes
severe ones, during thunderstorms within the pollen season in
different regions. The authors hypothesize the link between
thunderstorms and asthma exacerbation, arguing that
thunderstorms can concentrate pollen grains at ground level;
these grains, after being ruptured by osmotic shock, can release
allergenic particles that are inhaled by humans (D’Amato et al.,
2017). During the first 20–30 min of a thunderstorm, patients
allergic to pollen can inhale a high concentration of allergenic
material dispersed in the atmosphere, which in turn causes
asthmatic reactions, often severe. Subjects without asthma
symptoms but suffering from seasonal rhinitis may also have
an asthma attack.

2.3 The Role of Ligand-Allergen Interaction
in Pollen Sensitization
2.3.1 Involvement of Microbial Ligands in Pollen
Sensitization
A metagenomic study of pollen microbiome demonstrates more
than a thousand different types of bacteria living on pollen grains
of wind-pollinated plants, including birch and grass. Cultivated
bacteria, which make up only 5% of all bacteria living on birch
pollen grains, have more than 106 cells per gram of pollen
(Ambika Manirajan et al., 2016; Alibrandi et al., 2020).
Morphological study of pollen grains by scanning electron
microscopy showed the presence of biofilms formed by
colonies of bacteria and fungi (Colldahl and Nilsson, 1973).
Exposure to microorganisms present on pollen can trigger
innate immune responses via PRR and modulate the pro-
inflammatory response. As a result of the interaction of PAMP
of microorganisms with the PRR of immunocompetent cells In
addition to protein allergens described above, pollen contains
lipids, which also have allergenic properties. induction of
cytokines and maintenance of Th1/Th2 balance, and Treg.
mechanism may occur (Lin et al., 2020; Tamoutounour et al.,
2019; O’Mahony et al., 2008; Kim, 2021; Pascal et al., 2018;
Kozlov et al., 2013).

It was shown that homogenate of gram-positive bacteria of
Bacillus genus found on pollen grains was able to induce
maturation of immature dendritic cells (DCs) from grass
pollen allergic donors, which led to significantly enhanced

expression of costimulatory molecules, such as CD80 and
CD86, on surface of DCs (Heydenreich et al., 2012). Thus,
stimulation of autologous CD4+ T cells by grass pollen
allergen-pulsed DCs led to an enhanced production of IL-4,
IL-13, IL-10, IL-17, IL-22 and IFN-γ in the presence of the
homogenized Gram-positive bacteria compared with T cells
stimulated with allergen-pulsed immature DC alone.

2.3.2 Involvement of Lipids and Other Hydrophobic
Molecules in Pollen Sensitization
Recently, it was show that not only proteins, but also lipids and
other hydrophobic molecules take part in pollen sensitization.
The pollen lipid composition of pollen is rich and specific to
among plant species, but themain lipid components in most cases
are saturated and polyunsaturated fatty acids (FAs), sterol esters,
phospholipids, fatty alcohols and sphingolipids (Ischebeck,
2016).

There is an example of immune adaptive recognition of lipids.
Some allergic patients were shown to have specific IgE and
positive prick cutaneous tests against lipid fraction
(phosphatidylcholine (PC) and phosphatidylethanolamine
(PE)) isolated from cypress pollen (Behrendt et al., 2001;
Traidl-Hoffmann et al., 2002; Plötz et al., 2004; Agea et al.,
2005; Traidl-Hoffmann et al., 2005; Gutermuth et al., 2007;
Mariani et al., 2007; Gilles et al., 2009a; Bashir et al., 2013;
Mittag et al., 2013; Gangwar et al., 2016; Del Moral and
Martínez-Naves, 2017), which supported the hypothesis that
lipids might be “true” allergens.

On the one hand, some pollen lipids are bioactive compounds
which are capable to cause sensitization, creating prerequisites for
Th1/Th2 imbalance towards Th2 way and development of a Th2-
mediated allergic response (Figure 2, items 4–9). On another
hand, some of them can act as adjuvants that increase or
modulate the immune response to the protein allergen which
leads to sensitization. Moreover, lipids can increase the allergenic
potential of the protein by influencing the rate of its transport
through epithelial barriers and processing by immunocompetent
cells (Figure 2, items 1–3).

At the same time, it was shown that olive tree pollen lipid
extract (polar lipids, diacylglycerols, free fatty acids, and
triacylglycerols) upregulated CD1d and CD86 molecules on
DCs, which then were able to activate invariant NKT (iNKT)
cells through a CD1d-dependent pathway (Abós-Gracia et al.,

FIGURE 1 | Active compounds associated with pollen.
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2013). Today, this mechanism of sensitization by an allergen,
involving a cytokine- or CD1d-mediated activation of invariant
iNKT (Vα24/Jα18+) -cells by accompanying lipids, is commonly
accepted (Scheurer and Schülke, 2018). The mechanism of
sensitization, involving CD1d-mediated activation of
iNKT cells, was shown for the food allergen Pru p 3 of LTP
class (Tordesillas et al., 2017). It is interesting to note that the

natural ligand of Pru p 3, the aforementioned 10-OH-
camptothecin phytosphingosine (CPT-PHS), was shown to act
as an adjuvant and cause allergic sensitization to the allergen.
Sensitization of BALB/c mice with the Pru p 3-ligand complex
increased the level of Pru p 3-specific IgE antibodies and induced
basophil activation as compared to stimulation by Pru p 3 alone
which failed to induce sensitization.

FIGURE 2 | Involvement of lipids and other hydrophobicmolecules in pollen sensitization. 1) lipidsmay influence the transport of pollen allergens through respiratory
epithelium by caveolar-dependent way; 2) lipids may affect the uptake rate of the allergen by DCs; 3) lipids may influence the rate of endolysosomal degradation in APCs;
4) pollen lipids act as chemoattractants and activators of granulocytes via upregulation of surface integrin CD11b; 5) inhibition of production of IL-12 by DCs via PPAR-γ
dependent pathways, which leads to inhibition of NF-κB activation and results in reduced IL-12 production; 6) TLR ligands of pollen microbiome enhance Th1 and
Th2 responses and decrease induction of Foxp3+ regulatory T cells; 7) microbial lipids induce maturation of immature DCs, which leads to expression of costimulatory
CD80 and CD86 on DCs; 8) pollen-derived lipids upregulate CD1d and CD86 molecules on DCs; 9) DCs activate iNKT cells through a CD1d-dependent pathway. DC,
dendritic cells; iNKT, invariant natural killer T cells; TLR, toll-like receptor. Figure was created with BioRender.com.
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Finally, a number of studies have shown that lipids affect the
allergenic potential of the proteins. And it is still an open question
whether the ability of these proteins to bind lipid molecules is a
necessary requirement for this. First, lipids may influence the
interactions between pollen allergen and the epithelial barrier of
respiratory mucosa. For instance, transport of the lipid-binding
allergen Bet v 1 through nasal epithelium of birch pollen allergic
patients was proposed to involve an active lipid raft and be
mediated by a caveolar-dependent way (Joenväärä et al., 2009).
Thus, the primary contact between the allergen and airway
epithelium can be mediated by lipids. For example, Bet v 1
has been shown to bind cholesterol and enter the epithelium
of allergic patients in cholesterol- and glycolipid-rich caveolae.
Second, lipids may influence the uptake of the allergen by antigen
presenting cells (APCs). It is known that allergens are processed
by DCs via endolysosomal compartments, enabling their
presentation on MHC II-peptide complexes to T cells.
Mustard lipids and phosphatidylglycerol vesicles associate with
food allergen Sin a 2 of 11S globulin class was shown to decrease
the uptake of the allergen by DCs (Angelina et al., 2016). Third,
lipids may also influence the rate of endolysosomal degradation
by APCs. Reducing the rate at which allergens are cleaved by
cathepsin S has been proposed to skew the immune system
towards a Th2 response by preventing premature endosomal
degradation and effective MHC II loading. It was demonstrated
that pollen-derived ligand of birch Bet v 1 PPE1 can reduce the
rate of endolysosomal degradation of the allergen in vitro (Soh
et al., 2019). However, these data are still to be validated in the
experiments ex vivo and in vivo.

3 SENSITIZATION TO POLLEN ALLERGENS

3.1 Epithelial Cells in the Sensitization
Process
The first step in the sensitization process of allergic disorders is
allergen entry through epithelial surfaces in the nose,
gastrointestinal tract or via the skin. After inhalation and
contact with moist mucosal surfaces pollen are generally
believed to release a hydrophilic cocktail consisting of
allergens, non-allergenic proteins, and various other bioactive
molecules (Gilles et al., 2009b; Bacher et al., 2016; Gilles-Stein
et al., 2016; Obersteiner et al., 2016; González Roldán et al., 2019).
Early studies have evaluated the time kinetics of allergen release
from hydrated pollen grains. Major allergens like Amb a 1 in
ragweed or Bet v 1 in birch pollen were found to be liberated
within minutes in quantities sufficient for trans-mucosal delivery
to sub-epithelial antigen presenting cells (APC) (Marsh et al.,
1981; Grote et al., 1993; Deifl et al., 2014). The quantity of
allergens transferred through the epithelia depends on the
barrier integrity. A disturbed barrier function promotes
allergic sensitization forming the “epithelial barrier hypothesis”
(Mitamura et al., 2021). Along these lines, different pollen species
have been demonstrated to possess enzymatic activity reducing
the epithelial integrity (Gunawan et al., 2008; Van Cleemput et al.,
2019; Bradbury et al., 2022). Only recently, pollen proteases
released from Kentucky Blue Grass, white birch, and hazel

pollen were shown to irreversibly disrupt the integrity and
anchorage of the columnar respiratory epithelial cell layer,
while the basal cell layer resisted their damaging effect (Van
Cleemput et al., 2019). However, further investigations are
required to elucidate whether the pollen itself and/or pollen-
inhabiting microorganisms contribute to such protease activity
(McKenna et al., 2017).

As the first line in the defense of invading agents, epithelial
cells are equipped with diverse pattern recognition receptors
(PRR), such as toll-like receptors (TLR), Nod-like-receptor
(NLR), protease-activated receptors (PAR), and scavenger
receptors (SR). Upon triggering PRR, epithelial cells synthesize
pro-inflammatory cytokines (IL-1, IL-6, IL-8 and TNF-α) and
pro-allergic alarmins, e.g., thymic stromal lymphopoietin (TSLP),
IL-33, and IL-25 (Bergougnan et al., 2020).

The established crucial role of PRR in the formation of
adaptive immune responses has led to the conclusion that
allergens which contain specific lipid or carbohydrate ligands
directly recruit and activate various PRR pathways on dendritic
and stromal cells and thus drive Th2-mediated immune
responses (Wills-Karp, 2010). TLR4 has been shown to be
necessary and sufficient for the development of Th2 immune
responses elicited by several allergens, similar to the mammalian
lipid-binding protein MD-2. In this case, the critical factors are
exposure time, timing relative to initial sensitization, and cell
types (Eisenbarth et al., 2002; Redecke et al., 2004; Tan et al.,
2010). In most other allergens containing carbohydrates, strong
Th2 immune responses were evoked through the recruitment of
C-lectin receptors (MR, DC-SIGN, MR, dectin-2) on dendritic
cells (Barrett et al., 2009; Nathan et al., 2009; Hsu et al., 2010).
Thus, since complex allergens contain biologically active ligands,
the type of subsequent immune response can be determined by
the integration of downstream signals initiated by the interaction
with PRR. Allergic inflammation develops when there is a lack or
loss of anti-inflammatory functions aimed at restricting
inflammation through the inactivation of pro-inflammatory
mediators (Gushchin, 2020).

Pollen may directly interact with PRR (Scheurer et al.,
2015). As one example, pollen from Japanese hop
upregulated PAR2 on human airway epithelial cells, which
was followed by the production of reactive oxygen species
(ROS) and resulted in the synthesis of TSLP (Lee et al., 2014).
Similarly, pollen extracts from birch, short ragweed, and
timothy grass displayed ROS-elevating activity (Shalaby
et al., 2013; Bradbury et al., 2022). TSLP activates dendritic
cells (DC) and macrophages to express OX40 ligand (OX40L)
or may directly trigger IL-4 and IL-13 production by CD4+

T cells. Consequently, this cytokine is regarded as highly
relevant for the initiation of Th2-responses. TSLP
production may also be induced by mannose residues on
allergens, possibly by involving the mannose receptor in
allergen recognition and uptake by DC (Al-Ghouleh et al.,
2012). The major allergen in Cupressus arizonica, Cup a 1,
displayed Th2-polarizing activity via the induction of IL-33
(Gabriele et al., 2013). This cytokine binds and upregulates
ST2, expressed on DC and CD4+ T cells, and triggers IL-5 and
IL-13 synthesis.
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The microbiota of human mucous membranes also
contributes to the modulation of the processes of allergic
inflammation. It was found that disorder of the microbiome
composition led to increased serum IgE concentrations and
expanded population of circulating basophils (Hill et al.,
2012). Importantly, this link has been shown to be inherent in
B cells and dependent on the MYD88 pathway. Moreover, the
lung microbiome may also play a role in controlling polarization
of the asthma endotype, regulating the balance between Th2 and
Th17 patterns. Enterococcus faecalis can suppress Th17 immunity
and symptoms of allergic airway disease, therefore it is considered
a potential therapeutic agent for both asthma and Th17 immunity
(Adami and Bracken, 2016). Differences in levels and diversity of
the lung microbiome have been divided between healthy
individuals and patients with asthma and allergic diseases. In
patients with asthma and allergic diseases, the number of
proteobacteria was higher; moreover, their presence was
associated with the severity of asthma, probably due to the
activation of genes associated with Th17 (Hilty et al., 2010;
Huang et al., 2011).

Early colonization of the lung mucosa by Haemophilus
influenzae, Moraxella catarrhalis, and Streptococcus
pneumoniae has been associated with recurrent wheezing and
asthma (Bisgaard et al., 2007; Korppi, 2010). By the example of
rhinovirus infections of the human nasopharynx, it has been
demonstrated that viruses also affect the development of asthma
(Teo et al., 2015). An association between the composition of the
lung and intestinal microbiome was found and the risk of
developing respiratory allergic diseases (Clemente et al., 2012;
Wu et al., 2020). This data indicates the involvement of the
intestinal mucosa microbiome in the regulation of allergic
processes. The debate is still active between two hypotheses: 1)
an alteration of microbiota is the result of a disease or 2) an
altered microbiome participates in the inception of a disease.

3.2 Antigen-Processing and T Cell Epitopes
After trans-epithelial passage allergens are endocytosed and
processed by APC, e.g., DC. Both processes are influenced by
cytokines and other factors released from epithelial cells following
activation by allergens and/or additional pollen compounds. For
example, HDM allergens trigger epithelial cells to produce IFN-γ
which is known to promote antigen processing and the
expression of HLA class II molecules (Vroling et al., 2007).

Also intrinsic characteristics of allergens, such as their 3-
dimensional structure, influence their uptake and processing
by APC. The effect of structure on endolysosomal
fragmentation has been elegantly demonstrated for Bet v 1 by
two oppositional approaches. On the one hand, a genetically
engineered variant of Bet v 1 with an almost identical amino acid
sequence but lacking the typical, compact Bet v 1-fold was more
rapidly internalized and processed than Bet v 1 (Kitzmüller et al.,
2012). On the other hand, the stabilization of the Bet v 1-structure
by ligand-binding in its hydrophobic binding pocket reduced its
degradation by lysosomal proteases (Soh et al., 2019). A slow
kinetic of endolysosomal fragmentation is characteristic for
immunogenic antigens, presumably because it delivers peptides
over longer periods which are available for continuous loading of

MHC class II molecules (Delamarre et al., 2006). The extent of the
peptide-HLA class II complexes on the surface of APC then
affects the priming of naïve T cells with lower numbers favoring
Th2-polarization (Constant et al., 1995; Freier et al., 2015). Also
the type of allergen-derived peptides may contribute to
allergenicity as immunodominant peptides which can be
loaded to various HLA-phenotypes (promiscuous) are
characteristic for major allergens. For instance, Bet v 1
contains one T cell epitope recognized by more than 60% of
birch pollen-allergic individuals (Jahn-Schmid et al., 2005). This
immunodominant epitope is located in the highly conserved
C-terminus of Bet v 1 and thus, similar in various
homologous allergens resulting in T cell-cross-reactivity
(Ebner et al., 1993; Jahn-Schmid et al., 2005). Other examples
of plant pollen-derived allergens are Amb a 1, the major allergen
in ragweed, containing three immunodominant epitopes and
multiple restriction elements—as well as Art v 1 in mugwort
pollen with one dominant T cell epitope restricted to the
phenotype HLA-DR01 (Jahn-Schmid et al., 2010; Knapp et al.,
2012). Notably, allergens which per se are not considered to
initiate sensitization, e.g., the Bet v 1-homologs Mal d 1 (apple)
and Api g 1 (celery) lack immunodominant T cell epitopes
(Kitzmüller et al., 2015). These results observed for members
of the Bet v 1-protein family have been confirmed by very similar
results obtained for another family of relevant plant-food
allergens, i.e., LTPs (Schulten et al., 2009; Schulten et al., 2011).

It should be noted that in order to capture the allergen,
dendritic cells form a network throughout the epithelium of
the respiratory tract, including the nose, nasopharynx, large
conducting airways, bronchi, bronchioles and alveoli
(Humeniuk et al., 2017). It is more likely that nasal dendritic
cells are the first to be involved in the processing of allergens,
resulting in pollen sensitization. Most pollen grains do not reach
the lungs, they are cleared by the mucociliary system. Allergic
rhinitis precedes asthma in many patients and is a risk factor for
developing asthma. The sensitized epithelium of the respiratory
tract contributes to the polarization of macrophages towards M2.
Not all phagocytes can present antigens, and their nature
determines a way of the response. In addition, the
experimental model showed the ability of M2 macrophages
and Th2 to produce histamine when interacting with antigens,
which explains the mechanism of non-IgE-mediated allergy
(Iwasaki et al., 2021).

Only recently, the development of antigen-specific T cell
enrichment (ARTE) allowed a more detailed ex vivo analysis
of allergen-specific effector and regulatory T (Treg) cell responses
and suggested that human Th2 and Treg cells react to different
proteins in pollen (Bacher et al., 2016). The authors concluded
that the dominant immune reaction to inhaled, preferentially
particle-associated antigens is tolerance mediated by Treg cells. In
contrary, proteins which are rapidly released from inhaled
particles, e.g., Bet v 1, fail to actively induce tolerance.
Accordingly, the prevalence of Bet v 1-specific Treg cells in
non-allergic individuals was reported to be very low.
Furthermore, the absence of clonally expanded Bet v 1-specific
effector T cells in non-allergic individuals may be interpreted as
ignorance of the allergen by the immune system. In support of
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this hypothesis, recombinant (r) Bet v 1 failed to induce IL-4-
producing T cells in IL-4/green fluorescent protein (GFP)-
enhanced transcript (4get) mice whereas the aqueous birch
pollen extract promoted a Th2-response even when depleted
of natural Bet v 1 (Aglas et al., 2018). These findings further
underlined that exposure to the entire pollen is relevant for
allergic sensitization.

3.3 Formation of Immunoglobulins IgE, IgG1
The presence of IgE is the main symptom of an allergic process.
Cross-linking of allergen and IgE with the Fcε receptor is
necessary for inducing mast cell degranulation. With age, the
amount of IgE in people sensitized by pollen of plants is
increasing, while the number of allergens that cause a
pathological reaction also goes up. Analysis of IgE levels in
123 children in the United States showed that among 2-years-
old children with AR 60% had sensitization to weeds, 55% to
grasses and 50% to tree pollen, while by the age of 8 years old, 91%
were sensitized to weeds, 82% were sensitized to grasses, and 83%
were sensitized to tree pollen (Wong et al., 2012).

Study of IgE specificity revealed an association of sensitization
to molecular components of pollen allergens with food reactions
in patients suffering from atopic dermatitis. In patients suffering
from reactions to peanuts, hazelnuts, celery, apple and peach, a
significantly higher frequency of sensitization to major pollen
allergens Bet v 1, Aln g 1, Phl p 1, 2, 4, 5, 6, 11 was found
(Čelakovská et al., 2021a; Čelakovská et al., 2021b). Interestingly,
sensitization to Bet v 1 homologues and profilins is associated
with mild symptoms (pollen eating syndrome), and sensitization
to LTP homologues and seed storage proteins are associated with
severe reactions (Čelakovská et al., 2021a).

Immunoglobulin IgE in the serum of healthy people is not
formed under the influence of birch pollen. To study the
mechanisms of sensitization and regulation of IgE synthesis,
the kinetic characteristics of uptake of major and cross-
reactive allergens and competitive binding of IgE on the cell
surface, were determined. The pathways of internalization of
labeled Bet v1 allergens and the cross-reactive celery allergen Api
g1 by immature monocyte dendritic cells (iMoDC) from normal
donors and patients suffered with birch pollen allergy were
studied (Smole et al., 2015). It was found that the
internalization of Bet v 1 by iMoDCs from both donor groups
had similar kinetics. At the same time, Bet v1 was superior to Api
g1 in binding and uptake by the cell surface. The authors of the
study proposed a model of receptor-mediated caveolar
endocytosis to explain the absorption of allergens by dendritic
cells. MoDCs from allergic and healthy donors showed the
surface-bound IgE and a pronounced activation of Th2-
cytokine and NFκB-dependent genes upon nonspecific cross-
linking with the Fcε receptor. In contrast to these IgE-mediated
responses, stimulation by Bet v1 increased the levels of Th2
cytokines IL-4 and IL-13, but not NFκB-related genes, in
MoDCs of birch pollen allergic donors. Cells from healthy
donors either did not respond or showed increased mRNA
levels of Th1-mediated chemokines. Moreover, Bet v1 was able
to induce the activation of Erk1/2 and p38 MAPK in birch pollen
allergy sufferers, but only a minor activation of p38 MAPK was

observed in normal donors. Thus, it has been shown that Bet v1
promoted an activation of the Th2 program only in dendritic cells
of persons allergic to birch pollen. In addition, in healthy
individuals, the predominance of the Th1 response was
established as compared to the Th2 response in persons
allergic to birch pollen (Smole et al., 2015). The obtained data
are consistent with the results of in vitro experimental studies on
blood mononuclear cells of persons suffering from allergic
bronchial asthma. It was found that an activation of the Th1
response using muramyl peptide (an analogue of the bacterial cell
wall) shifts the Th1/Th2 balance towards Th1 (Guryanova et al.,
2009), explaining the positive effect of muramyl peptide therapy
in patients suffering from dermatological and allergic diseases
(Kolesnikova et al., 2016; Guryanova et al., 2019). In the
experimental model of asthma, it was found that fragments of
microorganisms, when used together with an allergen, enhance
IgE formation, while the preliminary administration of bacterial
innate immunity ligands reduces IgE formation and increases
IgG1 and IgG2a (Guryanova et al., 2022).

Thus, one of the strategies for the therapy and prevention of
allergic diseases might be the activation of the Th1 response, in
which the produced cytokines prevent the formation of Th2, and
consequently, IgE formation.

Another strategy for preventing allergic inflammation is the
induction of specific IgG antibodies that cross-react with
allergens and inhibit binding to IgE due to epitope
competition (Subbarayal et al., 2013). It is known that specific
immunotherapy with birch pollen (BP-SIT) induces IgG4
antibodies that inhibit IgE binding not only to Bet v1, but also
to homologous proteins Mal d1 and Cor a, which cause food
allergies. To determine if there is a cross-reactivity of BP-SIT-
induced Bet v1-specific IgG4 antibodies with IgE epitopes, IgE
and IgG4 levels specific for Bet v1, Mal d1 and Cor a1 were
determined in 42 patients allergic to birch pollen before and
during BP-SIT. As the result of specific immunotherapy, the
concentration of Bet v1-specific IgG4 antibodies, which also
reacted with food allergens, significantly increased. At the
same time, the level of allergen-specific IgE significantly
decreased, sera containing IgG4 antibodies reactive to the food
allergen inhibited IgE binding, activation of basophils, and IgE-
mediated proliferation of T cells induced by food allergens. The
predicted IgE and IgG4 epitopes for all allergens showed a high
overlap (Subbarayal et al., 2013).

The therapeutic efficacy of IgG antibodies that block IgE has
shown cross-blocking activity against related allergens in Fagales
pollen. Sublingual immunotherapy with the recombinant Bet v1
during 16 weeks increased cross-reactive serum IgE antibodies
and induced IgG1 and IgG4 antibodies with inter- and
intraindividual reactivity towards homologues. The cross-
blocking bioactivity of these antibodies was highly variable and
could not be predicted from protein homology or IgE cross-
reactivity. Thus, immunotherapy with the reference allergen Bet
v1 induces an individual repertoire of cross-reactive antibodies
IgG1 and IgG4 (Grilo et al., 2021).

It should be noted that the level of specific IgE in serum can be
maintained for a long time after the cessation of exposure to the
allergen (Subbarayal et al., 2013). It was noted that the T-cell
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response correlated with the annual indices by mugwort pollen.
The number of T cells in people allergic to mugwort has dropped
sharply since 2004, when there was a sharp decline in annual
mugwort pollen indices. Local sensitization to mugwort pollen
and serum IgE antibodies specific for Art v1 remained unchanged
until 2015, despite the long-term decline in natural exposure to
allergens to levels having been too low to stimulate specific T cells
(Van Hemelen et al., 2019). Obviously, the existence of memory
cells responsible for the synthesis of IgE antibodies is maintained
in the body for a long time; their detection and elimination can be
an additional therapy strategy.

3.4 ILC2-Mediated Sensitization
As new experimental data become available, the above classical
concept of the mechanism of development of a Tcells-mediated
allergic response turned out to be insufficient to explain the
occurrence of an allergic reaction in Rag2−/− mice lacking B- and
T-cells (Oboki et al., 2010), or in the absence of IgE (Campana
et al., 2008; Chen et al., 2008; Halim et al., 2012).

When studying an influence of cell populations on the
appearance and development of allergic reactions in Rag2−/−

mice lacking B and T cells, the animals were intranasally
injected with allergens isolated from plants and house dust
mites and displaying protease activity. Despite the absence of
T and B lymphocytes, the animals developed an allergic reaction.
In addition, in IL-33 deficient mice, the protease allergen did not
induce eosinophilic inflammation after intranasal administration.
It turned out that IL-33 activated innate lymphoid cells 2 type
(ILC2s), which produce IL-5 and IL-13. IL-5 causes eosinophil
degranulation, and IL-13 activates dendritic cells. Thus, a Th2
response occurs in the acute phase of an allergic reaction, and
ILC2s are required early in order to mediate the relationship
between IL-33 and eosinophilic inflammation. In addition, it was
found that mice lacking ILCs (Rag2−/− Il2rg−/−) had a marked
reduction in the characteristics of allergic pneumonia,
eosinophilia and mucus secretion. Experiments have shown an
important role of ILC2s in the development of allergic
inflammation, and also showed the effect of IL-33 on their
activation (Kondo et al., 2008). In this case, the cytokines IL-4,
IL-5, IL-9 and IL-13 can be produced not only by Th2, but also by
ILC2s, affecting not only the acute phase of the allergic process,
but also the chronic one, providing a connection between innate
and adaptive immunity (Price et al., 2010; Spits et al., 2013). Thus,
the classical Th2-induced immune response was supplemented
by new participants—ILC2s.

Innate lymphoid cells (ILCs) have the following
characteristics: 1) the absence of antigen-specific receptors, 2)
the absence of expression of known markers of immune cell
differentiation and 3) lymphoid cell morphology (Spits and Di
Santo, 2011). ILCs are divided into five groups depending on their
phenotype and functions (Veldhoen et al., 2008). ILC2s produce
IL-4, IL-5, IL-9, IL-13 (VivierArtis et al., 2018) and are involved in
immune responses caused by parasitic invasions (Cupedo et al.,
2009; Pelly et al., 2016) and allergies (Luci et al., 2009), but also
serve as systemic regulators of homeostasis (DuPage and
Bluestone, 2016; Thome et al., 2016; Lim and Di Santo, 2019).
There is a certain degree of plasticity between ILCs, depending on

the microenvironment and activating signals, they can change
their characteristics, which creates an additional level of
complexity in the ILCs family (Locksley, 2009; Chen et al.,
2018; Nagasawa et al., 2019; Ricardo-Gonzalez et al., 2020). It
turned out that ILC2s protected the body from the effects of
invading pathogens, perceiving a signal from epithelial cells
passed through effector molecules such as cytokines (GM-CSF,
IL-1α, IL-25, IL-33, TSLP), chemokines (CCL17, CCL22), and
mediators (ATP, uric acid). Compared to type 1 immune
responses to bacterial or viral infections, type 2 immune
responses are more complex, coordinating immune reactions
to helminths, microscopic particles including pollen, house
dust mites, and soluble enzymes such as proteases (Gurram
and Zhu, 2019). Activated by the ILC2s effector molecules,
they attract dendritic cells, eosinophils, basophils, mast cells,
and Th2 lymphocytes (Liu, 2009). The neuropeptide
neuromedin U (NMU) can also activate ILC2s through the
surface receptor neuromedin U1 (Nmur1); this type of
neuroregulation occurs in response to helminth invasion
(CardosoChesné et al., 2017; Klose et al., 2017). In addition,
ILC2s can be stimulated by estrogen-α (ER-α, Esr1), but estrogen-
β (ER-β, Esr2) had no effect on ILC2s-mediated airway
inflammation (Cephus et al., 2021). Thus, through the
activation of ILC2s, the nervous and endocrine regulation of
the type 2 immune response is carried out.

4 CONCLUSION

About 30% of the world’s population suffers from allergic
rhinitis, with more than half of the cases associated with
allergies to plant pollen. Sensitization to pollen allergens is
the cause of allergies not only to plant pollen, but also food
allergies, and can also have a negative impact on other diseases,
exhausting function of the immune system.

Sensitization to pollen allergens is a complex process and
depends on a large number of factors: 1) the state of the
immune system of the human body and its genetic
predisposition; 2) the composition and properties of
allergens; 3) duration of pollen allergen exposition; 4)
environmental factors. Disturbed barrier functions of tissues
contribute to the transepithelial entrance of allergens and the
initiation of allergic inflammation. Plant pollen is a set of
molecules of protein, lipid and polysaccharide nature, contains
various enzymes and microorganisms that interact with each
other and affect the corresponding cell receptors, contributing
to inflammation. Some pollen allergens may be pan-allergens
present in other sources. As a result, pollen sensitization can
lead to food allergies. The study of the intrinsic relationship
between the components of pollen and the mechanism of
reactivity of immunocompetent cells to recombinant
allergens, including a large number of their modifications,
makes it possible to identify the checkpoints of the
pathological process and develop ways of treatment and
allergy prevention.

Involvement of a great number compounds into allergic
inflammation made it possible to form the “two-signal

Frontiers in Molecular Biosciences | www.frontiersin.org June 2022 | Volume 9 | Article 90053310

Guryanova et al. How Do Pollen Allergens Sensitize?

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


hypothesis” of pollen-induced allergic inflammation in which
“signal 1,” consisting of innate signaling amplifies “signal 2,”
the classical pathway for antigen presentation to T cells, which
confer immunological specificity to the immune response. In
this case, the removal of signal 1 by prior administration of
antioxidants such as ascorbic acid, N-acetylcysteine or
tocopherol inhibits allergic airway inflammation. At the
same time, cigarette smoke and pollutants can act as
triggers of allergic inflammation (Hosoki et al., 2015). With
the development of our knowledge about the initiation of a
response to allergenic molecules, the diversity of the involved
populations of immunocompetent cells, signals and mediators
became obvious. The dependence of the activation type on the
structure of the allergen, microenvironment, and duration of
exposure was also revealed. At present, structures of several
thousand allergens have been determined, and the mechanism
of action has been investigated for many of them (Bogdanov
et al., 20212058; Finkina et al., 2021; Melnikova et al., 2021). In
order to take into account the risk factors for an occurrence of
allergic diseases, databases of allergens are created and
improved (Guryanova, 2018; van Ree et al., 2021). Main
characteristics of allergens including molecular masses,
epitope structures, cross-reactivity, presence in foods and
geographical distribution are collected there. Surprisingly,
the purified recombinant proteins of birch pollen were not
able to induce an immune response, while the pollen extract
caused it (Aglas et al., 2018). The recombinant Phl p 5 also did
not induce IL4-producing Th2 cells, compared with in vivo test
of complete Timothy pollen extract (Araujo et al., 2020). Thus,
and subsequent allergic inflammation is due to the
composition of the pollen, and not due to the inherent
allergenicity of the proteins.

The most important concluding remarks

• Previously, it has been shown that the pollen grain has a
complex composition in which allergenic proteins are
embedded in a heterogeneous matrix with many
bioactive molecules acting simultaneously during allergic
sensitization process.

• The main allergens from tree, grass and weed pollen are
proteins belonging to the classes of the Bet v 1 homologs,
LTPs, profilins, polcalcins, β-expansins and to the so called
group 5 allergens.

• Due to the ubiquitous presence not only in pollen, but also
in plant foods, some of these proteins having a high
structural homology and epitope similarity are
panallergens causing pollen-pollen and pollen-food cross-
allergic reactions.

• Currently, it is clear that not only structural and
physicochemical features and inherent immune-
modulating properties of protein allergens determine
their allergenic potency.

• Such allergens as the Bet v 1 homologs and LTPs are able to
bind hydrophobic ligands that may affect manifestation of
their allergenic properties.

• At the same time, pollen microbial and plant lipids due to
their adjuvant properties may play an important role in the

sensitization to both lipid-binding and non-lipid-binding
allergens.

• Now, it is supposed that pollen sensitization resulted from
complex interactions between the innate immune cells,
allergens and pollen-derived adjuvants of different nature
co-delivered with them.

• The question remains open whether lipids have own
immunological properties synergizing allergic
inflammation.

• Signal transduction cascades induced by allergens and their
natural ligands should be investigated further.

• Epithelial cells of respiratory and intestinal tracts are major
players in allergic inflammation leading to allergic
sensitization through direct stimulation of antigen-
presenting cells and indirect activation of innate
lymphoid cells (ILC2).

• The first step in the sensitization process goes along with an
activation of PRR, biosynthesis of pro-inflammatory
cytokines (IL-1, IL-6, IL-8 and TNF-α) and pro-allergic
alarmins (TSLP, IL-33 and IL-25).

• It was found that primary and tertiary structures of allergens
affected processing, presentation on MHC class II
molecules, loaded on various HLA phenotypes and, as a
result, activated various immune cells (DC, M2
macrophages, Th2, Teff, Treg).

• Pollen activation of the Th2 immune response and IgE
production in pollen-allergic individuals is of much interest,
while the Th1 response is predominant in healthy
individuals.

• Now, it is supposed that in addition to the Th2-mediated,
another way of activating of the immune response without
the participation of lymphocytes is also possible as ILC2
cells, activated via IL-33, cause eosinophilic inflammation.

• Taken together, structures of allergens, interaction with
their natural ligands and accompanying molecules,
complexity of allergen exposure conditions, the
presence of environmental cofactors play a symphonic
role in allergic pollen sensitization.

• Fundamental studies of the sensitization mechanisms
provide the basis development of drugs for treatment
and prevention of allergic inflammation.
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