
BIOMEDICAL REPORTS  22:  8,  2025

Abstract. In the present study, the mechanism of Panax 
notoginseng saponins (PNS), the extract of Panax notogin‑
seng, against deep vein thrombosis (DVT) was explored by 
networks pharmacology and its effect was demonstrated 
through clinical data. PNS includes 5 main active components, 
which have 101 targets. A total of 1,342 DVT‑related targets 
were obtained, 55 of which were the common targets of PNS 
and DVT. AKT1, TNF, IL1B, EGFR, VEGFA and MAPK3 
were selected as hub genes from the protein‑protein interac‑
tion network. The potential anti‑DVT mechanism of PNS may 
involve the AGE‑RAGE signaling pathway and the PI3K‑Akt 
signaling pathway. Molecular docking presented a total of 10 
binding interactions, with all molecules showing good binding 
ability with PNS‑DVT common hub target genes (all binding 
energy <‑6 kcal/mol). Analysis of clinical data showed that the 
combined use of PNS significantly reduced the incidence of 
postoperative DVT in patients undergoing orthopedic surgery 
compared with the use of low‑molecular‑weight heparin alone, 
which is the most commonly used clinical anticoagulant.

Introduction

Deep venous thrombosis (DVT) can develop into pulmonary 
thromboembolism (PTE), which may even be life‑threatening. 
DVT and PTE, collectively known as venous thromboem‑
bolism (VTE), after acute coronary syndrome and stroke, is 
the third most common clinical cardiovascular disease, and 

is also one of the preventable causes of death in hospital‑
ized patients (1‑3). The incidence of DVT is high in surgical 
patients, with hospital‑acquired DVT occurring in up to 60% 
after major orthopedic surgery (4). Therefore, the prevention 
of DVT becomes essential. Prevention with drugs is one 
of the most effective measures to reduce the risk of DVT 
formation. Widely used anticoagulants include warfarin, 
heparin, low‑molecular‑weight heparin (LMWH) and novel 
oral anticoagulants (5). However, even with the use of antico‑
agulant drugs, the incidence of DVT in patients with surgery 
and trauma cannot be ignored (6,7). In addition, the adverse 
reactions of anticoagulant drugs should be noted, such as 
hemorrhage, hematoma and thrombocytopenia (8,9). New 
treatments are urgently needed to prevent DVT.

Traditional Chinese medicine (TCM) and herbal medi‑
cines have been widely used for thousands of years to treat 
various diseases, including thrombosis. TCM is mainly 
derived from natural plants and has the advantages of good 
efficacy, less toxicity and side effects, and low cost (10). Panax 
notoginseng is a classical TCM rich in >70 kinds of Panax 
notoginseng saponins (PNS), mainly including notoginsen‑
oside R1, ginsenoside Rg1, ginsenoside Re, ginsenoside Rb1 
and ginsenoside Rd qt (7,11,12). PNS have been found to 
have positive effects on various diseases, including coronary 
heart disease, ischemic stroke, gastrointestinal injury and 
Alzheimer's disease (11‑14). The mechanisms involved in 
these effects include anti‑inflammation, anti‑oxidation, inhibi‑
tion of platelet aggregation, anti‑apoptosis, promotion of blood 
circulation, improvement of vascular endothelial function and 
regulation of blood lipids (12,15,16). TCM indicates that Panax 
notoginseng may be used for the prevention and treatment of 
thrombosis. However, the mechanisms underlying the effect of 
PNS against DVT have remained to be fully elucidated.

In recent years, an increasing number of studies have been 
devoted to exploring the mechanisms of action of TCM in 
the treatment of various diseases based on network pharma‑
cology (10). Network pharmacology combines pharmacology 
and bioinformatics to reveal the specific targets of drug 
interventions in the processes of disease, which is helpful 
to promote the development of precision medicine (11,14). 
In the present study, several public databases were used to 
predict PNS‑DVT targets and establish pharmacological 
networks, from which key drug components and hub targets 
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were screened. Subsequently, Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) functional 
enrichment analysis combined with molecular docking veri‑
fication were performed to investigate the complex effects of 
PNS in the prevention of DVT. Finally, clinical data were used 
to confirm the efficacy and safety of PNS in preventing DVT.

Materials and methods

Prediction of the targets of PNS. The main active components 
of PNS were identified from the TCM Systems Pharmacology 
Database and Analysis Platform (TCMSP; http://lsp.nwu.
edu.cn/tcmsp.php), which is a unique systems pharmacology 
platform of Chinese herbal medicines (17). Symmap v2 
(http://www.symmap.org/) was used to identify targets related 
to these main active components in the study. Symmap 
provides massive information on herbs/ingredients, targets, 
the clinical symptoms and diseases, as well as the associations 
among them (18).

Col lec t ion  of  PNS ‑ DV T com mon ta rge ts.  T he 
Onl ine Mendel ian Inher itance in Man (OMIM; 
https://omim.org/) (19), DrugBank (https://go.drugbank.
com/) (20), GeneCards (https://www.genecards.org/) (21) and 
DisGeNET (https://www.disgenet.org/) (22) databases were 
searched for genes associated with DVT using ‘deep venous 
thrombosis’ as the keyword. Common PNS‑DVT targets 
were obtained by drawing a Venn diagram of DVT‑related 
genes and targets related to the active components of PNS 
using an online drawing tool (http://bioinformatics.psb.ugent.
be/webtools/Venn/). Cytoscape software (v3.9.0) was used to 
visualize the herb‑component‑target gene network (23). The 
Degree value of each active compound was calculated using 
Cytoscape's application named Cytohubba (v0.1) (24).

Construction of protein‑protein interaction (PPI) network. 
The PNS‑DVT common targets were uploaded to the Search 
Tool for the Retrieval of Interacting Genes (STRING; v.11.5; 
https://cn.string‑db.org/) database to obtain the PPIs (25). 
‘Homo sapiens’ and ‘interaction score ≥0.7’ were used as 
the screening criteria. Cytoscape software (v.3.9.0) was used 
to visualize the PPI network (23). The degree value of each 
node was also calculated using Cytohubba for screening hub 
genes (24).

Enrichment analysis. To determine the functions and signaling 
pathways involved in the PNS‑DVT common targets, GO and 
KEGG pathway enrichment analyses were performed using 
the Metascape (https://metascape.org) platform (26). After 
uploading PNS‑DVT common targets to Metascape, GO terms 
in the categories biological process (BP), cellular component 
(CC) and molecular function (MF), and KEGG pathways were 
obtained from the enrichment analysis. The conditions for the 
analysis were set as min overlap=3, P‑value cutoff=0.01 and 
min enrichment=1.5. The results of the enrichment analysis 
were visualized using GraphPad Prism 9.0.0 (Dotmatics).

Molecular docking. Molecular docking was used to examine 
receptor‑ligand interactions and affinities. The PDB files of 
the 3D structure of the proteins expressed by the hub genes 

were downloaded from the Protein Data Bank (PDB) database 
(https://www.rcsb.org/) (27), and PyMol (v.2.6) software 
was used to remove water molecules and unrelated ligands 
from the 3D structure. The PDB file of the protein was then 
imported into AutodockTools (v.1.5.7) (28) software for hydro‑
genating and saved in PDBQT format. Mol2 files of hub active 
compounds were downloaded from the TCMSP database and 
then saved in PDBQT format after hydrogenating and rotatable 
bonds setting by AutodockTools (v.1.5.7) software. Finally, by 
setting the maximum ‘Gird box’, i.e., the blind docking method, 
the molecular docking was verified in AutodockTools (v.1.5.7) 
software, and the results with the lowest binding energy were 
visualized by PyMol (v2.6) software (29). A binding energy 
<0 kcal/mol indicates that the ligand can spontaneously bind 
to the protein.

Validation of clinical data. To verify the efficacy of PNS 
in preventing DVT, patients undergoing orthopedic surgery 
at the Department of Surgery of Xuanwu Hospital, Capital 
Medical University (Beijing, China) from January 2016 to 
December 2018 were screened. The inclusion criteria were 
as follows: Age ≥18 years; Caprini scale scores suggest ≥ 
moderate VTE risk; the anticoagulant therapy received 
during the perioperative period was LMWH (hypodermic 
injection; 4,000‑8,000 AxaIU once daily; 100 AxaIU/kg) 
or LMWH plus PNS (drug named Xue‑Shuan‑Tong oral 
tablets; 100 mg; 3 times daily) (7); deep vein ultrasound 
of the lower extremities on admission did not reveal DVT, 
and the lower extremity deep vein ultrasound was reex‑
amined before discharge. Pregnant women, patients with 
coagulopathy and/or contraindications to anticoagulation, 
and patients already on anticoagulants prior to hospitaliza‑
tion, were not included. This study was approved by the 
Institutional Review Board of Xuanwu Hospital, Capital 
Medical University (Beijing, China; approval no. [2017]088). 
The primary endpoint was the incidence of DVT in a lower 
extremity. Other endpoints included the incidence of major 
bleeding (hemoglobin lost ≥2 g/l), pulmonary embolism and 
pulmonary embolism‑related death.

Statistical analysis. Descriptions of statistical methods rele‑
vant to networks pharmacology were presented in preceding 
each part of the Methods section. In the validation of clinical 
data, normally distributed continuous variables were analyzed 
using a two‑sided unpaired t‑test, while non‑normally distrib‑
uted variables were analyzed using the Wilcoxon rank‑sum 
test. Dichotomous data were compared using Fisher's exact 
test or chi‑square test. Significance was defined as P<0.05.

Results

Predicted targets of PNS. Notoginsenoside R1, ginsenoside 
Rg1, ginsenoside Re, ginsenoside Rb1 and ginsenoside Rd qt 
were the 5 main active components in PNS (11,12), and their 
details are described in Table I. Among them, ginsenoside Rd 
qt has the best oral bioavailability and drug‑likeness quality, 
so it may be the main bioactive component in oral manage‑
ment. The results obtained from the Symmap v2 databases 
were integrated to obtain the 101 non‑repetitive targets with 
the five active PNS compounds (Fig. 1A). As shown in Fig. 2, 
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PNS mainly acts through multiple components corresponding 
to multiple targets.

Collected common targets of PNS‑DVT. After deduplication, 
a total of 1,342 DVT‑related targets were obtained from the 
OMIM, DrugBank, GeneCards and DisGeNET databases 
(Fig. 1B). There were 55 common targets shared by PNS active 
components and DVT (Fig. 1C).

Construction of the PPI network. A total of 55 common 
targets of PNS and DVT were introduced into the STRING 
database for PPI network analysis. As presented in Fig. 3A, 
there were 52 nodes (genes) with 301 edges (interactions) in 
the PPI network, and those nodes with higher degree values 
were regarded as hub target genes. AKT1, TNF, IL1B, EGFR, 
VEGFA and MAPK3 were the top 6 targets, with degree 
values of 32, 28, 25, 25, 25 and 23, respectively. The network 
of the 5 main active compounds and hub target genes is shown 
in Fig. 3B.

GO and KEGG pathway enrichment analyses. The Metascape 
platform was used for the GO and KEGG pathway analyses, 
and the top 10 terms in each category were visualized (Fig. 4). 
The top 3 enriched terms in GO BP were ‘positive regulation 
of cell migration’, ‘positive regulation of cell motility’ and 
‘positive regulation of locomotion’. The top 3 enriched terms 
in GO CC were ‘platelet alpha granule lumen’, ‘vesicle lumen’ 
and ‘platelet alpha granule’. The top 3 enriched terms in GO 
MF were ‘signaling receptor regulator activity’, ‘signaling 
receptor activator activity’ and ‘cytokine receptor binding’. 
The ‘advanced glycation end products (AGE)/receptors for 
AGE (RAGE) signaling pathway in diabetic complications’, 
‘pathways in cancer’ and the ‘PI3K‑Akt signaling pathway’ 
were the most significant KEGG signaling pathways.

Molecular docking. According to the targeting relation‑
ship shown in Fig. 3B, the 6 hub target genes from the PPI 
network were docked to the 5 active compounds of PNS. 
Table II shows the PDB ID of the hub target genes used 
in molecular docking. The results presented a total of 10 
binding interactions, with all molecules showing a binding 
energy <‑6 kcal/mol with the targets. In other words, these 
five active PNS compounds have good binding ability with 
PNS‑DVT common hub target genes. Both notoginsenoside 
R1 and ginsenoside Rb1 had 3 targets. The visual docking 
results are shown in Fig. 5.

Clinical results of PNS in preventing DVT. A total of 
194 patients were screened for this clinical validation, and 
99 and 95 patients were in the LMWH group and PNS + 
LMWH group, respectively. Female patients account for 
70.71 and 70.53% in the two groups, with average ages of 
69.83 and 68.61 years, respectively. As shown as in Table III, 
there were no significant differences in baseline characteristics 
between the two groups. The incidence of postoperative DVT 
in the LMWH group was 25.25%, which was significantly 
higher than the 12.63% in the LMWH + PNS group (P=0.025), 
while there were no significant differences in coagulation func‑
tion indexes except D‑dimer (P=0.044) after surgery between 
the two groups. No major bleeding, pulmonary embolism or 
pulmonary embolism‑related death occurred in either group.

Discussion

The clinical data showed that the combined use of PNS 
significantly improved the effect of LMWH in preventing 
DVT after orthopedic surgery. The molecular mechanism of 
this effect was explored by network pharmacology analyses. 
In this study, it was indicated that PNS and DVT have 55 
common gene targets. Further analysis showed that PNS may 
use AKT1, TNF, IL1B, EGFR, VEGFA and MAPK3 as hub 
targets to prevent DVT.

AKT1, also known as protein kinase B, is a potent signal 
transducer of multiple signaling functions in platelets. Studies 
have confirmed that AKT is involved in the positive regula‑
tion of megakaryopoiesis and thrombopoiesis (30,31). As the 
critical role of GPIb‑IX‑mediated early signals, AKT mediates 
a variety of agonists‑induced signaling cascades in platelets. 
Under the stimulation by agonists, rapidly activating AKT is 
involved in multiple signaling pathways, such as the PI3K/Akt 
signaling pathway, contributing to integrin activation, throm‑
boxane synthesis and degranulation (32‑34). Inflammation 
plays an important role in the formation of DVT (35). 
Inflammatory cells, particularly macrophages, are the sources 
of the proinflammatory cytokines, such as tumor necrosis 
factor‑α (TNF‑α) (36). However, the connection between the 
TNF‑α and thrombosis remains controversial. TNF‑α can 
induce tissue factor (TF), which is the key initiator of the physi‑
ological coagulation process through activating the exogenous 
coagulation pathway (37). As a strong stimulator, TNF‑α can 
activate the coagulation system, which is manifested as the 
downregulation of physiological anticoagulant mechanisms 
and the inhibition of fibrinolysis (38). However, it has also 
been proposed that an altered inflammatory cytokine profile 
may be the result of venous thrombosis rather than a cause 
of it (39). Of note, a study has found that TNF‑α interacting 
with TNF‑Rp55 enhances the resolution of venous thrombosis 
through the increased expression of fibrinolytic mediators and 
enzymes linked to collagen remodeling by macrophages (40).

IL‑1β is produced by macrophages and monocytes and 
is a marker of an early inflammatory response. IL‑1β binds 
to the IL‑1β receptor on endothelial cells and activates the 
NF‑κB pathway to cause endothelial injury, and activates 
TF, coagulation and von Willebrand factor to promote 
platelet adhesion and fibrin deposition, thereby initiating 
and aggravating thrombosis (41‑43). Epidermal growth 
factor receptor (EGFR) is a widely used prognostic marker 

Table I. Active components of Panax notoginseng saponins.

Molecule ID Compound name OB% DL

MOL007487 Notoginsenoside R1 5.43 0.13
MOL005341 Ginsenoside Rg1 10.04 0.28
MOL005338 Ginsenoside Re 4.27 0.12
MOL007476 Ginsenoside Rb1 6.29 0.04
MOL007480 Ginsenoside Rd qt 12.23 0.77

OB, oral availability; DL, drug‑likeness.

https://www.spandidos-publications.com/10.3892/br.2024.1886
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for numerous cancers, and increasing studies have found an 
association between EGFR and the occurrence of DVT and 
other thromboembolic complications, particularly in cancer 
patients. EGFR can stimulate the production of growth factors, 
including vascular endothelial growth factor (VEGF), while 
VEGF is a chemokine factor for cells that expresses TF, 
which is involved in thrombosis, as mentioned above (44‑46). 
As a member of the MAPK family, MAPK3, also known as 
extracellular signal‑regulated kinase 1 (ERK1), is associated 
with thrombin‑activated platelet aggregation. Activated ERK 
is important in GPIb‑IX‑mediated signaling, leading to inte‑
grin activation and, thus, integrin‑dependent stable platelet 
adhesion, aggregation and thrombosis (33,47).

The mechanism of the above hub genes in thrombosis 
was closely related to the results revealed by GO enrichment 

analysis. KEGG enrichment analysis indicated that the 
common targets were mainly enriched in the ‘AGE‑RAGE 
signaling pathway in diabetic complications’, ‘pathways in 
cancer’ and the ‘PI3K‑Akt signaling pathway’. AGEs and 
RAGEs were first studied in diabetes (48). The AGE/RAGE 
pathway has been substantiated to be involved in oxidative 
stress, inflammation and a variety of diseases, including 
cardiovascular diseases and thrombosis (49). RAGE inhibition 
can suppress the release of proinflammatory cytokines IL‑6, 
IL‑1β and TNF‑α (48). In addition, RAGE inhibition markedly 
suppressed malondialdehyde and reactive oxygen species levels 
and increased the level of the antioxidant substance superoxide 
dismutase, which effectively alleviated AGE‑induced oxida‑
tive stress. Inhibition of the AGE/RAGE axis also significantly 
increased levels of nitric oxide‑suppressed endothenin‑1 

Figure 2. PNS‑main active components‑common targets network. PNS, Panax notoginseng saponins.

Figure 1. Venn diagrams. (A) Targets of PNS compounds. (B) DVT‑related genes. (C) Common targets of PNS and DVT. PNS, Panax notoginseng saponins; 
DVT, deep vein thrombosis.
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expression, which all helps prevent the occurrence of throm‑
bosis (48,50,51). Inhibition of PI3K/AKT signaling reduced 

platelet aggregation and thrombosis, while activation of 
PI3K/AKT signaling induced endothelial damage, apoptosis 

Table II. Molecular docking results between the hub targets and main compounds.

Hub gene PDB ID Compound name Binding energy, kcal/mol

AKT1 7myx Notoginsenoside R1 ‑6.7
TNF 5uui Notoginsenoside R1 ‑7
TNF 5uui Ginsenoside Rg1 ‑6.4
TNF 5uui Ginsenoside Rb1 ‑6.7
IL1B AF_P01584_F1 Ginsenoside Rg1 ‑7.1
IL1B AF_P01584_F1 Ginsenoside Rb1 ‑8.2
EGFR 5ug9 Ginsenoside Rd qt ‑9.1
VEGFA 1mkk Notoginsenoside R1 ‑7.3
VEGFA 1mkk Ginsenoside Rb1 ‑7.2
MAPK3 6ges Ginsenoside Re ‑8.7

PDB, protein databank.

Table III. Demographic and clinical characteristics of participants.

Variable LMWH alone (n=99) LMWH + PNS (n=95) P‑value

Female sex 70 (70.71) 67 (70.53) 0.978
Age, years 69.83±9.23 68.61±11.12 0.578
Body mass index, kg/m2 25.72±3.98 25.64±4.12 0.887
Hypertension 55 (55.56) 46 (48.42) 0.320
Diabetes 33 (33.33) 26 (27.37) 0.367
Location of surgery   0.811
  Knee 62 (62.63) 54 (56.84) 
  Hip 35 (35.35) 38 (40.00) 
  Calcaneus 1 (1.01) 1 (1.05) 
  Ankle 1 (1.01) 2 (2.11) 
Pre‑operation   
  PT, sec 13.20±0.72 13.32±0.83 0.282
  TT, sec 16.12±1.11 16.77±7.90 0.419
  APTT, sec 37.33±5.09 36.91±4.63 0.553
  INR 1.01±0.07 1.02±0.08 0.441
  Fibrinogen, g/l 3.63±0.96 3.56±0.79 0.546
  D‑dimer, µg/ml 0.61 (0.35, 1.70) 0.69 (0.34, 1.93) 0.999
Post‑operation   
  PT, sec 13.82±0.86 13.66±0.85 0.214
  TT, sec 15.04±1.65 14.76±0.92 0.176
  APTT, sec 42.88±6.86 42.39±6.40 0.638
  INR 1.07±0.09 1.05±0.08 0.109
  Fibrinogen, g/l 4.64±1.32 4.95±1.31 0.140
  D‑dimer, µg/ml 1.78 (1.05, 2.76) 1.34 (0.87, 2.32) 0.044
  DVT 25 (25.25) 12 (12.63) 0.025

Categorical data are presented as counts and percentages. Continuous data from normally distributed parameters are presented a as 
mean ± standard deviation, such as age, while continuous data not normally distributed are expressed as median (25% IQR, 75% IQR). 
LMWH, low‑molecular‑weight heparin; PNS, Panax notoginseng saponins; PT, prothrombin time; TT, thrombin time; APTT, activated 
partial thromboplastin time; INR, international normalized ratio; DVT, deep vein thrombosis; IQR, interquartile range.

https://www.spandidos-publications.com/10.3892/br.2024.1886
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and inflammation (52‑54). Integrins play a critical role in 
different phases of platelet function during thrombosis, being 
involved in both platelet‑matrix interaction and platelet‑platelet 
aggregation. The PI3K/Akt pathway regulates both integrin 
inside‑out and outside‑in signaling (55).

The five main active components of PNS are notoginsen‑
oside R1, ginsenoside Rg1, ginsenoside Re, ginsenoside Rb1 
and ginsenoside Rd qt. Network pharmacology analysis identi‑
fied the hub targets of these five main components in DVT 
prevention, and the spontaneous binding among them was 

Figure 4. Top 10 most enriched Gene Ontology terms in the categories (A) BP, (B) CC and (C) MF and (D) Kyoto Encyclopedia of Genes and Genomes 
pathways. BP, biological process; CC, cellular component; MF, molecular function; HIF, hypoxia‑inducible factor.

Figure 3. (A) Protein‑protein interaction network and (B) main active compounds‑hub target genes network.
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verified by molecular docking. A binding energy <0 kcal/mol 
indicates the docking molecule had spontaneous binding 
activity to the target, with a smaller value of binding energy 
reflecting a higher binding ability. All molecules showed a 
binding energy <‑6 kcal/mol with the targets, indicating excel‑
lent spontaneous binding of the ligands to the receptors.

A limitation of the present study is that no experiments 
were performed to validate the network pharmacology 
results, particularly in vivo experiments. Although network 
pharmacology and clinical data have provided preliminary 

insights into the mechanisms and effects of PNS for DVT 
prevention, these results may not fully reflect the complex 
conditions within a living organism. The results of pure 
clinical data without in vivo experiments limit the clinical 
generalization of the present findings. Therefore, in vivo 
experiments may be performed in future studies by our group 
to more comprehensively evaluate the potential value of PNS 
in preventing DVT.

In conclusion, PNS can promote the effect of LMWH to 
prevent DVT. We identified potential targets and pathways 

Figure 5. Molecular docking analysis. (A) AKT1 and notoginsenoside R1, (B) TNF and notoginsenoside R1, (C) TNF and ginsenoside Rg1, (D) TNF and 
ginsenoside Rb1, (E) IL1B and ginsenoside Rg1, (F) IL1B and ginsenoside Rb1, (G) EGFR and ginsenoside Rd qt, (H) VEGFA and notoginsenoside R1, 
(I) VEGFA and ginsenoside Rb1 and (J) MAPK3 and ginsenoside Re.

https://www.spandidos-publications.com/10.3892/br.2024.1886
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for PNS in the prevention of DVT, and a basis for subsequent 
experimental verification was provided. The hub targets of 
PNS in preventing DVT were AKT1, TNF, IL1B, EGFR, 
VEGFA and MAPK3. Molecular docking analysis showed 
that the main active components of PNS could combine well 
with these hub targets. The AGE‑RAGE signaling pathway 
and the PI3K‑Akt signaling pathway may be critical pathways 
for PNS to prevent DVT.
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