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Abstract

Background: The diversity of viruses, the absence of universally common genes in them, and their ability to act as
carriers of genetic material make assessment of evolutionary paths of viral genes very difficult. One important factor
contributing to this complexity is horizontal gene transfer.

Results: We explore the possibility for the systematic identification of atypical genes within virus families, including
viruses whose genome is not encoded by a double-stranded DNA. Our method is based on gene statistical features
that differ in genes that were subject of recent horizontal gene transfer from those of the genome in which they are
observed. We employ a one-class SYM approach to detect atypical genes within a virus family basing of their statistical
signatures and without explicit knowledge of the source species. The simplicity of the statistical features used makes
the method applicable to various viruses irrespective of their genome size or type.

Conclusions: On simulated data, the method can robustly identify alien genes irrespective of the coding nucleic acid
found in a virus. It also compares well to results obtained in related studies for double-stranded DNA viruses. Its value

in practice is confirmed by the identification of isolated examples of horizontal gene transfer events that have already
been described in the literature. A Python package implementing the method and the results for the analyzed virus

families are available at http://svm-agp.bioinf. mpi-inf mpg.de.
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Background

Viruses interact extensively with the host cells they infect,
and thus are believed to play a major role in the evolu-
tion of life [1]. In the process of virus-host interaction,
viral genes might be left behind and incorporated into the
host genome, or host genes might be taken up by viruses
and become integrated into the viral genome. In this work,
we devise a model to systematically predict which viral
genes do not originate from the species in which they
were observed. The method is targeted to the identifica-
tion of genes that presumably have been integrated into
virus genomes only recently.

Horizontal gene transfer (HGT) amounts to the
exchange of genetic material between organisms other
than by reproduction and typically across species bound-
aries. Instances of HGT have been observed in all three
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domains of life [2] as well as in viruses. For the identifica-
tion of horizontally transferred genetic material, various
methods have been proposed (reviewed in [3]). In general,
the methods are based on either phylogenetic analysis or
interpretation of compositional features.

Phylogenetic analysis requires assumptions about a
comprehensive phylogenetic tree. While cellular organ-
isms have a common ancestor, viruses likely do not orig-
inate from a common progenitor [4]. Moreover, viral
genomes evolve more quickly than cellular genomes,
which very quickly causes genes to diverge beyond any
recognizable similarity. Hence, phylogenetic trees can be
constructed only for a limited set of closely related viruses;
and methods based on phylogeny are applicable to the
study of HGT in viruses only to a limited extend. In
contrast, methods based on compositional features are
applicable. These methods involve the analysis of statis-
tical features and specific genomic signatures, and are
more powerful in detection of gene insertion, as opposed
to phylogeny-based techniques that can detect gene dis-
placement as well [1].
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A genomic signature is a vector of numbers constructed
from a DNA or protein sequence. These vectors are simi-
lar for all sequences from the same genome (i.e. pervasive)
and distinct from vectors corresponding to sequences of
other genomes. Species evolve specific signatures in the
characteristic evolutionary processes each of them is sub-
jected to in time. Comparison of these patterns enables
the identification of horizontally transferred genes as
those whose features are atypical for a particular genome.
However, only recently acquired genes can be detected
because sequences quickly adjust to their new genome
environment, a process known as gene amelioration [5].

The statistical analysis of viral genetic data is challeng-
ing. These data exhibit high biases due to comparably
short genomes and the tendency of certain viruses to dis-
play high mutation rates. Yet, there is a number of studies
focusing on HGT in viruses.

For cyanobacterial phages and their hosts, it has been
shown that whole genes of the photosystem reaction cen-
ter have been transferred from host to phage [6]. The host-
like photosynthesis genes of the cyanophages presumably
augment the host photosynthetic machinery during infec-
tion and thereby provide a fitness advantage. There is also
evidence for the transfer of multiple genes involved in the
sphingolipid biosynthesis pathway between the eukaryotic
microalga Emiliania huxleyi and its large double stranded
DNA virus Emiliania huxleyi virus although the direc-
tion of the HGT was not identified [7]. The similarity of
polA genes in both thermophilic viruses and the bacterial
phlyla of Aquificae and Apicomplexa could be attributed
to not only one event of gene transfer but to a whole net-
work of transfers of genetic material that occurred during
evolution [8]. A study of HGT in the family of Poxviri-
dae has revealed that proteins encoded by members of the
subfamily Chordopoxvirinae exhibit greater similarity to
eukaryotic proteins than to proteins of other virus fam-
ilies illustrating the important role of gene capture from
the host for virus evolution [9].

A special case is Sputnik virus. This virus infects Acan-
thamoeba polyphaga mimivirus, one of the largest known
viruses. Some of the genes of Sputnik virus apparently
originate from Mimivirus [10]. Sputnik virus is the first
virus discovered to infect another virus [11].

All these studies focus on individual viral species or at
most one family and reveal interesting details for them.
A number of methods employ machine learning tech-
niques to discover HGT events on a large scale (for a
review and comparison, see [12]). None of these meth-
ods, however, analyzed viruses specifically as a subject
for HGT. Although for Wn-SVM [13] predictions in 106
virus species are reported, the authors concerntrate exclu-
sively on dsDNA viruses with relatively large genomes. In
contrast, we aim to provide a method equally applicable
for detection of HGT in all known viruses. The method
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relies on detection of genes whose statistical properties
are for the virus it resides in, and thus does not reveal the
source of the gene transfer. Recent metagenomic studies
indicate a large and partly underappreciated diversity of
viral species [14-16], so we speculate that in many cases
the source organism may still be undiscovered. The men-
tioned anecdotal cases are not sufficient to form a gold
standard data set of viral genes acquired via HGT. So
the validation of the model is particularly demanding. We
evaluate the algorithm on simulated data sets as well as on
real data sets, and we relate selected findings to available
literature.

The identification of potentially horizontally transferred
genes resembles an outlier detection problem. We hypoth-
esize that most genes of a virus family are inherent and
only few entered the family by means of horizontal trans-
fer. Furthermore, the family-inherent genes share char-
acteristics which the foreign genes do not have. Genetic
sequences inherent to a genome exhibit specific common
statistical features, whereas genes recently horizontally
transferred into the genome show the specific statistical
features of their original genome. Thus, representations
of genes in the form of signatures allow for distinction of
within-family and out-of-family genes.

However, reliable statistics of viruses are hard to obtain
due to fast evolutionary rates and short genomes. Rep-
resentations might be affected by high fluctuations and
potentially exhibit large statistical errors. In particu-
lar for high-dimensional representations, biases can be
extremely high. Options to overcome this are either to
work with simple representations or to reduce biases. Rep-
resentations obtained from either option are evaluated as
inputs for the devised algorithm.

The central element of the algorithm is a one-class sup-
port vector machine (SVM). In contrast to a regular SVM,
a one-class SVM does not require labeled data and hence
is particularly suited for the task of outlier detection in
virus families where labels are unavailable. It learns a deci-
sion function for outlier detection. New data provided to
the algorithm are classified as similar or different to the
data before seen [17,18].

Methods

One-class SVM

Given all genes of a virus family, a one-class SVM is
employed to obtain a ranking of genes from most atypi-
cal to most typical. It predicts whether new data is like the
data on which it has been trained. Similarly to a regular
SVM, the one-class SVM maps data into a feature space
by means of a kernel function. In this space, a maximal
separating hyperplane is set up such that it separates the
data from the origin — manifesting a decision boundary —
and maximizes the margin. For a new point, the class



Metzler and Kalinina BMC Genomics 2014, 15:913
http://www.biomedcentral.com/1471-2164/15/913

membership is determined by evaluating on which side of
the hyperplane it falls.

The solution heavily depends on the parameter v that
corresponds to the fraction of data points expected to be
on the other side of the decision boundary with respect to
the origin. Therefore, the one-class SVM is also referred to
as v-SVM. The position of the decision boundary is influ-
enced by the choice this parameter. For the prediction of
atypical genes, we employ a one-class SVM with a Gaus-
sian kernel. This kernel, particularly suited for real-valued
feature sets, requires the proper choice of a second param-
eter y controlling the variance of the radial basis function.
The selection of values for the parameters v and y is
demanding as no information on the expected number of
outliers is available beforehand. Because of the unsuper-
vised nature of the problem, typical parameter selection
procedures, such as cross validation, are infeasible.

We note that although in its original formulation, the
one-class SVM is an approach to binary classification, i.e.
differentiation between in-class and out-of-class data, it
can well be used to rank the data. To obtain a ranking,
the signed distances of each data point from the deci-
sion boundary are evaluated. Points outside the boundary
have distances with a negative sign. For points within the
boundary, the distance to the boundary is positive. Hence
aranking from most atypical to most typical is obtained by
enumerating the genes with respect to their distance to the
decision boundary in ascending order. Because the exact
location of the decision boundary is of minor importance
for this task and there is no notion of the expected num-
ber of outliers, we select parameters such that a ranking is
robustly determined. As discussed in detail in this section,
the ranking is considered robust if it remains stable under
slight variations of the parameters.

Input features

From the genetic sequences of each virus family, various
input features are derived to serve as a input to the one-
class SVM. Virus family refers to the taxonomic rank as
assigned by the International Committee on Taxonomy of
Viruses (ICTV) [19]. These features include

e Oligonucleotide frequencies: The alphabet
¥ ={A,C,G, T} has |=|* words of length k. The
oligonucleotide signature is a | £ |¥-dimensional
vector of word frequencies. We employ values of 1, 2,
3, and 4 for k to derive feature sets. We do not use
oligonucleotide frequencies with k > 4, because for
some families, there is not enough statistics for such
high-dimensional feature spaces.

e Codon usage: As features, we use a vector of the
frequencies of each codon within a genetic sequence.
Relative codon usage is a vector of codon frequencies
relative to the occurrence of synonymous codons.
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¢ Amino acid frequencies: The 20-dimensional vector
of amino acid frequencies is obtained from a protein
sequence from the alphabet ¥’ = {A,R,N, D, C, E, Q,
G,H,I,L,K,M,F,P,S, T, W, Y, V}. This vector can
equally be derived from the respective genetic
sequence by translation of the codons into amino
acids.

e Dosition-based nucleotide frequencies: Given a
genetic sequence, the frequencies of nucleotides in
the three codon positions yield a 12-dimensional
feature vector.

e GC content: The GC content is the proportion of C
and G in a sequence from the alphabet .

We compare the performance of the algorithm with
these nine different input feature sets. With respect to
the amount of information, the GC content is the most
primitive feature set. This one-dimensional signature is
frequently used for the detection of HGT [20,21] and
hence we use it as a base line to assess performance. It is
not provided as input to the one-class SVM. Instead, the
genes of a virus family are ranked by their GC content
and then a ranking is induced by their deviation from the
median GC content of the virus family.

In addition to the exploration of different input features,
we examined the use of linear regression on the GC con-
tent with each of these feature sets in advance of providing
them to the one-class SVM. As viruses typically have short
genomes and exhibit high mutation rates, this regres-
sion step, successfully applied in metagenomics [22], was
thought to reduce bias in the data. However, because the
data is standardized to zero mean and unit variance before
supplied to the SVM, linear regression of any feature set
yields the same solution.

Parameter selection

To choose values for the parameters v and y, we explore
a wide range of them. The aim is to achieve stability of
the ranking of the data points induced by the signed dis-
tances from the decision boundary. A stable result is not
necessarily correct but more trustworthy than a result that
sensitively varies under small disturbances. The parame-
ter v takes 1, 000 equidistant values in the interval (0, 1].
The parameter y is explored at 107°, 107>, 1074, 1073,
0.01, 0.1, 1, 10, 100, and (2D)~1, where D is the dimen-
sionality of the respective feature space. The latter value
for y is frequently used as a rule-of-thumb value for
SVMs with Gaussian kernel. The similarity of the ranked
lists, obtained for successive values of v, is measured by
Spearman’s rank correlation p [23].

Data sets
We consider all viral genes from ENA, the European
Nucleotide Archive [24], downloaded in July 2013. These
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data are clustered using CD-HIT [25] with a sequence
identity level of 95%. Representatives of each cluster,
grouped by their virus family, yield the data sets. The data
sets form the basis to derive feature sets presented as input
to the prediction algorithm.

From the initial data sets, simulated data sets for each
virus family are created using all genes of that family and
adding portion of artificial outliers chosen uniformly at
random from all viral genes not from this family such
that 5% of the genes in the artificially amended family
are outliers. These data with simulated outliers allows for
the use of measures of binary classification performance
during the evaluation. However it should be pointed out
that the actual outliers remain unrecognized in the data
and compete with the artificially added outliers. We did
not perform any comparison with proven events of HGT,
since no collection of such events exists for viruses.

Measure of performance

Area under curve (AUC) scores are used to evaluate the
performance in the simulated setting. AUC is defined as
the area under a receiver operator characteristics (ROC)
curve. The ROC curve for binary classification is a plot of
the true positive rate as a function of the false positive rate
when different cutoffs for the number of predicted atypi-
cal genes are considered. For the simulated data sets, the
upper 5% of the list are considered as predicted atypical
genes.

The performance of the prediction method was also
assessed by measuring the AUC scores when the labels are
inferred from BLAST searches [26] for each gene in the
result. Genes are considered atypical if they have at least
one bi-directional BLAST hit outside the viral family (i.e.
the hit is significant when searching with the sequence
of the gene from the viral family and from outside the
family), and the sequences of the two genes are similar
over 80% of the length of the family gene. As this labeling
can at most reveal a trend, additional literature search is
conducted for a number of genes to strengthen the analy-
sis. The BLAST search is executed on protein level using
BLAST version 2.2.25 with default parameters querying
the UniProt database [27].

Results and discussion

The expected result of the one-class SVM, given a fea-
ture set and parameters v and y, is a ranked list, sorted
from the most atypical gene to the most typical gene in the
respective virus family. Before analyzing the performance,
initial focus is on the selection of appropriate parameters
vandy.

Robustness of the prediction
The assessment of ranking stability is illustrated for Parti-
tiviridae and a feature set based on codon usage estimates
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(Figure 1). Each point depicts the average Spearman’s rank
correlation coefficient over the prediction result with the
neighboring values of v. A value of 1 indicates that the
ranking obtained with the current value of v is identical
to the ranking resulting from the preceding value of v and
the subsequent value of v.

For v > 0.8, the ranking remains invariant under
changes of v irrespective of the choice of y. The smaller
v is, the smaller the observed correlation between neigh-
boring parameter sets. Additionally, the stability depends
on y. For small values of y, the stability is generally better
than for large values of y. The prediction result obtained
with large values of y can be very sensitive to small devi-
ations in v. For some feature sets (not displayed), if the
value of y is large, there is not even a trend towards
increasing stability when v is large.

For all parameter sets and for all virus families, we
observe that y = (2D)7! yields a high stability over a
large range of v. This finding confirms that this rule of
thumb for the selection of y is a reasonable choice. Thus,
we refrain from conducting the subsequent evaluation for
multiple values of y and fix it to y = (2D)~.

The parameter v impacts the proportion of outliers we
expect to observe in the data. This proportion however
is unknown. The ranking stability analysis indicates that
assuming the proportion of outliers to be very low might
yield an unstable prediction result. Because we do not rely
on the binary labels from the one-class SVM result but
rather on the signed distances to the decision boundary,
we can fix v such that the ranking is stable irrespective of
assumptions on the actual number of alien genes.
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Figure 1 Ranking stability under varying v for different values of
y. Correlation between prediction results under varying v for
different values of y (corresponding to the different colors). The
prediction results originate from Partitiviridae using codon usage
estimates as feature set. Every point corresponds to the correlation
between the prediction result for one value of v and the prediction
result for the next value of v, averaged with the correlation between
the result for current value of v and the previous. The step size
between subsequent values of v is 0.001.
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To evaluate the prediction algorithm for the different
sets of input features and different SVM parameters we
establish a measure of success. The prediction of atypical
genes in a viral family is considered successful if the AUC
score exceeds 0.9 and semi-successful if it only exceeds 0.8
in the simulated data setting. The prediction for a family
is considered successful if success is reported for at least
one combination of feature set and parameters.

Values of v smaller than 0.1 yield less successes than
larger v (Figure 2). The semi-success rates are constantly
around 80%. Among the larger vs, there is no preference
for a specific value. We fix v = 0.2 for the subsequent
analysis.

Prediction quality on simulated data
The assessment of performance on simulated data shows
the quality of the established model.

From the ENA database [24] we obtain 93 virus fami-
lies with more than three genes recorded. For 83 of them,
our method is capable of identifying the alien genes with
AUC score larger than 0.8 in at least one set of features
(Figure 2). For 70 of the families the AUC scores are larger
than 0.9. The number of genes in the families ranges from
less than 100 to more than 10, 000 for Phycodnaviridae
and Flaviviridae. The family of Retroviridae is too large to
be processed as a whole and is split up taking a lower level
of taxonomy, the level of genus. On this level, the genus
Lentivirus still comprises more than 100, 000 genes from
which we sample only 25, 000 uniformly at random.

The large deviations in the number of genes per family
are the result of a bias in research intensity. The fam-
ily of Flaviviridae for example comprises viruses such as
Dengue virus, Yellow fever virus, Hepatitis C virus, and
Swine fever virus. These viruses are infectious to humans
or domestic animals and are therefore of particular inter-
est. The genus Lentivirus includes HIV which is subject
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Figure 2 Success rates of the one-class SVM for different values
of v. The proportion of successfully predicted families is depicted in
darkgray, the proportion of semi-successes in lightgray.
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of intensive research as it causes the acquired immunod-
eficiency syndrome (AIDS). Phycodnaviridae infect algae
and are probably so numerous in the database because of
metagenomic studies of water samples.

Comparing AUC scores obtained in all families for dif-
ferent feature sets we find indications of very good per-
formance. In particular in comparison with the primitive
prediction method based on GC content, the quality of
the approach becomes evident: The median AUC scores
are 0.59 for that method and between 0.82 and 0.92 for
the more sophisticated feature sets. Median scores above
0.9 are observed only for oligonucleotide frequencies
(Figure 3). Generally, the oligonucleotide frequencies of
length k > 2 appear to be the most preferable feature sets,
tetranucleotide frequencies being the best performing.

For completeness, we display also sample results
obtained using linear regression for the derivation of the
feature sets (first two columns of Figure 3). The median
score with these feature sets is 0.72, which is inferior to the
performance of feature sets without regression. The dif-
ference in performance explains by the fact that there are
de facto only two distinct dimensions as explained in the
previous section.

Comparison of the prediction results with the naive
labeling using BLAST
We have compared out prediction results with potential
HGT genes identified by BLAST [26]. The assumption
behind this is that if a HGT event is predicted correctly,
we may find a related gene in an organism outside the
immediate viral family. Thus, we label a gene as atypical
according to BLAST if there is at least one bi-directional
BLAST hit outside the virus family under consideration
with the similarity observed over at least 80% of the query
gene length. This labeling implies many shortcomings.
Besides biases from the fact that different organisms are
studied with different intensity, it does not differentiate
between hits that can occur due to gene transfer from
the particular family to another and those that occur due
to gene transfer into the family or that may be a signa-
ture of a common ancestry. While with this naive labeling,
all three cases are classified atypical, the prediction algo-
rithm is supposed to identify only the second case. The
observation of concordance between the prediction result
and the labeling derived from the BLAST searches, despite
these shortcomings, provides support, yet no proof, for
the established methodology. On the contrary, inconsis-
tency between the labeling and the prediction result does
not imply failure of the prediction algorithm. In any case,
the most valuable support, if at all, has to be provided by
extensive literature search.

Despite their effectiveness, BLAST searches become
infeasible for large virus families. Therefore, we restrict
this analysis to 22 families. Considering the distributions
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of scores from all these families together yields no indi-
cation of success for any of the feature sets. All median
scores are close to 0.5, the highest being 0.59 for the
tetranucleotide frequency feature set (Figure 4). Codon
usage-based feature sets produce second-largest AUC
scores of 0.55. Considering this together with the perfor-
mance results for the simulated data, we conclude that
codon usage-based tetranucleotide frequency feature sets
produce most reliable results. Overall, we do not observe
any significant correlation between the predictions of our
algorithm and the labeling inferred from BLAST. How-
ever, for some families, we observe the prediction result
and the labeling inferred from BLAST searches to be par-
tially in conjunction with each other, as manifested by
AUC scores much higher than 0.5. A few such examples
are discussed below.

Orthomyxoviridae
Many feature sets perform well for this family, as demon-
strated by the average AUC score of 0.79. Interestingly, the
GC content privedes very good agreement with BLAST-
based annotation, rendering an AUC score of 0.91.

The most prominent members of Orthomyxoviridae
are influenza viruses. They cause infectious diseases in

mammals and birds spreading in seasonal epidemics.
Orthomyxoviridae are viruses with single stranded anti-
sense RNA which implies that the nucleotide frequencies
might deviate from Chargaff’s rule [28,29]. The atypical
genes identified by both the labeling inferred from BLAST
searches and the one-class SVM exhibit nucleotide fre-
quencies in accordance with Chargaff’s rules while a large
proportion of genes, mostly from Influenzavirus A, show
opposing behavior in the frequencies of adenine and
thymine.

Influenzavirus A is the subject of intensive study, and its
genes constitute 95% of the genes of the Orthomyxoviri-
dae family in our data. For the one-class SVM approach, it
is possible that this imbalance influences the identification
of atypical genes. The BLAST algorithm however is inde-
pendent of statistical signatures of viral families and yields
a similar result: Atypical genes are found among genes
not from Influenzavirus A and typically have high GC
content. Of a total of 15 atypical genes identified by the
BLAST search, none are from Influenzavirus A. The high
evolutionary rate in the Influenza A virus attributed to
positive selection through the human immune system [30]
and a very narrow specialized set of its proteins can be
the reason why the horizontally transferred genes are not
accommodated by this virus.
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Figure 4 Boxplot of AUC scores between the one-class SVM prediction results and the BLAST search results on different feature sets. Only
22 families are taken into account. The horizontal line at 0.5 highlights the score expected in case of a random result.

Support for our method is provided by the iden-
tification of the Araguari virus partial glycoprotein
(ENA accession ABB55449.1), Dhori virus partial gly-
coprotein (CAA66028.1), Batken virus partial glycopro-
tein (CAA66030.1), and several partial glycoproteins
from Thogoto virus strains (AAL31456.1, AAL31461.1,
AAL31462.1) as atypical genes. These genes occur within
the top 100 of 3571 in the ranked list result when using the
tetranucleotide frequencies feature set. All these viruses
belong to the Thogotovirus genus. The Thogoto virus gly-
coprotein has been found to have resemblances to the
baculoviral glycoprotein GP64 indicating a possibility of
gene transfer [31].

Circoviridae

In Circoviridae we observe the AUC score to reach
0.72 for the tetranucleotide frequency feature set. Cir-
coviridae have a circular single-stranded DNA genome.
They are broadly distributed among vertebrates without
causing illnesses for most organisms. The BLAST hits
of the top ranked genes refer to a variety of species:
Chicken anemia virus partial protein VP2 (ACT66124.1)
is found to exhibit similarity to the RmuC-domain pro-
tein (CDB07518.1) from Odoribacter splanchnicus; and
a protein of unknown function from Duck circovirus

(AAZ07882.1) is similar to serine/threonine protein
kinase related protein (AHC15994.1) from Spirochaeta
sp. Furthermore, a number of replication-associated pro-
teins, including Rep (AEL28813.1) from Bat circovirus
ZS/Yunnan-China/2009, the putative Rep (AFH02742.1)
from Circoviridae batCV-SC703 are similar to a Rep-like
protein (AAR83499.1) of Canarypox virus, a dsSDNA virus.
The multiple cases of similarity between the Rep pro-
tein to proteins from unrelated viruses hint to a complex
history of this protein, which has been corroborated by
previous research: Meehan et al. hypothesize that Rep has
originated through recombination, combining gene seg-
ments from unrelated viruses [32]; and Gibbs et al. iden-
tified Rep-like genes by means of a database search and
speculate that these genes originated by multiple inter-
species recombinations as they are represented in viral,
plasmid, bacterial, and parasitic protozoan genomes [33].

Flaviviridae

For Flaviviridae, we observe an AUC score of 0.70 for
the position-based nucleotide frequencies feature set. Fla-
viviridae have a single-stranded sense RNA genome and
are often spread through ticks and mosquitoes. They are
subject of intense studies as they are infectious to humans
and domestic animals. The majority of Flaviviridae genes
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in ENA stems from Hepatitis C virus. A sub-population
of these genes, like Influenzavirus A genes in Orthomyx-
oviridae, exhibits strong deviations from Chargaff’s rule
in their nucleotide composition. The prediction algorithm
as well as the labeling based on the BLAST search iden-
tify atypical genes from Wang Thong virus (AAS16519.1)
and Culex flavivirus (BAH83691.1). The corresponding
non-viral genes are found in Asian tiger mosquito and
Yellowfever mosquito, likely hosts of these viruses. Thus
this represents most probably the inverse event of hori-
zontal gene transfer from virus into its host.

Hepadnaviridae

For Hepadnaviridae, the AUC scores reach 0.86 for rel-
ative codon usage and tetranucleotide frequencies fea-
ture sets, indicating good correlation between the labels
inferred from BLAST searches and the prediction result.
Hepadnaviridae have a reversely transcribed double-
stranded DNA genome that get integrated into the host
genome for transcription during their replication pro-
cess. Hepadnaviridae infect mammals and birds. All the
BLAST hits outside Hepadnaviridae can be explained by
the integration of the virus genome into the host. They
stem from a sequence analysis of hepatocellular carci-
noma in hepatitis B infected woodchuck [34] and from a
study on budgerigar genomes being infiltrated by hepad-
naviruses millions of years ago [35]. The BLAST search
in this case provides no information on the validity of the
SVM based prediction.

Given the average AUC scores around 0.5 for all exam-
ined families (Figure 4), the question rises whether the
SVM prediction and the BLAST search actually have a
reasonable overlap that allows for conclusions. At least
for Hepadnaviridae, and potentially also for other retro-
transcribing viruses, the labeling inferred from BLAST is
not informative and hence allows for no statement about
the prediction performance of the SVM.

Siphoviridae
For some virus families, AUC scores of at most 0.5 indi-
cate poor prediction results. Siphoviridae is one example
where scores below the performance of a random classi-
fication are observed. The reason for these scores is that
almost every gene from Siphoviridae yields BLAST hits
outside the family and thus, to attain a good score, the few
genes with no hits outside would need to be at the very
end of the ranked result and not somewhere in the mid-
dle. Our method however is tuned for the identification of
a minority of atypical genes and not a minority of typical
genes. The test with the BLAST search appears to be not
applicable in this case.

Siphoviridae are bacteriophages and can shuttle genes
between bacterial species. This mechanism, known as
transduction, is a common mechanism of horizontal gene
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transfer among bacteria. Therefore, it is not surprising
that many genes from Siphoviridae have bacterial coun-
terparts which are detected by the BLAST search.

This example shows that the prediction quality on real
data is hard to assess. Good or bad AUC scores in com-
parison with BLAST labeling are a sign neither of failure
nor of success of the prediction algorithm. They only asso-
ciate two labeling procedures and neither can be validated.
However, if there were a perfect validation strategy, it
would already solve the problem.

Comparison to other available methods
Machine learning techniques have been employed for the
identification of horizontal gene transfer events before:
specifically, composition-based statistics have been used
by Tsirigos and Rigoutsos [13] and Dufraigne et al. [36].
In both studies, statistics were collected from segments
identified by a sliding window over a genome of a single
species. Either tetramers in conjunction with distance-
based prediction [36], or complex compositional fea-
ture vectors and one-class SVMs [13] can be used. Our
approach bears similarity to both of these methods, but
works on the level of complete genes and viral families.
The details of the implementation of the SVM also dif-
fer: while we fix parameters beforehand and report the
ranking induced by the distances of each gene to the
decision hyperplane, Tsirigos and Rigoutsos estimate
the parameter v such that, in an artificial setting, the ratio
of recovered artificially inserted genes is maximized. As
this kind of selection is infeasible in a real setting, regions
are reported as a candidate for gene transfer only if they
were marked as atypical at a number of tested values
of v. For the sake of comparison, we have modified the
algorithm to use single species genomes and a sliding
window of the size coinciding with the respective study.
Tsirigos and Rigoutsos [13] report the prediction
of regions of atypical composition ranked from most
to least atypical in 106 viruses from the families of
Asfaviridae, Baculoviridae, Herpesviridae, Iridovoridae,
Nimaviridae, Nudiviridae, Phycodnaviridae, and Poxviri-
dae, and unclassified dsDNA viruses. We selected a rep-
resentative set of 25 viral strains, created a set of seg-
ments using the sliding window approach, and ranked
them using (i) the compositional statistics calculated for
the same set of segments, and (i) using statistics for the
whole family this virus belongs to (only tetranucleotide
frequencies were used, since they were found to perform
best in our previous experiments). The comparison with
the ranking from [13] shows overall good agreement of
the results, although it varies largely among the strains
(Figure 5). The curves represent the fraction of the shared
segments in a top fraction of the two lists: one from [13],
and the other calculated with our method. Interestingly,
the usage of family-based statistics appears to compensate
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for a more simplistic sequence representation (we use only ~ This can make our method potentially better suited for
tetramers, whereas Tsirigos and Rigoutsos [13] use k-mers ~ species with small genome size and skewed nucleotide
of orders up to 8 with wildcards for certain positions), composition, e.g. RNA viruses or retroviruses.

as reflected by AUCs that are significantly higher in this Of the 25 representative viruses, the best agree-
case (Figure 6, p-value 0.09 in one-sided Wilcoxon test). ment with the results of [13] is observed for Bovine
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papular stomatitis virus (AUC 0.78), Chimpanzee
cytomegalovirus, and Invertebrate iridescent virus 6
(AUC = 0.74 in both cases). It is plausible that Bovine
papular stomatitis virus harbors genes that were horizon-
tally transferred to it from its host [37]. The possibility
of gene transfer from the host into Iridoviridae (the fam-
ily containing Invertebrate iridescent virus 6) has also
been discussed in the literature [38]. We do not have spe-
cific information for Chimpanzee cytomegalovirus, but
for Human cytomegalovirus, four genes are pointed out
as GPCR homologs and thus having potentially eukary-
otic origin: UL33, UL78, US12 and US21 [13]. In all of
them except US21, we also identify atypical segments with
a rank within top 20% using family-based statistics.

In another study, 22 bacterial genomes were analyzed
to predict the events of HGT using tetranucleotide statis-
tics [36], which makes it also similar to our method. Again,
we mimicked this approaches by considering segments
of genomic sequence of the corresponding species, and
using all genome assemblies from NCBI for each species
(instead of viral families) as the source for the tetranu-
cleotide frequency statistics. For 19 of the 22 species we
were able to obtain results within reasonable time, and
calculated the rank of the first segment ovelapping with
a HGT segment reported by [36] (Figure 7). In all cases
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except A. pernix the median of these ranks lies within
top 10%, which indicates a very good agreement of our
methods with that of [36], although our method was not
specifically trained to make predictions in Bacteria.

Conclusions
The presented one-class SVM model convincingly identi-
fies potential examples of HGT in cases when they were
artificially added to a family but in many cases does not
agree well with labels derived by BLAST. Given statis-
tics about the composition of a viral family, the method
robustly identifies the genes that are most atypical for the
family. The model can provide no guarantee for the iden-
tified genes to be horizontally transferred. Its prediction
is based solely on statistics using no external information
to attain additional evidence for or against the result. The
interpretation of the result remains to be derived man-
ually. Compared to phylogenetic analysis for HGT inde-
tification, out method presents the following advantages:
(¢) it can identify HGT events without any assumptions
about the source species (which might have been not dis-
covered yet); and (ii) it can operate with much larger sets
of genes than even the simplest sequence comparison.
We have specifically tested our algorithm only on real
virus sequence data. Unlike artificial data, these data have
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shortcomings. Aside from issues of correctness and com-
pleteness of the gene records, statistical biases are what
makes prediction very difficult. While for some viruses
there are very few genes in the database, others are the
subject of intensive study and thousands of gene records
exist. For a virus family of which one member is highly
over-represented, the prediction algorithm will regard the
genes of this member as typical for the whole family. This
bias could be eliminated by sampling down the number of
genes per species to that of the species with least genes in
the family. The downside of this procedure is a possible
loss of information if the that number is very low.

Due to the use of real data, not only the assessment of
performance in the real setting is difficult but also the sim-
ulated data sets are affected by shortcomings in the data as
they are constructed from these data. The simulated atyp-
ical genes added to each family are taken from the set of
all other viral genes. They are distributed uniformly with
respect to the total number of genes other than from the
family of interest. Hence, it is biased towards well studied
families with many gene records in the database. For this
reason, it is possible that the observed performance for
families with properties similar to large families is under-
estimated while the performance established for families
with properties very different from the characteristics of
large families is overly optimistic. It is also evident that
we cannot expect to observe perfect prediction perfor-
mance on the simulated data as the true unlabeled outliers
remain in the data sets and should be identified by the
prediction algorithm just like the artificial atypical genes.

For the evaluation of performance on the real data
sets, the comparison to the result of BLAST searches is
not a perfect strategy. As the one-class SVM approach,
the BLAST result is affected by the presence or absence
of information as well, yet with different consequences:
BLAST does not construct a statistical model for viral
families but summarizes which other genes similar to the
one queried exist in the UniProt database. If the gene of
interest is from a well studied group of related families,
very good matches will be found among the genes of com-
mon ancestry, occluding matches from other families as
we only consider the first 500 hits. In case of gene transfer
of a viral gene not into but out of the considered family,
this gene is labeled atypical irrespective of its statistical
features.

Despite these difficulties, we observe overall reason-
able recovery of simulated atypical genes in the data sets
and were able to identify genes proposed to be horizon-
tally transferred in the literature. We also note that the
presented methodology can be directly applied for the
identification of HGT in cellular organisms as well.
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