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Abstract
Innovative technology and techniques have revolutionized minimally invasive spine surgery (MIS) within the past decade. The
introduction of navigation and image-guided surgery has greatly affected spinal surgery and will continue to make surgery safer and
more efficient. Eventually, it is conceivable that fluoroscopy will be completely replaced with image guidance. These advance-
ments, among others such as robotics and virtual and augmented reality technology, will continue to drive the value of
3-dimensional navigation in MIS. In this review, we cover pertinent features of navigation in MIS and explore their evolution over
time. Moreover, we aim to discuss the key features germane to surgical advancement, including technique and technology
development, accuracy, overall health care costs, operating room time efficiency, and radiation exposure.
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Introduction

Minimally invasive spine surgery (MIS) has witnessed rapid

development over the past 2 decades concomitant with

advances in navigation techniques and technology. These

advances have enabled surgeons to achieve the same operative

goal of instrumented stabilization and arthrodesis in patients

that would otherwise require traditional open approaches with

freehand screw placement. While traditional approaches are

still indicated in a number of different scenarios, MIS alterna-

tives have resulted in decreased intraoperative blood loss, inpa-

tient hospital stays, and postoperative narcotic use while

resulting in comparable outcomes.1,2

In traditional open surgery, a midline incision is utilized

with subperiosteal dissection to expose the relevant landmarks

for pedicle screw entry based on the segment in the spine being

instrumented. For thoracic and lumbar pedicle screws, the

transverse processes and superior articular facets must be

exposed or palpable. Screw trajectory can be assessed based

on known anatomic variation or the angular relation to the

spinous processes. However, with MIS approaches utilizing

percutaneous pedicle screw placement, accuracy relies on

imaging-based landmarks, which are not easily visualized or

palpable. Furthermore, given the lack of these landmarks,

screw orientation can be drastically different than what would

be expected, even by experienced surgeons, by minor altera-

tions in patient positioning or from friction along the screw

shaft and insertion device from skin, fascia, or muscle. While

open approaches may provide an advantage in this respect,

these advantages can be negated in patients with pathologic

anatomy due to severe degenerative disease, congenital

abnormalities, trauma, neoplastic involvement, and extensive

rotary deformities.

Initial techniques relied on anteroposterior (AP)/lateral

fluoroscopy with the use of K-wires for MIS. Percutaneous

placement of lumbar pedicle screws were the first studies
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described utilizing this approach. This relied on new generation

instrumentation, including extension sleeves for remote manip-

ulation of polyaxial screw head and rod insertion devices.3-5

This technique was eventually adopted to thoracic spine stabi-

lization, which carried higher risk given the presence of spinal

cord and smaller pedicles. Improvements in technology

advanced to 2-dimensional (2D)-based systems that had AP

and lateral X-rays loaded into a computer navigation system

(with or without K-wires), and finally to 3D-based navigation

with intraoperative or preoperative imaging (Figure 1). Navi-

gation software programming and applications, developed by

various companies, have been key to developing virtual recon-

structions with these intraoperative scans that can then be used

for real-time navigation guidance

In this review, we cover pertinent features of navigation in

MIS and explore their evolution over time. Newer technologies

such as robotics and augmented reality are also increasingly

being utilized and developed with MIS techniques. Moreover,

we aim to discuss the key features germane to surgical

advancement, including technique and technology develop-

ment, accuracy, overall health care costs, operating room time

efficiency, and radiation exposure (Table 1).

Fluoroscopic Guidance Without Navigation

C-arm fluoroscopy is the most commonly used modality for

image-guided percutaneous pedicle screw placement. Initial

AP images should achieve the following prior to instrumenta-

tion: even endplates of the vertebral body of interest, midline

spinous process, and well-defined circular or ovoid pedicles

that are relatively symmetric in the context of the vertebral

body. Once these anatomic constraints are acceptable, sequen-

tial use of Jamshidi needles docked on the lateral margin of the

pedicle on AP view are used, and directly in line with the

sagittal midline of the pedicle on lateral shots. A Jamshidi

needle is then used and carefully advanced until at or just

passed the midpoint of the pedicle on AP views and into the

vertebral body on lateral X-rays (Figure 2). At this point, can-

nulated instruments, including pedicle probe, tap, and finally

screw are placed along the K-wire. Pedicle breaches using this

technique can be readily apparent on close examination of

serial X-rays.

While an accurate method, there are a number of limitations

with AP and lateral fluoroscopic-guided placement of thoraco-

lumbar pedicle screw instrumentation using traditional K-wire

guidance techniques. First, multiple X-rays in both the lateral

and AP positions are required to ensure that the alignment of

the spine is correct for accurate instrument insertion. This

involves adjusting the C-rotation, tilt, and wag of the C-arm

machine to achieve the proper view. Subsequent X-rays are

usually taken in both planes with passage of the different can-

nulated instruments, to ensure there is no unintentional K-wire

migration and to confirm the depth of instrumentation into the

vertebral body prior to and after final screw placement. Second,

the increased frequency of X-rays taken results in increased

radiation exposure. Tian et al6 performed a meta-analysis of

MIS to open freehand techniques and found that standard AP

and lateral fluoroscopic guidance resulted in twice as long

Figure 1. Navigation techniques and technologies.

Table 1. Relative Comparison of Operative Factors in 2-Dimensional
Versus 3-Dimensional Minimally Invasive Spine Surgery.

Factor 2D Navigation 3D Navigation

Upfront economic burden þ þþþ
Surgical revision rates þþþ þ
Pedicle screw accuracy þ þþþ
Operative time þþ þ
Flexibility of utilization þ þþþ
Radiation exposure to patient þþ þþþ
Radiation exposure to staff þþ 0
Overall economic health care burden þþþ þþ
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X-ray exposure time. In some situations, the borders of the

pedicle are not readily apparent or can overlap with the superior

articulating facet, making the initial docking with the Jamshidi

needle inaccurate. Subsequent advancement of the K-wire in

these situations can result in inadvertent lateral or worse, med-

ial breaches, which can injure the thecal sac and neural struc-

tures. Furthermore, unintentional advancement of K-wires

while passing cannulated instruments back and forth or in situa-

tions of osteoporotic bone can have catastrophic results. Dural

lacerations, bladder and abdominal viscera injury, retroperito-

neal hematoma, and cardiac tamponade have been reported.7,8

Last, K-wire fractures may result in retained hardware, which

then presents a contraindication for placing a pedicle screw at

that level/side due to the risk of advancing the retained frag-

ment anteriorly out of the vertebral body.9

Two-Dimensional Navigation

Given the limitations presented by radiation exposure with

conventional AP and lateral fluoroscopic guidance, 2D com-

puter guidance was the next step in navigation development.

These techniques relied on the placement of a fixed array to the

patient (iliac crest or spinous process) and devices that were

then calibrated to a tracking array including awl, tap, and

screws as necessary, with on-screen image guidance (Figure 3).

Kim et al10 initially studied various factors using 2D computer

navigation to fluoroscopy for MIS–transforaminal interbody

fusion (TLIF) procedures in cadavers and real patients. Despite

an increase in setup time attributed to the novelty of devices

used, there was near complete elimination of detectable radia-

tion exposure to the patient and staff.10 Njoku et al11 utilized

the 2D Kick system (BrainLab AG, Munich, Germany)

for percutaneous stabilization of a traumatic burst fracture

(Figure 3), and furthermore explored its use in developing

countries that are technologically limited in the present day,

such as Tanzania.11

Three-Dimensional Navigation

A number of 3D navigation platforms have been developed

simultaneously with software that has drastically altered the

workflow and benefits of MIS techniques, particularly for

placement of thoracolumbar instrumentation. These studies

have shown increased accuracy and lower likelihood of

unsafe breaches of the pedicle cortical wall compared with

fluoroscopically guided placement of pedicle screws.12,13

Figure 2. Anteroposterior/lateral fluoroscopic-guidance with K-wires for pedicle screw placement.
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Among the most commonly used of these systems include

the intraoperative computed tomography (CT)–based

Airo (Mobius Imaging, Shirley, MA, USA) with navigation

software (Brainlab, Munich, Germany), which is a fan

beam-based CT system. There are also cone beam–based

CT platforms such as the O-arm (open C-arm based system

that goes around the patient then closes to a CT-based closed

configuration) with associated Stealth Station (Medtronic,

Minneapolis, MN, USA), and the C-arm based Ziehm Vision

FD Vario 3-D with open navigation software integration

capabilities (Ziehm Imaging, Orlando, FL, USA)14 (Figure 4).

These machines rely on a stationary array that is attached to

the patients to serve as a reference. Typically for lumbosacral

fixation, Steinmann pins placed into the iliac crest are used, or

conversely for thoracic or thoracolumbar junction fixation,

spinous process clamps can be used. For cervical pathologies,

there are also arrays available that can be attached directly to

pinned skull clamps.

These imaging platforms acquire a 3D fluoroscopic or

CT-based reconstruction of the patient’s spine over the region

of interest (Figure 5). Once the image has been acquired, it is

imperative that the references array is not manipulated or moved

as this can alter accuracy of subsequently used navigated instru-

ments. Star arrays can be attached to a number of modified

instruments, including a drill guide, pedicle probe, tap, and

finally screw shaft. Calibration of all instruments is required

prior to use to ensure accuracy. While 2D navigation techniques

have been described without the use of K-wires, the definitive

elimination of K-wires and associated complications is achieved

by 3D navigation techniques. To this end, Shin et al15 described

the use of a navigated guide through which drilling, tapping, and

screw insertion could be performed without the complications

related to conventional 2D navigated screw insertion with K-

wires. Furthermore, Nottmeier et al16 used 3D guidance without

K-wires using tubular retractors to isolate the initial pilot hole

and docking site for the pedicle probe and had no pedicle

Figure 4. Intraoperative computed tomography (CT)–based 3-dimensional navigation technology systems: (A) fan beam CT, (B, C) cone beam
CT.

Figure 3. Two-dimensional fluoroscopic-based K-wireless navigation for pedicle screw placement with the Brainlab Kick system.
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breaches in 15 patients while exposing the surgeon and operating

room staff to minimal raditation.16

Accuracy

Reports vary in the accuracy of free hand pedicle screws placed in

the thoracolumbar spine based on the indication for surgery

(trauma, degenerative disease, scoliosis) and also by the particular

definition of “accuracy” used by the study. Various breach clas-

sifications systems and definitions have been described, which

makes direct comparison between techniques difficult to perform.

Studies from the 1990s demonstrated overall accuracy rates rang-

ing from 72% to 75% in large series.17,18 More recent studies

report accuracy ranging from 88% to 94% using the freehand

technique.19-22 Mason et al23 performed a study comparing the

accuracy of pedicle screws placed using conventional fluoro-

scopy, 2D navigation, and 3D navigation systems, and found

accuracy rates of 68%, 84%, and 95.5%, respectively. Fan

et al24 compared conventional fluoroscopy to O-arm guided pedi-

cle screw placement and found an improvement in accuracy rates

from 78% to 90%. Accuracy with 3D navigation is 91% using first

generation fluoroscopy-based cone beam CT navigation

technologies in the setting of MIS TLIFs.25 The same group found

an increase in pedicle screw placement accuracy to 98.6% with

the use of new generation intraoperative CT (iCT)–based (fan

beam CT) guidance given the improvement in image resolution

and surgical team workflow.26 Lasron et al27 used CT navigation

guidance for congenital spine deformities, which is a notoriously

high-risk patient population due to abnormal pathology and dys-

morphic pedicles, and were able to achieve 99.3% accuracy with

pedicle screw placement. Collectively, these studies suggest that

the evolution to 3D navigation has been vital for improving screw

placement accuracy. Even in studies which there are a small

percentage of screws with pedicle breaches, the rates of clinically

relevant misplaced screws or those that require revision surgery is

exceedingly low. Indeed, Bydon et al28 performed one of the

largest series of iCT-based navigation guidance for the placement

of screws at any level of the spine and found that only 0.99%
required reoperations due to undetected misplaced screws.

Radiation Exposure

Radiation exposure with CT-based 3D navigation systems were

initially controversial, given the exponential increase in

Figure 5. Intraoperative computed tomography (iCT)–based 3-dimensional reconstruction and freehand navigation for lumbar pedicle screw
trajectory/size planning and placement.
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radiation exposure compared with standard fluoroscopy. For

example, Kingler et al29 performed a study specifically looking

at eye lens radiation exposure comparing the Iso-C machine

and the Ziehm Vision FD Vario 3D and found nearly a 2-fold

increase with the Ziehm machine during lumbar 3D scans (11.2

and 22.5 mSv, respectively). However, a number of important

developments over time have quelled these fears. First, CT-

based 3D navigation systems require a single upfront registra-

tion scan in order for a case to be performed. During this initial

scan, all operating room personnel and surgeons exit the room

and can remain behind lead shields in lead-lined substerile

rooms, essentially eliminating radiation exposure to all individ-

uals except the patient.

For the Airo machine, the effective dose of radiation given

per scan for patients ranges from 5.5 to 7.4 mSv per scan based

on patient weight.30 Given that a postinstrumentation scan is also

usually performed to confirm accurate screw placement, the

effective average radiation dose to the patient is 13.4 mSv per

case and nearly 0 mSv to surgeon and operating room staff.

Furthermore, the Airo machine allows graded radiation exposure

settings, including 25%, 50%, 75% of typical radiation exposure

from a CT scan. These reduced radiation settings must be

balanced with poorer resolution images, however, which is par-

ticularly limiting in obese patients or those with hardware given

increased streak artifact. The O-arm similarly has radiation

exposure equivalent of 9 mSv of radiation per scan, which is

half of the radiation dose as a traditional 64 multisclice CT

scanner.31-33 Other studies have reported doses up to 31 mSv

when 3 scans or less are performed during a procedure.34

Economics

Two-dimensional navigation requires basic C-arm fluoroscopy

and additional instruments, including K-wires, Jamshidi nee-

dles, and computer navigation software station when used.

However, 3D navigation systems require far greater costs for

acquisition and implementation. First- and second-generation

3D fluoroscopy-based cone beam CT machines (including the

Orbic 3D, O-arm, and Ziehm RFD 3D) range in costs from

$300 000 to $600 000.35 Intraoperative CT scanners (eg, Airo)

can cost up to $1.2 million.35 These costs must be coupled with

navigation systems software and in-hospital personnel, which

can add an additional $500 000 to $700 000 to initial costs.35

Varying from geographic region and institution to institution,

there may be additional costs associated with maintenance and

upgrades of these products. However, the cost benefits are seen

over a long-term basis in the sense of lower likelihood of mis-

placed screws, revision surgery, readmissions, operative time,

and hospital length of stay.36 Early studies by Zausinger et al37

found a decrease in rates of revision surgeries using navigation-

guidance compared with fluoroscopy from 4.4% to 0%, with an

average cost saving per revision surgery of just over $27 000.

Another study performed by Watkins et al38 utilized the

Arcadis Orbic 3D (Siemens Medical, Munich, Germany) and

NaviVision (BrainLAB AG, Munich, Germany) image-guided

system for the placement of thoracolumbar screws in 100

patients compared to historical control group of 100 patients

who had screws placed using fluoroscopy and found a reduc-

tion in revision surgeries from 3% to 0%, with the estimated

cost savings of revision surgery to the institution of almost

$24 000.

Another important factor in determining the overall benefits

of health care economics leveraging 3D navigation lies in the

operating room utilization time. Specifically, this refers to the

time it takes to complete the actual operation excluding anes-

thetic induction and emergence. Sasso et al39 used computer-

navigation guidance for placement of lumbosacral pedicle

screws and found this group to be 22 minutes faster per case

over conventional fluoroscopic-guidance, even when factoring

in the learning curve of the surgeon and staff. Houten et al40

determined that using O-arm navigation guidance resulted in

operating room utilization time savings of 21 minutes for

single-level surgeries. Surveys of hospitals have demonstrated

ranges in operating room cost short of surgeon fee, anesthesia,

and equipment to range from $62 to $80 per minute based on

the level of complexity.41 With a potential savings of $1760 per

case, the annual savings from shorter operating times at high-

volume centers due to the use of 3D navigation technology in

MIS can easily become profitable, essentially “buying-back” or

exceeding the upfront purchasing costs within 1 year of use.

Concept of 3D “Total Navigation”

The “Total Navigation” concept refers to the newest iteration

of 3D navigation-guided spinal instrumentation in which there

is complete elimination of fluoroscopy for device implants that

were typically guided by X-rays even when computer naviga-

tion guidance was utilized for screw placement. More specifi-

cally, this refers to interbody cage implants placed through

lateral or transforaminal routes. In these scenarios, cage mea-

surements can be made before insertion and followed through

navigation to the appropriate depth and location relative to the

vertebral bodies. For transpsoas interbody fusion with the

patients positioned in the lateral position, this is particularly

advantageous. The navigation array can be firmly implanted

along the lateral margin of the iliac crest (Figure 6A). Once

dilators and retractors have been localized over the interbody

space of interest, 3D navigation guidance can be used for

implanting the cage to the appropriate depth (Figure 6B).

Moreover, when posterior pedicle screw stabilization is also

indicated, the guidance system can also be used for pedicle

screw placement while still in the lateral position (Figure 6B

and C). This saves the staff the second stage of repositioning

the patient, which adds to the operating room utilization time

and furthermore presents an opportunity for unintended anes-

thetic complications related to turning prone from the lateral

position frequently onto a different operating table type (eg,

open Jackson). During TLIF, the cage size and position can be

performed seamlessly after placing pedicle screws and per-

forming the decompression, using a single registration scan

(Figure 7). Recently, our group has also adopted 3D navigation

techniques for the implantation of percutaneous cervical

Hussain et al 27S



interfacet joint cages (DTRAX Cervical Cage, Providence

Medical Technology; Lafayette, CA, USA). This severs an

alternative treatment options for patients requiring posterior

arthrodesis who otherwise have medical comorbidities that

make them suboptimal candidates for traditional open lateral

mass screw fixation (Figure 8).

Robotics

The arrival of navigation for pedicle screw placement and other

instrumentation implantation has revolutionized the safety and

efficiency of MIS surgery. Future technological development

will continue to build upon these advances. Robotic surgery is

Figure 7. Intraoperative computed tomography (iCT) 3-dimensional “Total Navigation” for minimally invasive surgery (MIS) transforaminal
lumbar interbody fusion (TLIF) with interbody cage size and trajectory planning and freehand tracking.

Figure 6. Intraoperative computed tomography (iCT) 3-dimensional “Total Navigation” for single lateral position transpsoas surgery. (A)
Lateral cage placement with 3D navigation. (B) Pedicle screw placement in lateral position. (C) Tubular direct decompression in lateral position.
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considered a special application of 3D navigation and is the

newest iteration of navigation-based systems, which are

coupled with existing software systems and array-based instru-

ments. Floor-based (eg, MazorX, Medtronic, Minneapolis,

MN, USA) and table-based systems (eg, Globus Excelsius

GPS, Globus Medical, Audubon, PA, USA) (Figure 9) have

already faced similar hurdles as iCT 3D navigation systems

faced in their infancy, in the sense that they require increase

set up time, personnel training, and upfront costs (up to $1.5

million). However, very accurate instrumentation placement can

be achieved, with recent reports demonstrating >95% accuracy

and negligible increase in operating room times as learning

curves are overcome.42-44 Menger et al45 reported a 1-year expe-

rience with robotic spine surgery at a high volume academic

center and found time savings of 3.4 minutes per level instru-

mented translating to $5700 in annual savings, and improved

screw accuracy that wound have avoided 9.5 revisions with

resultant savings of $314661. When also accounting for patients

Figure 8. Example of intraoperative computed tomography (iCT) 3-dimensional navigation-based placement of percutaneous interfacet joint
cages for posterior cervical spine arthrodesis.

Figure 9. Examples of spinal surgical robots: (left) Globus Excelsius and (right) Mazor X.
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that would have required open surgery, a reduction in infection,

and reduction in hospital admissions days, conservative esti-

mates of $608546/year dollars were demonstrated with the use

of robotics.45 The main disadvantage of robotic navigation how-

ever is that it is a passive-imaging based system that does not

allow for active navigation. It requires preoperative scans and

screw trajectories, in contrast to intraoperatively acquired ima-

ging used by the systems mentioned previously. For example, it

does not allow for intraoperative identification of anatomy and

pathology and cage placement, which is typically required for

3D total navigation in MIS TLIF procedures. Therefore, next

generations of robotic systems will aim to combine passive

robotic navigation with active 3D image guidance.

Augmented and Virtual Reality

Augmented and virtual reality systems are also gaining traction

with recent technology development ventures, similar to as

they have already done in other sectors such as the gaming,

aeronautics, and military industries. Virtual reality (VR) refers

to the development of a lifelike surface and volume 3D recon-

struction that can be oriented or manipulated in any direction.

Understanding the relationship of spinal pathology to neuro-

vascular structures, as well as for preoperative planning of

optimal approach has proven to be invaluable from an educa-

tional and preparatory standpoint. Archavlis et al46 utilized

preoperative VR technology for patients requiring thoracic

transpedicular corpectomies. They were able to determine the

degree of bone removal required, the distance between the

pedicle and the spinal cord, and estimated cage implant diam-

eter and positioning, which resulted in no postoperative compl-

ciations.46 Gasco et al47 found a 53% reduction in lumbar

pedicle screw placement errors in a group of trainees that had

previously undergone VR simulation compared with a group

that had just visual and verbal instruction. Likewise, Gottschalk

et al48 found progressive improvement and accuracy in cervical

Figure 10. Example of augmented reality–based 3-dimensional reconstruction of the lumbar spine. (A) Preoperative magnetic resonance
imaging. (B) Example of approach planning for paracentral disc herniation (red), with relative location to intervertebral disc (yellow) and the
synovial cyst (blue). (C) Approach planning for synovial cyst resection.

Figure 11. Example of an S1-2 intradural schwannoma resected through a minimally invasive approach using a tubular retractor with augmented
reality (AR). Even prior to durotomy, the outline of the tumor is denoted by the blue line. Once the durotomy is made, tumor resection is guided
by internal debulking working toward the borders visualized through AR. After excision, the remaining space can be explored using the blue AR
outline as a perimeter to inspect for confirmation of gross total resection.
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lateral mass screw placement in groups of residents that had

training with VR simulators over a control group with tradi-

tional visual/verbal instruction.

Augmented reality (AR) is similar to VR in the sense that it

aims to overlay virtual bony structures and preplanned screw

trajectories on patients in the setting of hybrid operating rooms

that enable real-time feedback of all instruments in space and

also in relation to anatomical structures.49 For example, her-

niated discs and synovial cysts can be clearly differentiated

from surround neural tissue and bony landmarks by color, and

allow for the optimal trajectory and laminotomy site to reach the

pathology (Figure 10A and B). Intraoperatively through tubular

retractors, AR allows for the identification of the pars, pedicle,

and disc even when they are not in the exact field of view, which

allows the surgeon to perform maneuvers for resection of tissue

or bone safer and more confidently. We have also recently used

AR for resection of intradural tumors (Figure 11), and further

applications may be extended to intramedullary spinal cord

tumors. These technologies may also leverage lens or goggle-

based visualization,50 allowing the surgeon to focus on the task

at hand without having to refer back and forth between naviga-

tion screens and the patient. Studies are ongoing leveraging AR

technology in live patients, assessing for operating room design,

workflow, image acquisition, software planning, radiation expo-

sure, and navigated instrumentation.51-54

Conclusion

The introduction of navigation and image-guided surgery has

greatly affected spinal surgery and will continue to make sur-

gery safer and more efficient. Eventually, it is conceivable that

fluoroscopy will be completely replaced with image guidance.

These advancements, among others such as robotics and virtual

and augmented reality technology, will continue to drive the

value of 3D navigation in MIS.
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