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Summary

Existing models to explain human psychophysics or neural responses are typically designed for a 

specific stimulus type and often fail for other stimuli. The ultimate goal for a neural model is to 

simulate responses to many stimuli, which may provide better insights into neural mechanisms. 

We tested the ability of modified same-frequency inhibition-excitation models for inferior 

colliculus neurons to simulate individual neuron responses to both amplitude-modulated sounds 

and tone-in-noise stimuli. Modifications to the model were guided by receptive fields computed 

with 2nd-order Wiener kernel analysis. This approach successfully simulated many individual 

neurons’ responses to different types of stimuli. Other neurons suggest limitations and future 

directions for modeling efforts.

1. Introduction

The inferior colliculus (IC) is a critical center in the auditory system – all ascending 

pathways converge in the IC, en route to the thalamus and cortex [1]. Neurons in the IC are 

rate-tuned to sinusoidally amplitude-modulated (AM) sounds, as described by modulation 

transfer functions (MTFs, discharge rates vs. AM frequency). IC neurons with band-

enhanced (BE) MTFs have increased rates when their neural inputs contain fluctuations near 

the best modulation frequency (BMF); those with band-suppressed (BS) MTFs have 

decreased rates for a range of fluctuation frequencies.

Adding a tone to narrowband Gaussian noise flattens the stimulus envelope [2], as reflected 

in peripheral responses [3]. Therefore, in response to tone-in-noise (TIN) stimuli, band-

enhanced IC neurons are expected to have decreasing response rates with addition of a tone, 

and band-suppressed IC neurons are expected to have increasing rates. These predicted 

changes in rate in response to TIN stimuli based on MTF types are consistent with neural 

responses of many BE and BS neurons, but not all [4]. Computational models may provide 

insights into these complex neural responses.
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Many existing models have been developed to explain human psychophysical results and 

responses of different auditory neurons. These models are usually based on a single stimulus 

type; however, in general the same neurons respond to many different stimulus types. 

Attempting to simulate neural responses to different stimulus types with one model will 

better explain how single neurons function and provide better population simulations in the 

future. This study was an initial step in this direction. The same-frequency inhibition-

excitation (SFIE) model has previously been shown to simulate IC responses to AM sounds 

at different modulation frequencies for both BE and BS MTF shapes [5, 6]. We generalized 

the SFIE model by varying the frequency tuning of neural inputs, input delays, and the 

number of inputs to match the response characteristics of single neurons. These 

modifications were guided by the neuron’s receptive field obtained from the Fourier 

transform of the 2nd-order Wiener kernel. Each neuron-specific model was then tested for its 

ability to simulate the neuron’s responses to AM stimuli, TIN stimuli, and white noise. For 

this initial study, the inputs to the model were provided by an AN model for cat [7], as a 

detailed model for the rabbit periphery is not available.

2. Methods

2.1. Physiological methods

Extracellular recordings were made with tetrodes in the IC of awake Dutch-belted rabbits 

and sorted offline to isolate single units. The current study focused on twenty neurons for 

which the pattern of excitation and inhibition in the receptive field (RF) could be readily 

used to specify the model structure and parameters (see below).

Detailed physiological methods are described in Carney et al. [8]. Briefly, neural responses 

to pure tones from 250Hz to 20kHz were recorded to determine characteristic frequency 

(CF). Neural responses to sinusoidal AM noise and tones, TIN stimuli, and long-duration 

white noises were recorded. AM tones had carrier frequencies at CF, modulation frequencies 

from 2 to 350Hz (for low CFs) or 1024Hz (for high CF neurons) and were presented at 70dB 

SPL. AM wideband noise (0.1–10kHz) had modulation frequencies from 2 to 350Hz and 

was presented at a spectrum level of 30dB SPL. All AM stimuli had 1-sec durations. TIN 

stimuli had a tone near CF and 1/3-octave bands of noise centered near CF, with 0.3-sec 

durations. Overall noise level for TIN stimuli varied from 35 to 75dB SPL in 10-dB steps; 

tones were presented at signal-to-noise ratios (SNRs) ranging from −12dB to 8dB. White 

noises (0.1–20kHz) were 2-sec in duration, presented at 65dB SPL.

Average discharge rates were computed for responses to AM sounds and TIN stimuli. 

Second-order Wiener kernels were calculated by multiplying the instantaneous spike rates 

and the outer product of time-reversed pre-spike stimulus segments [9] (Figure 1). The 1-D 

Fourier transform of the kernel provides an estimate of the neuron’s RF. Excitation and 

inhibition in the RF can be identified with singular value decomposition [9]. Smoothing and 

peak-finding algorithms were applied to determine the center frequency and latency of the 

excitation and inhibition. Second-order Wiener-kernel derived RFs are an alternative to 

spectrotemporal RFs [10, 11].
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2.2. Modeling methods

The original SFIE model is comprised of a model of an auditory-nerve (AN) fiber [7], 

brainstem (cochlear nucleus, CN) and IC neurons [5, 6]. The CN model always receives 

excitatory and delayed inhibitory inputs from a single AN model and, therefore, has the 

same CF as the AN model. The IC neurons in the SFIE model have one excitatory and one 

delayed inhibitory input. Here, we generalized the SFIE model by removing restrictions on 

the CFs and numbers of excitatory and inhibitory inputs (Figure 2). Relative timing between 

the first strong excitation frequency (fexc1) and other excitation or inhibition frequencies 

(fexc2, finh1 and in some cases finh2) were identified from the RF.

Latencies based on the RF were used for all modified IE models. Four variations of the 

model were considered: a) one excitatory and one inhibitory input with the same CF; b) one 

excitatory and one inhibitory input with different CFs, based on the RF; c) a second 

inhibitory input, with CF matched to the excitatory input, was added to b); and d) up to two 

excitatory and two inhibitory inputs with CFs selected based on the RF. Responses were also 

simulated with the original SFIE model as a reference. The strength of the inhibitory (strinh) 

and second excitatory (strexc2, when present) inputs to the IC were adjusted relative to the 

strongest excitatory input (strexc) based on the number of excitatory and inhibitory inputs: 

for modifications a) and b), strinh = 1.3; for c), strinh = 0.8 (both inhibitory inputs); for d), 

strexc = 1, strinh = 1.3 when two excitatory and inhibitory inputs were used; strexc1 = 1, 

strexc2 = 0.8, strinh = 2.2 for two excitatory and inhibitory inputs; strinh = 0.8 for one 

excitatory and two inhibitory inputs. Note that once the parameters for a given model were 

selected, the model was fixed to simulate responses to all stimulus types.

White noises used for simulations had the same statistics and parameters as in the neural 

recordings. AM sounds and TIN stimuli for simulations were identical to those used for 

recordings. Sound levels of all stimuli used as model inputs were reduced by 10dB, because 

the models were slightly more sensitive than the neurons. Model performance was evaluated 

using Pearson correlations between model and neural MTFs and TIN responses. For TIN, 

correlation coefficients were calculated for each overall noise level. Internal noise was 

contributed by the random variations in the AN model responses; no additional internal 

noise was added.

3. Results

Figure 3a–d shows an IC neuron with a band- enhanced MTF. The neuron’s TIN responses 

decreased with increasing SNRs, consistent with the prediction based on MTF type. Model 

results (modification b) are shown in Figure 3e–h. Excitatory and inhibitory frequencies 

used in the model were 2083Hz and 1833Hz, respectively; the inhibitory input was delayed 

by 2.3ms. Simulations for both MTFs and TIN stimuli followed the trends in neural 

responses. The correlation between MTF data and simulation was significant for noise 

carrier (r = 0.68, p < 0.001) but not for tone carrier (r = 0.19, p = 0.19). For TIN stimuli, 

correlation coefficients were calculated for each noise level. Correlation coefficients for five 

overall noise levels (from low to high) were: 0.82, 0.96, 0.90, 0.51, 0.65; p values were 0.01, 

<0.001, 0.04, 0.12, 0.058, respectively. Correlations were significant for all datasets except 

Fan et al. Page 3

Acta Acust United Acust. Author manuscript; available in PMC 2020 December 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the TIN responses at the two highest noise levels. The model receptive field (RF) had 

excitatory and inhibitory regions that were similar to the neural RF (Figure 3d and 3h).

Figure 4 shows an IC neuron with band-suppressed MTF for both noise and tone carriers (a 

and b). The neuron’s TIN response rates increased with increasing SNRs, consistent with the 

prediction for this MTF type. Model results (modification c, one excitation and two 

inhibitions) are shown in Figure 4e–h. The excitation CF was 800 Hz; one inhibition at 800 

Hz and one at 960 Hz were used. Both inhibitory delays were 4 ms. Simulations of this 

neuron’s MTFs successfully replicated both the shape and the lowest point in the band-

suppressed MTF. The correlations between MTF data and simulations were significant for 

both noise carrier (r = 0.77, p < 0.001) and tone carrier (r = 0.82, p < 0.001). For TIN 

stimuli, correlation coefficients for five overall noise levels (from low to high) were: −0.37, 

0.91, 0.84, 0.46, 0.96; p values were 0.80, 0.002, 0.008, 0.15, <0.001, respectively. The 

model RF had similar excitatory and inhibitory frequencies as the neural RF, but missed 

some details. For example, the frequency range of excitation and inhibition were much wider 

in the neural RF than in the model RF. The simulated 2nd-order Wiener kernel had inhibition 

at frequencies higher than the excitation, possibly due to high-frequency suppression in the 

model AN responses. In this example neuron, the simulated kernel also had excitation at 

frequencies higher than the inhibition. This pattern was possibly related to the model 

structure: band-suppressed MTFs were the result of inhibition from a band-enhanced neuron 

(Figure 2); therefore, inhibition of the BE neuron facilitated responses of the BS neuron.

To determine whether modification significantly improved model performance, a paired t-

test was performed between the results of the SFIE model and results of each of the 

modified models for each stimulus type. For the TIN stimuli, the average correlation 

coefficient across five noise levels was used in the test. None of the modified models had 

significantly higher predictive value than the original SFIE model for any stimulus type. 

Thus, the performance of the general model structure was relatively robust, and it was not 

strongly influenced by fine-tuning the model parameters based on the RF of an individual 

neuron. Because internal noise was included in the AN model, correlations between model 

and neural responses varied slightly across simulations and models. The percentage of 

simulations that were significantly correlated to multiple responses was calculated based on 

average results of two rounds of simulations with the five models described above. Model 

responses were significantly correlated to a single neuron’s response to at least one type of 

MTF (with tone or noise carrier, or both) and at least three noise levels for TIN in 42.7% of 

cases. Model responses were significantly correlated to both types of MTF and at least three 

TIN levels in 17.4% of cases.

4. Discussion

An SFIE-type model with fixed parameters can simulate a single neuron’s responses to 

different stimulus types, for IC neurons with both band-enhanced and band-suppressed 

MTFs. The shape and best-modulation frequency of the MTF could be replicated for many 

neurons in the current study. In response to tone-in-noise stimuli, trends in the modeled 

responses with increasing tone level at different overall noise levels agreed with the neural 

responses for many neurons. For responses to white noise, the general pattern of excitation 
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and inhibition was simulated, but discrepancies between the simulated and neural responses 

require further study.

Although the SFIE model was originally developed to understand modulation tuning in IC 

neurons, there were some neurons for which the MTFs were not successfully simulated. This 

discrepancy might be due to differences between the frequency and latency picked from the 

receptive field and the set of values used to describe the standard BE MTFs in the original 

SFIE model. Large changes in these parameters may not be compatible with the simple 

structure of the SFIE model; for example, large changes in the latency of inhibition can 

result in discontinuities in the SFIE model’s impulse response.

In response to TIN stimuli, simulated rates decreased more strongly with increasing overall 

noise level than was observed in IC BE neurons. This decrease in rate in response to TIN 

stimuli is influenced by saturation of the inner hair cell in the AN model [3], thus differences 

between simulated and neural responses may be due to differences between AN model 

properties and the rabbit AN responses (see below).

Failure to predict some neural responses could be due to limitations in interpreting patterns 

of the receptive field. We used the centers of the excitation and inhibition RF areas to specify 

the frequency and latency of model inputs. However, in many cases, the excitation and 

inhibition spanned a wider frequency range in the RF, which may reflect wider tuning in the 

rabbit periphery in comparison to the cat tuning in the AN model. Whether the bandwidth of 

peripheral filters plays a role in these modeling results could be tested in the future using an 

AN model adapted to the rabbit. Also, 2nd-order Wiener kernel analysis only shows the 

“net” excitation or inhibition at one frequency and time. Therefore, the frequency and timing 

parameters estimated from the RF for use in the IE models may not be accurate estimates of 

the underlying excitatory and inhibitory response components.

Patterns of excitation and inhibition in the RF can be complicated. In most neural RFs, 

excitation has a shorter latency than inhibition. However, in a small number of neurons that 

were not included in this study, the latency of the inhibition was shorter than that of 

excitation. Simply reversing the order of the excitation and inhibition in the models used 

here did not yield successful simulations of these neurons. Other neurons (not included) had 

RFs with several excitatory and inhibitory bands from which model parameters were not 

easily specified. The complex patterns in the RFs provide a strong challenge for simplified 

neural models of the type used here.

Our results also show that the SFIE model without modifications performed approximately 

as well as the modified models. Thus, although the SFIE model performance was relatively 

robust, it was not sensitive to changes in the input frequencies and latencies based on the RF 

that were hypothesized to improve simulations. Alternative models that combine excitation 

and inhibition should be explored in the future, including coincidence detectors that receive 

excitatory and inhibitory inputs [12].
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Figure 1. 
(Colour online) Calculation of the receptive field (RF) using the 2nd-order Wiener kernel. 

The kernel was calculated by averaging the product of instantaneous spike rates with the 

outer product of pre-spike stimulus epochs. A 1-D Fourier transform yielded the RF. 

Singular-value decomposition (SVD) was used to identify excitation and inhibition in the RF 

[9].
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Figure 2. 
(Colour online) Illustration of generalized SFIE model. The auditory nerve (AN) model 

provides excitatory (red, thin line) and inhibitory (black, thick line, via an interneuron) 

inputs to the cochlear nucleus (CN) model. The CFs and number of excitatory and inhibitory 

inputs to the inferior colliculus (IC) are not limited, but for simplicity, this diagram includes 

only one of each. The band-enhanced (BE) IC neuron receives excitatory and inhibitory 

inputs from CN; the band-suppressed (BS) IC neuron receives excitatory input(s) from the 

CN and is inhibited by a BE neuron.
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Figure 3. 
(Colour online) Example of a band-enhanced IC neuron. MTFs (rate vs. modulation 

frequency) for a) noise and b) tone carriers; errorbars show standard deviation. c) Neural 

responses to TIN stimuli (rate vs. SNR) for several noise levels. d) Receptive field (time 

reversed) calculated with the 2nd-order Wiener-kernel analysis Ű the center of excitation and 

inhibition used in modified models are marked by black dots; e) to h): simulations with 

modified IE model for the same stimuli as in a)–d).
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Figure 4. 
(Colour online) Example of a band-suppressed IC neuron. Format same as Figure 3.
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