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Abstract: The extent of whole genome diversity amongst hepatitis B virus (HBV) genotypes is
not well described. This study aimed to update the current distribution of HBV types and to
investigate mutation rates and nucleotide diversity between genotypes in Southeast Asia, Australia
and New Zealand. We retrieved 930 human HBV complete genomes from these regions from the
NCBI nucleotide database for genotyping, detection of potential recombination, serotype prediction,
mutation identification and comparative genome analyses. Overall, HBV genotypes B (44.1%) and
C (46.2%) together with predicted serotypes adr (36%), adw2 (29%) and ayw1 (19.9%) were the most
commonly circulating HBV types in the studied region. The three HBV variants identified most
frequently were p.V5L, c.1896G>A and double mutation c.1762A>T/c.1764G>A, while genotypes B
and C had the widest range of mutation types. The study also highlighted the distinct nucleotide
diversity of HBV genotypes for whole genome and along the genome length. Therefore, this study
provided a robust update to HBV currently circulating in Southeast Asia, Australia and New Zealand
as well as an insight into the association of HBV genetic hypervariability and prevalence of well
reported mutations.

Keywords: human hepatitis B virus; genetic diversity; genotypes; serotypes; HbsAg subtypes;
recombination; mutations

1. Introduction

Hepatitis B virus (HBV) infection is a global health burden. 257 million people had chronic hepatitis B
(CHB) infection worldwide in 2015 [1]. CHB can develop into liver cirrhosis, and hepatocellular
carcinoma (HCC), resulting in 720,000, and 470,000, deaths worldwide in 2015, respectively [1].

HBV is a small, enveloped DNA virus of the Hepadnaviridae family. Its genome (3.2 kbp) is
circular and partially double-stranded with four overlapping open reading frames (ORFs) encoding
for reverse transcriptase (RT), pre-surface/surface (pre-S/S) proteins, precore/core (PC/C) proteins and
transcriptional transactivator X protein [2]. The overlapping structure of pre-S/S and RT ORFs is
essential for HBV surface antigen (HBsAg) antigenicity and RT functionality [3]. The PC/C region is
responsible for formation of two polypeptides: (1) HBV core antigen (HBcAg)—a structural protein of
the nucleocapsid translated from pregenomic RNA and (2) HBV e antigen (HBeAg)—a viral secreted
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protein translated from PC RNA [4,5]. The core promoter is located immediately upstream of the PC/C
region and consists of the basal core promoter (BCP) and the upper regulatory region (URR). URR
is composed of the negative regulatory element (NRE) and the core upstream regulatory sequence
(CURS), with a possible role in regulating core promoter activity [6]. The X ORF encodes for X protein,
which is associated with viral regulation, cell growth and carcinogenesis by disrupting several cellular
signaling pathways [7–9].

Several factors contribute to HBV genetic diversity. HBV possesses a unique replication cycle
via an RNA intermediate, using an error-prone RT enzyme [2,10,11]. This results in a nucleotide
substitution rate of >10−5 substitution/site/year, which is higher than most DNA viruses and similar to
RNA viruses with low mutation rate [2,10,11]. Moreover, it has a rapid replication rate with over 1011

virus particles released in circulation per day [12].
Due to its high sequence heterogeneity, HBV has 10 recognised genotypes (A to I, and a provisional

genotype J) with at least 8% nucleotide divergence, and over 35 subgenotypes with at least 4–8%
nucleotide divergence over the whole genome [13,14]. Viral strains typically exhibit geographical and
ethnic distributions [13,15]. Generally, genotypes A and D are highly prevalent in Europe, North Africa,
North America and Asia, whilst in East and Southeast Asia, Australia and New Zealand genotypes B
and C are more commonly found [15]. Genotypes E and A predominate in Sub-Saharan Africa, whilst
genotypes F, G and H are recorded in Latin America [15]. To date, only a single instance of genotype J
was identified in Japan [16].

Recombination is common in HBV, classified into 44 different patterns where at least two different
HBV genotypes or subgenotypes exchange genetic information [17,18]. For instance, subgenotypes
B2, B3 and B4 are recombinants of genotypes B and C while fragments of genotypes A, C and G are
observed in genotype I [2,19]. There is also evidence of recombinants C/D and D/E [20].

HBV can be categorised into different serotypes based on serological reactivity of HBsAg including
ayw1, ayw2, ayw3, ayw4, ayr, adw2, adw4, and adr. The presence of subdeterminants, d/y and r/w, depends
on variation at amino acid positions 122, 160, 127, 159 and 140 [21,22]. Although the same HBV
genotypes can encode different serotypes and one serotype can belong to different genotypes, the
distinct variants associated with viral serotypes are consistently found at the genomic level [21,23].

The genetic variability of HBV plays an important role in clinical outcomes and planning HBV
prevention strategies. Acute genotype A infections persist longer than genotype D. Genotypes A and D
surpass B and C in viral chronicity, possibly due to their different roles in host-viral interactions [24–26].
Genotype C infections have an increased risk of higher viral loads and development of cirrhosis and
HCC than genotype B [24,27]. Interferon-based treatment was shown to be more effective for genotypes
A and B than genotypes C and D, demonstrated through lower expression of HBsAg, HBeAg and
decreased HBV DNA levels [28].

Most HBV vaccines are generated from genotype A2 or C strains [29,30]. The vaccines are
protective against non-A/C genotype infections by largely boosting the production of antibodies
targeted against determinant a at amino acid positions 121–149 which corresponds to the first loop
of B-cell epitope of HBsAg for all HBV genotypes and serotypes [3,21,30,31]. However, cases of
cross-genotype HBV infection of vaccinated individuals have been recorded, raising questions as to
the complete protection of HBV immunoprohylaxis, especially in countries where genotypes A and C
are not prevalent [32–34].

Several HBV mutations within particular coding regions are associated with important clinical
manifestations. Mutations across the major hydrophilic region (MHR) of HBsAg, where determinant
a is located, disrupt the conformation of surface antigen, affect protein hydrophilicity and alter
the binding of neutralizing antibodies. This allows HBV to escape host immune responses for
clearance [35,36], resulting in failed immunoprophylaxis [37–42]. RT mutations are involved in
the development of drug-resistant viral strains and loss of efficacy of nucleos(t)ide analogs and
anti-viral drugs. These include p.M204IVS, p.V173L, p.A181T and p.L80VI for lamivudine, p.N236T
and p.181V for adenovir, p.A194T for tenofovir, and p.M250V/p.I169T and p.T184G/p.S202I for
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entecavir [43,44]. Mutations within the PC region acquired after HBeAg seroconversion (c.1896G>A and
p.P130T) can lead to defective HBV replication, decreased or lost secretion of HBeAg, HBeAg-negative
CHB and even HCC with poorer prognosis [5,7,45–47]. The two HBcAg mutations p.I/F97L and
p.P130T are frequently observed concurrently in CHB patients [44], leading to the secretion of virions
containing immature genomes and hypermaturations, respectively [48]. Meanwhile, double mutations
c.1762A>T / c.1764G>A in the BCP region and mutation c.1613G>A within NRE, are associated with
the suppressed expression of HBeAg, increased viral load in HBV carriers and increased risk of liver
carcinogenesis [6,49,50]. A study on HBV X mutations reported the presence of the mutant p.V5M/L
amongst Korean patients with severe liver diseases such as cirrhosis and HCC [51].

The rate of international travel to Southeast Asia, Australia, New Zealand has increased in recent
years. Given the geographically distinct distribution of HBV genotypes and serotypes, this trend could
influence the prevalence of HBV strains currently circulating in this region. Moreover, there have been
conflicting reports of the predominant genotype in a number of countries within this area. A study in
2004 [13] identified only HBV genotypes B and C in the region, except for Australia, in which genotypes
D and C were found. Meanwhile, a recent systematic literature review [15] reported genotypes B, C, D
and A circulating in these countries. This study therefore aimed to robustly update the situation of
HBV types in this region. Moreover, given the potential complications arising from aforementioned
HBV mutations, we sought to estimate a number of mutations across the viral genome by genotypes.
We also investigated the nucleotide variability of HBV genotypes in the same region to explore whether
there is an association between HBV heterogeneity and mutation rates for each genotype.

2. Materials and Methods

2.1. Data Collection from NCBI Nucleotide Database

A search for human HBV complete genomes listed on the NCBI nucleotide database was conducted
in August 2019, firstly using the term [(“HBV” OR “hepatitis B virus”) AND “complete genome”].
We then applied the following filters: viruses for species, gDNA/RNA for molecule types, International
Nucleotide Sequence Database Collaboration (INSDC) (GenBank) and [country name]. The studied
countries were located in Southeast Asia, Australia and New Zealand, with names as described by the
United Nations (https://unstats.un.org/unsd/methodology/m49/). Each genome was manually checked
for inclusion, including HBV complete genome, Homo sapiens host, country area, and unique sequences.
The country of origin of each genome was checked either by using the information given on NCBI or
listed in publications.

2.2. Analysis of HBV Genotypes

For each sequence, we used NCBI HBV genotyping [52] to assess the agreement between genotypes
submitted on GenBank and results provided on the HBVdb genotyping tool [53]. We included sequences
KF214650|I, EU833891|I, JF899337|I, and AB486012|J for genotypes I and J as references. A genotype was
assigned based on (1) concurrence of genotype assigned by three sources (Genbank submission, NCBI
HBV genotyping and HBVdb genotyping tool) or (2) the first E-value given by NCBI BLAST < 1 × 10−75

in the case of genotype assignment disagreement from one or more sources/tools. We nominated
unverified genotypes or potential recombinants by phylogenetic analysis using FastTree 2.1.11 [54,55]
and RAxML 8.2.11 [56]. For FastTree, the default tree building setting was used. For RaxML, we used
a general time-reversible (GTR) GAMMA I model, rapid bootstrapping and 1000 replicates. Figure 1
illustrates the steps of genotyping the collected sequences. Sequences were aligned using MAFFT [57,58]
and Geneious Prime 2019.2.1 for the whole study.

https://unstats.un.org/unsd/methodology/m49/
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Figure 1. Flowchart of genotype assignment for each sequence retrieved from the NCBI
nucleotide database.

2.3. HBV Recombination Analysis

We utilised the Recombination Detection Program (RDP) 4 [59] to detect potential recombination
events within our data. Five built-in methods (RDP [60], Geneconv [61], Maxchi [62], Chimaera [63]
and 3SEQ [64]) were run iteratively with their default settings, to identify potential recombinants by
each method. Sequences detected as potential recombinants with overlapping breakpoints by all 5
methods were then pooled together with the sequences of unverified genotypes/recombinants for the
phylogenetic analysis as outlined in 2.2. Reference sequences were included (Table S1).

2.4. Representative Phylogenetic Analysis

A number of sequences were randomly selected from the complete dataset for the identified
genotypes to establish a representative phylogeny. The number of sequences chosen for the
representative phylogeny was proportional to the number of sequences of each genotype in our
dataset: 5 sequences for genotype A, 20 for B, 20 for C, 10 for D, 1 for G and 5 for I. Potential
recombinants were also included in the population. Approximated maximum-likelihood trees were
built by using FastTree 2.1.11 [54,55], RAxML 8.2.11 [56] and PHYML 3.3.20180621 [65]. Model
parameters for FastTree and RAxML were as described in 2.2, Model parameters for PHYML were
established by using jmodeltest: GTR+I+G, proportion of invariable sites 0.463, gamma distribution of
0.854 and 1000 bootstraps. Reference sequences were included (Table S1).

2.5. HBV Serotype Prediction

Serotypes for each HBV genome were predicted using the decision tree developed by Purdy et al.
(2007) [22]. Translated HBsAg sequences were analysed with the mutation reporter tool [66] to determine
serotypes. We used FLLVLLDY as an input for anchor motif at amino acid position 93. We confirmed
our predictions by using the HBV serotyper tool (http://hvdr.bioinf.wits.ac.za/SmallGenomeTools/) [67]
or manually. Fourteen sequences that were not predicted to any serotypes by either of the two methods
above were individually investigated for their amino acid composition.

http://hvdr.bioinf.wits.ac.za/SmallGenomeTools/
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2.6. Nucleotide Diversity

We used DnaSP 6 for a comprehensive analysis of sequence variation by each genotype [68].
All degenerate nucleotides were converted to Ns prior to analysis as required by the software. Sites
with gaps in the complete data file were excluded from the analysis. To evaluate the degree of
polymorphism within genotypes, we estimated the average number of nucleotide differences per site
between two sequences, called nucleotide diversity Pi (µ), with window length of 100 bp and step size
of 25 bp.

2.7. Analysis of Nucleotide and Amino Acid Variations

Analysis of HBV variations was performed across five regions—NRE, BCP, PC, C, HBsAg,
polymerase/RT, and X. Variations selected for analysis were all reported to be associated with viral life
cycle and/or clinical complications (Figure 2) [69,70]. Drug resistance mutations over the RT ORF and
escape mutations within HBsAg ORF were identified by HIV-grade HBV drug resistance interpretation
(DRI) [70]. Other variants were determined based on nucleotides or amino acids substituted at the
selected positions along nucleotide sequences or translated sequences using Geneious Prime 2019.2.1.

Figure 2. Selected mutations across RT, HBsAg, NRE, BCP, PC, C and X ORFs for analysis. Nucleotide
position 1 on an HBV genome corresponds to the HBV EcoR1 restriction site.

3. Results

3.1. Data Collection from NCBI Nucleotide Database

Of the 9182 complete HBV genomes identified on NCBI nucleotide database, 930 genomes met the
inclusion criteria (File S1 and Figure 3). Five pairs of HBV genomes, despite having different GenBank
accession numbers, were identical, therefore, one sequence of each pair was excluded. No human HBV
complete genomes were found for the following geographical locations: Brunei Darussalam, Singapore,
Timor-Leste, Christmas Island, Cocos Islands, Norfolk Island, Heard Island and McDonald Island.
No relevant information regarding clinical condition was available for any of the sequences collected.

3.2. Analysis of HBV Genotypes

Over 50% of sequences originated from Malaysia and Vietnam, with 296 and 180 sequences,
respectively. We identified six HBV genotypes (A, B, C, D, G and I) circulating in Southeast Asia,
Australia and New Zealand (Table 1 and Figure 4). The frequencies of each HBV genotype varied widely
between countries. In the studied region, genotypes C and B were the most prevalent, constituting
46.2% and 44.1%. Genotype I (2.3%) was observed only in Laos, Vietnam and Thailand, whilst genotype
D (5.3%) was found in New Zealand, Indonesia and Malaysia. Only one sequence was genotyped
G and originated in Thailand. Countries with the widest range of circulating HBV genotypes were
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Malaysia (A, B, C and D) and Thailand (B, C, G and I), followed by Vietnam (B, C and I), Philippines
(A, B and C) and Indonesia (B, C and D).

3.3. HBV Recombination Analysis

We ran five automatic detection methods in RDP4 to detect potential recombination within our
data (Table 2). In total, 65 genomes were identified as recombinant by all five methods; 35 of them
had overlapping breakpoint positions, including 10 with the same major parents who contribute
greater proportion of sequence. The 65 suspected recombinants were pooled together with sequences
of ambiguous genotype or suspected recombination for further analysis with FastTree and RaxML
(Figures S1 and S2). According to these phylogenies, 34 of the 65 sequences were clustered in genotype B,
particularly B2 and B3, whilst 13 clustered in genotype C and 12 in genotype A. Of the seven sequences
that were initially suspected as B/BC, C/CB or G/CG recombinants (Table 1) by HBV genotyping,
two C/CB were located between the clusters of genotypes B2 and C, two G/GC between G and C,
while the three B/BC were positioned within the cluster of B2 and B3. Results of recombination and
phylogeny analyses are summarised in Table S2. They all shared approximately 92% similarity with
their corresponding reference sequences.

Figure 3. Number of HBV complete genomes retrieved through each step of data collection.

Table 1. Identified HBV genotypes by country.

Country
Genotype

A B C D G I B/BC or C/CB G/GC Total

Australia 1 66 67 (7.2%)
Cambodia 4 24 28 (3%)
Indonesia 82 51 9 142 (15.3%)

Laos 14 14 (1.5%)
Malaysia 2 170 116 4 4 296 (31.8%)
Myanmar 18 18 (1.9%)

New Zealand 6 36 42 (4.5%)
Philippines 9 7 10 26 (2.8%)

Thailand 16 96 1 1 1 2 117 (12.6%)
Vientam 131 43 6 180 (19.4%)

Total 12 (1.3%) 410 (44.1%) 430 (46.2%) 49 (5.3%) 1 (0.1%) 21 (2.3%) 5 (0.5%) 2 (0.2%) 930 (100%)
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Figure 4. Distribution of HBV genotypes and recombinants by country in Southeast Asia, Australia
and New Zealand. Pie charts indicate the percentage of HBV genotypes with the diameters. Countries
with human HBV complete genomes collectable from NCBI nucleotide database were highlighted in
bold and uppercase.

Table 2. HBV recombination detection by five automatic methods built in RDP4.

Events/Recombinants
Detection Method

RDP 3SEQ Chimaera Geneconv Maxchi

Recombination events 83 80 49 87 41
Potential recombinants (possibly present in different events) 467 613 744 1199 1355
Potential recombinants (after removing replicate recombinants) 380 566 510 857 548
Recombinants identified by all methods: 83 (65 sequences from our data and 18 reference sequences)
+ with overlapping breakpoint positions: 35 (31 sequences from our data and 4 reference sequences)
+ with at least one same major parent: 10 (8 sequences from our data and 2 reference sequences)

3.4. Representative Phylogenetic Analysis

Generally, all three trees built with FastTree, RAxML and PHYML (Figures S3–S5) were consistent
in clustering the sequences of the same genotypes identified in 3.2, supporting our genotyping results.
The divisions into genotypes A, B, D and I were highly supported by all three methods. Lower
support values were calculated for genotype G (82% by RAxML and 78.1% by PHYML) and C (62% by
RAxML and 53.5% by PHYML). PHYML and RAxML trees were generally congruent, except for five
sequences, one of genotype B and four of genotype C, though still clustering within clades of their
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corresponding genotypes. Differently, for FastTree tree, genotype roots were relocated and a bigger
number of sequences of genotypes B, C, D and F changed their arrangement within the same clade.

3.5. HBV Serotype Prediction

We predicted serotypes for the 930 HBV genomes using the decision tree of Purdy et al. [22].
Table 3 summarises the distribution of the predicted HBV serotypes by genotypes. Serotypes adr, adw2
and ayw1 were most prevalent in the studied region, accounting for 36%, 29% and 19.9%, respectively.
They were predominantly found with HBV genotypes B and C, which are common in Southeast Asia
and Australia. All sequences of serotype adr and ayr were within genotype C. Serotypes adw2 and
ayw1 were found in a wider range of genotypes than the other serotypes. Serotypes adw3, ayw2 and
ayw3 were scattered among genotypes B, C and D with no discernible distribution pattern.

Table 3. Predicted HBV serotypes by genotype and country in Southeast Asia, Australia and
New Zealand.

Genotype/Country
Serotype adr

(n = 335, 36%)
adw2

(n = 270, 29%)
adw3

(n = 7, 0.8%)
ayr

(n = 6, 0.7%)
ayw1

(n = 185, 19.9%)
ayw2

(n = 45, 4.8%)
ayw3

(n = 70, 7.5%)
Unassigned
(n = 12, 1.3%)

A 9 2 1
Australia 1
Malaysia 1 1

Philippines 7 2

B 218 5 172 1 6 8
Cambodia 2 2
Indonesia 46 1 34 1
Malaysia 141 4 20 1 4

Philippines 1 6
Thailand 12 4
Vietnam 16 106 6 3

C 331 29 1 6 60 3
Australia 6 60
Cambodia 23 1
Indonesia 45 3 3
Malaysia 107 5 1 3
Myanmar 17 1

New Zealand 6
Philippines 1 9

Thailand 86 7 3
Vietnam 40 3

D 1 44 4
Indonesia 1 8
Malaysia 4

New Zealand 36

G 1
Thailand 1

I 11 10
Laos 4 10

Thailand 1
Vietnam 6

B/BC 1 1 1
Thailand 1
Malaysia 1 1

C/CB 1 1
Malaysia 1 1

G/GC 2
Thailand 2

3.6. Nucleotide Diversity

Nucleotide diversity analysis indicates a wide range of genetic variability for whole genome
(Table 4) and along the HBV genome length (Figure 5). Genotype G was not included because only
one sequence of this genotype was identified. Genotypes B and C demonstrated a higher number of
segregating sites, Pi values and average number of nucleotide differences, indicating greater genetic
diversity compared to other genotypes (Table 4). Despite the lowest number of genomes included in
the dataset, genotype A demonstrated Pi and k values greater than genotypes D and I. This suggests
that genotype D and I were the most conserved in their overall nucleotide sequences.
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Table 4. DNA polymorphism of HBV genotypes identified in Southeast Asia, Australia and
New Zealand.

Genotype Number of Polymorphic
(Segregating) Sites

Average Number of
Nucleotide Differences (k)

Nucleotide
Diversity (Pi)

Genotype A (n = 12) 44 10.788 0.00775
Genotype B (n = 410) 454 11.515 0.00827
Genotype C (n = 430) 446 12.548 0.00901
Genotype D (n = 49) 68 7.770 0.00558
Genotype I (n = 21) 37 8.148 0.00585

Total N = 930 (including genotype G and recombinants) 676 20.944 0.01505

Figure 5. Nucleotide diversity (Pi) over HBV genome. The MAFF-aligned genomes had 3434 bp in
length; genotypes were colour-coded (sites with gaps in the complete data file were excluded; window
length 100 bp, step size 25 bp).

Moreover, we found genetic differences appeared to be unevenly distributed along the genome
length (Figure 5). At a genotypic level, genotypes B and C were the most diverse within the overlapping
RT and pre-S/S coding genes, while genotype A expressed more genetic variations located near or
within X gene and PC/C gene. Genotypes D and I were more conserved than the others over the whole
genome, except for a distinct locus in RT ORF.

3.7. Analysis of Single Nucleotide and Amino Acid Variations

Our dataset was investigated for the frequency of the selected variations by genotype (Table 5).
We observed the p.V5L variation was present in almost all sequences analysed (≥83% prevalence for
all genotypes). c.1896G>A was the second most common variant, particularly with HBV genotypes B,
D, I and C, while c.1762A>T/c.1764G>A ranked third but was less genotype-specific. It was noted
that the compound nucleotide substitution at positions 1762 and 1764 within BCP was more likely
to occur together, rather than to have either substitution singularly. Escape mutations in the viral
surface coding gene (14.4%) and c.1613G>A in NRE (12.8%) also occurred frequently, predominantly in
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genotypes B and C. Additionally, p.P130T in core gene and p.V5M in the X gene were mainly acquired
in genotypes B and C, while drug resistance mutations occurred sporadically for genotypes A–D.

Table 5. Number and percentage of selected mutations by HBV genotype 1.

Mutation Type (Region) A
(n = 12)

B
(n = 410)

C
(n = 430)

D
(n = 49) G (n = 1) I (n = 21) B/BC, C/CB,

G/GC (n = 7)
Total

(n = 930)

Drug resistance mutations (polymerase) 1 (8%) 15 (3.7%) 22 (5%) 2 (4%) 0 0 0 40 (4.3%)
Escape mutations (pre-S/S) 2 (16%) 41 (10%) 79 (18%) 8 (16%) 0 2 (10%) 2 (27%) 134 (14.4%)
c.1613G>A (NRE) 2 (16%) 44 (11%) 67 (15%) 0 1 (100%) 4 (19%) 1 (14%) 119 (12.8%)
Only c.1762A>T (BCP) 0 7 (2%) 3 (0.7%) 0 0 0 0 10 (1.1%)
Only c.1764G>A (BCP) 1 (8%) 3 (0.7%) 20 (5%) 1 (2%) 0 0 0 25 (2.7%)
Double c.1762A>T/c.1764G>A (BCP) 5 (42%) 60 (15%) 159 (37%) 7 (14%) 1 (100%) 5 (24%) 2 (27%) 239 (25.7%)
c.1896G>A (PC) 0 193 (47%) 77 (18%) 13 (27%) 0 4 (19%) 2 (27%) 289 (31.1%)
p.P130T (C) 0 28 (6.8%) 60 (14%) 0 1 (100%) 0 0 89 (9.6%)
p.V5M (X) 0 8 (2%) 11 (2.6%) 0 0 0 1 (14%) 20 (2.2%)
p.V5L (X) 10 (83%) 401 (97%) 395 (92%) 48 (97%) 1 (100%) 21 (100%) 6 (86%) 882 (95%)

1 Note: One genome can acquire one or more variations.

4. Discussion

This in silico study of the distribution of HBV genotypes and recombinants in Southeast Asia,
Australia and New Zealand was performed through the phylogenetic, recombination and comparative
genomic analysis of 930 human HBV complete genomes. We observed a high prevalence of genotypes C
and B in the studied region. This observation is consistent with previous studies [13,15]. The exception
is Laos, where we identified genotype I as the dominant genotype, rather than genotypes B and C as
reported by Norder [13] and Velkov [15]. We also detected frequent recombinants between genotypes
B and C, all from Thailand and Malaysia.

This study also investigated the distribution of HBsAg subtypes in the study region predicted
using a decision tree [22]. The three most prevalent serotypes were adr (36%), adw2 (29%) and ayw1
(19.9%). We found serotypes adr, ayr and ayw3 most commonly associated with genotype C, adw2 for
B and C, adw3 and ayw1 for B, and ayw2 for D. These findings differ to Norder’s study [13], which
reported that the serotypes adw2, ayw1 and ayw3 were more pronounced amongst genotypes A, B
and D. Moreover, our observations of HBsAg subtype distribution for genotypes B and D are dissimilar
to the finding of Chen et al. [71] who reported that adr and ayw2 were prevalent among genotype
B strains while most of genotype D sequences were assigned to adr [71]. This is likely due to the
geographical selection of HBV sequences used in this study. We targeted Southeast Asia, Australia and
New Zealand, while the Norder study [13] was worldwide and the Chen study [71] focused on China.

To our knowledge, this study is also the first to investigate nucleotide diversity between HBV
genotypes. We found that levels of nucleotide diversity varied amongst the different genotypes.
Genotypes C and B showed an overall higher genetic diversity and more mutation types than
genotypes A, D and I. Furthermore, we found that each genotype demonstrated varying genetic
diversity within different ORFs (Figure 5). Specifically, genotypes B and C displayed the highest
heterogeneity in the polymerase and pre-S/S regions while genotype A showed the highest diversity
within the X and PC/C genes.

Information on the distribution of HBV mutations along genome length amongst genotypes
is limited. Our study showed that the frequency of these mutants varied with genotypes (Table 5).
This observation was also reported by Bayliss et al. [69]. We found that sequences with mutations,
except for c.1896G>A, were mainly associated with to genotype C. However, we observed that p.V5L,
c.1896G>A and c.1762A>T/c.1764G>A were the three most prevalent variants, contrasting to c.G1613A,
c.1762A>T/c.1764G>A and c.1896G>A in the Bayliss study. These differences are likely attributable to
sample selection criteria. In the Bayliss study, only HBeAg-positive patients with CHB were included,
which may favour the presence of particular mutations. In our study, there was very little information
linked to clinical diseases available on the NCBI nucleotide database for the collected genomes.
Interestingly, in our study, escape mutations associated with risk of failed immunoprophylaxis [37–42]
occurred significantly for genotypes A and C (totally 18%), compared to non-A/C genotypes (totally
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10.6%) (X2 = 10.588, df = 1, p = 0.001138), given that most currently used HBV vaccines are generated
from genotype A or C strains [29,30]. Due to the unavailability of relevant clinical information for
these entries in GenBank, vaccine status for these sequences is unknown.

In considering whether an association between genetic hypervariability and mutation rate exists
for each HBV genotype, we observed that the PC/C ORF of genotype A demonstrated high nucleotide
diversity had a high proportion of c.1762A>T/c.1764G>A (42%) and c.1613G>A (16%) mutations.
By contrast, although the polymerase and pre-S/S genes of genotypes B and C demonstrated the highest
diversity compared with other ORFs, the percentage of mutations within these regions, including drug
resistance and escape mutations, were much lower than all other mutations within the PC/C region
combined (Table 5). This observation may be explained by a finding of Osiowy et al. [10], that the
RT region has a higher ratio of synonymous to non-synonymous substitutions (dS/dN) than the core
coding region. In other words, nucleotide subtitutions in the RT ORF are less likely to alter amino
acid sequence, and therefore are less likely to be associated with clinically significant mutations than
variation in the core region. This feature may allow HBV to play critical roles of the overlapping pre-S/S
and RT regions on maintaining HBV transcription and HBsAg functionality against host immune
system [3].

We recognise that our study has limitations. Our sequence selection was regionally focused,
and HBV strains circulating in countries outside our studied area could account for genetic diversity
of genotypes and subgenotypes which are absent or less frequent in Southeast Asia, Australia and
New Zealand. There is a need for a global study of HBV genetic variability, to better understand
contemporary distribution pattern—particularly considering the rise in human migration and ease of
global travel.

In conclusion, this investigation is an up-to-date, thorough report on the distribution of HBV types
circulating in Southeast Asia, Australia and New Zealand. We highlighted HBV nucleotide variability,
and the prevalence of different mutations within genotypes and ORFs. Given that several HBV variants
are associated with failure of immunoprophylaxis, drug resistance and liver disease progression,
the understanding of variability and mutations within genotypes highlighted in our study may guide
clinicians in predicting the risks associated with failed protection and unsuccessful treatment.
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