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Abstract

Image labeling using convolutional neural networks (CNNs) are a template-free alter-

native to traditional morphometric techniques. We trained a 3D deep CNN to label

the hippocampus and amygdala on whole brain 700 μm isotropic 3D MP2RAGE MRI

acquired at 7T. Manual labels of the hippocampus and amygdala were used to (i) train

the predictive model and (ii) evaluate performance of the model when applied to new

scans. Healthy controls and individuals with epilepsy were included in our analyses.

Twenty-one healthy controls and sixteen individuals with epilepsy were included in

the study. We utilized the recently developed DeepMedic software to train a CNN to

label the hippocampus and amygdala based on manual labels. Performance was evalu-

ated by measuring the dice similarity coefficient (DSC) between CNN-based and man-

ual labels. A leave-one-out cross validation scheme was used. CNN-based and manual

volume estimates were compared for the left and right hippocampus and amygdala in

healthy controls and epilepsy cases. The CNN-based technique successfully labeled

the hippocampus and amygdala in all cases. Mean DSC = 0.88 ± 0.03 for the hippo-

campus and 0.8 ± 0.06 for the amygdala. CNN-based labeling was independent of epi-

lepsy diagnosis in our sample (p = .91). CNN-based volume estimates were highly

correlated with manual volume estimates in epilepsy cases and controls. CNNs can

label the hippocampus and amygdala on native sub-mm resolution MP2RAGE 7T MRI.

Our findings suggest deep learning techniques can advance development of morpho-

metric analysis techniques for high field strength, high spatial resolution brain MRI.
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1 | INTRODUCTION

Improvements in spatial resolution and contrast in structural MRI

acquired at 7T or higher field strength holds promise for detecting

disease-related neuroanatomical abnormalities that may not be visible

on clinical imaging obtained at 3T or less. Evidence for the clinical

benefit of high field neuroimaging typically relies on radiological

assessment of acquired images. A limitation of radiological assessment

is that it is subjective and inter-rater variability is a significant source

of error. Computational morphometric image analysis techniques are
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alternatives to radiological assessment used extensively in lower field

strength studies to model neuroanatomical structures and statistically

identify tissue changes. Although there are a variety of publicly avail-

able computational tools available for analysis of neuroanatomical

MRI acquired at lower strengths, these are generally (although not

always) developed for analysis of T1-weighted MRI acquired at 1 mm

isotropic resolution. There are few software tools to analyze 7T or

higher field strength imaging data acquired with sub-mm isotropic res-

olution (Bazin et al., 2014; Seiger et al., 2015; Zaretskaya, Fischl, Reu-

ter, Renvall, & Polimeni, 2018).

In this study, we used a recently developed 3D convolutional

neural network (CNN) architecture “DeepMedic” (Kamnitsas

et al., 2017), originally developed to label brain lesions, to train a

model to label hippocampi and amygdala on whole brain 700 μm iso-

tropic MP2RAGE MRI acquired at 7T in healthy controls and individ-

uals with epilepsy. Successful application of this technique would

support the utility of CNN-based techniques for modeling subcortical

neuroanatomical structures at high spatial resolution, and allow for

analysis of images with novel contrast properties that differ from

standard image acquisitions such as T1-weighted MPRAGE.

While the increased field strength 7T allows imaging at higher

spatial resolution and image contrast by virtue of the increased SNR

and T1 values, the MP2RAGE acquisition is also of significant advan-

tage. As discussed by Marques et al. (2010), the multiple GRE blocks

in the acquisition allows for correction of proton density variation,

T2* effects, and correction of B1 receive and transmit inhomogeneity.

This calculated image approach which has comparatively low B1

requirements and provides nearly pure T1 weighting, has seen wide-

spread use at 7T and may also be useful for quantitative 3T imaging in

epilepsy (Kotikalapudi et al., 2019). With these properties and the

large T1 differences in white, gray matter and CSF at 7T (�1.2, 2, and

4.3 s, [Rooney et al., 2007]), MP2RAGE is therefore an attractive can-

didate acquisition for tissue segmentation and may be useful for deep

learning-based computational image analyses.

Existing techniques to label neuroanatomical structures on brain

MRIs differ from our CNN-based approach in that CNNs and related

“deep learning” techniques do not utilize predefined atlases or tem-

plates, and do not require co-registration of these templates to an

individual MRI. Instead, CNNs encode or “learn” imaging features that

discriminate between the structure of interest and surrounding tissue.

Several recent studies have utilized deep learning-based approaches

to segment hippocampus and other structures, but to the best of our

knowledge none have been used to label high resolution 7T

MP2RAGE (Chen, Dou, Yu, Qin, & Heng, 2018; Dolz, Desrosiers, &

Ben Ayed, 2018; Fedorov et al., 2017; Goubran et al., 2020; Guha

Roy, Conjeti, Navab, Wachinger, & Alzheimer's Disease Neuroimaging

Initiative, 2019; Henschel et al., 2020; Ito, Nakae, Hata, Okano, &

Ishii, 2019; Li, Yu, Gu, Liu, & Li, 2019; Mehta, Majumdar, &

Sivaswamy, 2017; Milletari et al., 2017; Nogovitsyn et al., 2019; Sun

et al., 2020; Thyreau, Sato, Fukuda, & Taki, 2018).

Our primary aim was to investigate whether CNNs can segment

the hippocampus and amygdala. We evaluated the performance of

the technique using the DSC metric to summarize the overlap

between manual labels and CNN-derived labels. We further investi-

gated the clinical utility of the technique by applying the trained

model to epilepsy patients imaged using the same MP2RAGE acquisi-

tion protocol.

The development of computational analysis techniques that can

be applied to high resolution imaging is particularly important in epi-

lepsy since one of the most effective potential treatments for individ-

uals who do obtain adequate seizure control on medication is surgical

resection of the seizure focus. In many patients the seizure focus is

coincident with subtle neuroanatomical changes identified on postsur-

gical histopathology; however, many of these individuals have radio-

logically “normal” clinical imaging at 3T or lower. The clinical benefit

of 7T imaging relative to 3T or lower field strength imaging to detect

epilepsy-related neuroanatomical changes is an active field of

research in epilepsy neuroimaging (Canjels et al., 2020; Colon

et al., 2018; De Ciantis et al., 2016; Feldman et al., 2019; Henry

et al., 2011; Pittau et al., 2018; Santyr et al., 2017; Shah et al., 2019);

we believe that the computational methods described in this study

will be useful for addressing this question.

To facilitate further methodological developments by other

research groups, we have made imaging data, manual and CNN-based

labels and scripts available at https://sites.google.com/site/hpardoe/

hacl (Pardoe et al., 2020). All software used in this study was freely

available to the public at the time of publication.

2 | METHODS

2.1 | Participants

We imaged 21 healthy controls (9 female, mean age 39 ± 15 years)

and 16 epilepsy patients (8 female, mean age 36 ± 10 years) using the

same acquisition protocol. Epilepsy participants were recruited from

the University of Pittsburgh Medical Center Comprehensive Epilepsy

Center. The primary inclusion criteria were a diagnosis of medically

refractory focal epilepsy, epilepsy surgery candidates and tolerant of

7T MR imaging (nonclaustrophobic and ferromagnetic implant-free). In

the epilepsy participants, clinical imaging was radiologically classified

as MRI negative in nine patients; for the MRI positive patients a single

case of unilateral hippocampal sclerosis was identified based on clini-

cal MRI, and potential hippocampal sclerosis was observed in another

participant. For the remaining five MRI positive cases abnormalities

included (i) left anterior temporal focal cortical dysplasia, (ii) right fron-

tal focal cortical dysplasia, (iii) a left anterior lateral temporal lesion,

(iv) bilateral nodular heterotopia, and (v) a right posterior fossa arach-

noid cyst. The potential hippocampal sclerosis case had laser ablation

surgery prior to 7T imaging. We excluded this subject from quantita-

tive analyses, however, we applied our CNN-based hippocampus &

amygdala labeling model to imaging from this participant to qualita-

tively determine if postsurgical remnant hippocampal tissue could be

labeled using our model, since morphometric analysis of postsurgical

brain changes is a potential further application of the methods pres-

ented in this study. This study was approved by the University of
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Pittsburgh Human Research Protection Office and conforms to stan-

dards defined in the Declaration of Helsinki. All study participants

gave their informed consent prior to inclusion in the study.

2.2 | MRI acquisition

All studies were performed on a Siemens Magnetom whole body 7T

8 channel pTx system with an 8 × 2 transceiver and very high order

shim insert. RF shimming and 1st–4th order shimming over the whole

brain were performed as previously described (Hetherington,

Avdievich, Kuznetsov, & Pan, 2010; Pan, Lo, & Hetherington, 2012).

Images were acquired with acquisition parameters: 0.7 mm3 isotropic,

TR/TI1/TI2 6s/800/2700, acquisition time 9 min.

2.3 | Hippocampus and amygdala manual labeling

Hippocampi and amygdala structures were labeled using the ITK-

SNAP software package (http://www.itksnap.org/, [Yushkevich

et al., 2006]). Structures were delineated in the coronal plane on con-

secutive slices in a posterior-to-anterior direction.

2.4 | CNN training and testing

Facial features were removed from MRI scans using the “pydeface”
software tool (https://github.com/poldracklab/pydeface). For each sub-

ject the 1 mm isotropic MNI152 template provided as part of the FSL

software package was linearly coregistered to the target MP2RAGE

scan using the FLIRT software tool (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/

FLIRT, Jenkinson & Smith, 2001). The estimated coregistration matrix

was then applied to the MNI152 brain mask to generate an approximate

binary mask in the space of each individual's scan. Voxel-wise CNN

sampling and prediction was limited to voxels within this brain mask.

For these analyses, the MP2RAGE acquisition was the single

input channel used for model training. Five voxel-level output classes

were predicted, corresponding to left and right hippocampi, left and

right amygdala and the image background. The DeepMedic approach

utilizes a dual-pathway approach, with one path designed to identify

local discriminating features and an additional pathway that operates

on down-sampled input data to identify contextual features over a

larger spatial scale. The default down-sampling factor of 3 was used

for our analyses. A final fully connected Conditional Random Field

was used to derive “hard” binary voxel-level labels from the probabi-

listic soft segmentations output by the preceding dual pathways.

Image processing (CNN training and testing) was performed on a high

performance compute cluster using NVIDIA Tesla V100 GPUs. We

utilized a leave-one-out approach for evaluation of model perfor-

mance. A model was trained for every subject in the study, with all

subjects except the subject of interest used to train the model, and

hippocampus and amygdala labels estimated in the subject of interest

using this model.

2.5 | Assessing performance of CNN-based
hippocampal and amygdala labeling

Performance of the CNN was assessed by calculating the DSC

between manual and CNN-based labels in the testing groups. The

DSC assesses performance of image labeling tasks. If two labels per-

fectly overlap, the DSC = 1; if the two labels do not have any common

voxels the DSC = 0. A multiple linear regression model was used to

determine if (i) diagnosis, (ii) brain structure (hippocampus or amyg-

dala), and (iii) left/right laterality were significantly correlated with the

measured DSC; in this model the DSC was the dependent variable

and the three variables listed above were explanatory variables.

Volume estimates were calculated from CNN-based and manual

labels by summing the number of labeled voxels for each structure

(left and right hippocampus and amygdala) for each subject. The

agreement between CNN-based and manual volume estimates was

assessed using a simple linear regression model for each structure,

with the CNN-based estimate as the dependent variable and the man-

ual volume estimate as the explanatory variable. Healthy controls and

epilepsy patients were assessed separately. The linear model was con-

strained to pass through the origin that is, the y-axis intercept term

was set at zero. For this analysis the p-value for statistical significance

was corrected for multiple comparisons using the Bonferroni method;

an adjusted threshold 6.25 × 10−3 (0.05/8) was used.

For volumetric analysis of the epilepsy group we conducted both

individual and group-level comparisons. Individual z-scores for each

individual brain structure volume estimate were calculated from frac-

tional structure volume estimates, with each hippocampal and amyg-

dala volume divided by the head volume estimate for all cases. Group

level comparisons of hippocampal and amygdala volume changes were

assessed using multiple linear regression with hippocampus or amyg-

dala volume as the dependent variable and diagnosis, age, sex, and

head size as predictor variables. For these analyses the epilepsy

patients were subclassified into cases with temporal lobe involvement

based on all available clinical data (N = 6) and those with primarily

extratemporal seizures (N = 10).

3 | RESULTS

The trained CNN-based predictive model successfully labeled all hip-

pocampi and amygdala in healthy controls and epilepsy cases.

Figure 1 shows an example of the automated hippocampal and

amygdala labeling in a healthy control. The average DSC in our test-

ing cohort = 0.88 ± 0.03 for the hippocampus and 0.8 ± 0.06 for the

amygdala (Figure 2). There were some outliers with reduced DSC

observed in the analyses; in the healthy control group these cor-

responded to subjects with reduced image quality presumably due

to in-scanner head motion and resulted in reduced DSCs across left

and right hippocampal labels and the left amygdala (see Supporting

Information). The outlier in the right hippocampus epilepsy group

corresponded to the case with hippocampal sclerosis. The DSC for

hippocampal labels was higher than for amygdala labeling
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(p <2 × 10−16). There was no evidence that DSC depended on diag-

nosis (p = .91). There was marginal evidence that right sided struc-

tures had greater DSC than left sided structures (p = .051). Summary

volume statistics are provided in Table 1. The CNN-based volume

estimates were highly correlated with manual volume estimates for

both left and right hippocampi and amygdala in epilepsy cases and

F IGURE 1 An example of
automated CNN-based labeling of the
hippocampus and amygdala on whole
brain 700 μm MP2RAGE acquired in a
healthy control imaged at 7T. CNN-
based labels are shown on the right
column, with manual labels shown in
the middle column
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controls (Figure 3, p <2 × 10−16 for all linear models, slope estimate

range = [0.94, 0.99]), supporting the utility of the technique in clini-

cal populations. In the single epilepsy case with clinical MRI indicat-

ing right hippocampal sclerosis, the CNN-based method identified

reduced volume in the affected hippocampus (Figure 4). In this case,

the z-score when comparing right hippocampal volume in the indi-

vidual with the healthy controls = −3.64, which indicates signifi-

cantly reduced volume. Applying our hippocampus and amygdala

labeling model to the epilepsy case who had undergone laser abla-

tion surgery in the left hippocampus shows that our predictive model

successfully labeled remnant posterior hippocampus (Figure 5).

Group level analyses did not identify any significant hippocampal

volume changes in the epilepsy patients (p = .98) however amygdala

volumes were increased in the cases with temporal lobe seizures

(152 mm3 or 13% increase relative to control amygdala vol-

umes, p = .017).
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F IGURE 2 Overlap between manual and automated CNN-based labels for hippocampi and amygdala. A DSC = 1 indicates perfect overlap of
the manual and automated labels. Overlap between manual and automated labels is greater for the hippocampus than the amygdala, which is
likely due to the larger volume of the hippocampus and better definition of neuroanatomical boundaries between the hippocampus and
surrounding brain structures compared with the amygdala

TABLE 1 Summary volume estimates for the hippocampus and amygdala derived using a convolutional neural network-based labeling
technique

Right hippocampus volume

(mm3, mean ± SD)

Left hippocampus volume

(mm3, mean ± SD)

Right amygdala volume

(mm3, mean ± SD)

Left amygdala volume

(mm3, mean ± SD)

Healthy control 3,157 ± 294 3,046 ± 300 1,145 ± 217 1,170 ± 170

Epilepsy 2,926 ± 431 2,786 ± 735 1,215 ± 199 1,181 ± 259
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F IGURE 3 Comparison of CNN-based volume estimates (y-axis) with manual volume estimates (x-axis). The plots indicate high agreement
between CNN-based volume estimates and manual volume estimates in both epilepsy patients and healthy controls
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MP2RAGE Manual labels CNN-based labels F IGURE 4 CNN-based
labeling of the hippocampus and
amygdala in an individual with
hippocampal sclerosis in the right
hippocampus (yellow arrows). The
right column shows the CNN-
based labels and the middle
column shows manual labels for
comparison. The figure

demonstrates that the CNN-
based technique is successfully
able to label the atrophic
hippocampus, supporting the
clinical utility of the technique for
mapping hippocampal changes in
temporal lobe epilepsy
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MP2RAGE Manual labels CNN-based labelsF IGURE 5 CNN-based
labeling in an epilepsy patient
who has undergone laser ablation
surgery. The ablated tissue region
is indicated in the left column
(yellow arrows). The right column
indicates that the CNN-based
labeling technique is able to label
remnant hippocampal tissue

despite the presence of severe
postsurgical neuroanatomical
changes in the hippocampus and
surrounding brain regions
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4 | DISCUSSION

Our study demonstrates that CNN-based methods may be useful

approach for labeling neuroanatomical structures on sub-mm resolu-

tion 7T imaging. The DSC values estimated in our study are consistent

with previous work; for example, Morey et al. (2009) compared auto-

mated hippocampal and amygdala volume estimates with manual seg-

mentations using Freesurfer and FSL-FIRST and found DSCs in the

range [0.77, 0.82] for the hippocampus and [0.70, 0.75] for the amyg-

dala, which are slightly lower than our observed DSCs of 0.88 for the

hippocampus and 0.8 for the amygdala respectively. The reduced DSCs

in the amygdala versus the hippocampus are likely due to the lower

volume of the amygdala and relatively ambiguous neuroanatomical

boundaries in the anterior end of the amygdala. Our analyses did not

demonstrate that performance was reduced in epilepsy cases. We note

however that our sample size is limited and medically refractory focal

epilepsy is a broad category that may include a variety of distinct tissue

pathologies that can vary in terms of tissue signal, contrast, and mor-

phology. Application of the techniques described in this study to larger

patient groups stratified by pathology or etiological factors will allow

for more accurate assessment of CNN performance in the presence of

lesional or dysmorphic tissue. Although the successful detection of

reduced hippocampal volume in the patient with likely hippocampal

sclerosis provides empirical support for the utility of this technique in

lesional cases, our approach should be applied to a larger cohort of hip-

pocampal sclerosis cases for a more rigorous evaluation. The inclusion

of more cases with specific tissue pathology for CNN training will also

likely improve performance. The finding of increased amygdala volume

along with normal overall hippocampal volumes in cases with temporal

lobe seizures was unanticipated, however, increased amygdala volume

in temporal lobe epilepsy has been reported previously (Capizzano

et al., 2019; Lv et al., 2014; Reyes et al., 2017).

Because of known problems with transmission homogeneity, a

key aspect of structural imaging at 7T is the RF coil performance. In

this study, the use of the 8 × 2 transceiver with RF shimming yielded

sufficient B1+ homogeneity both experimentally and theoretically, so

that additional methods such as the use of high permittivity pads was

not necessary (Aussenhofer & Webb, 2013; Vaidya, Deniz, Collins,

Sodickson, & Lattanzi, 2018). It should be noted however that it is

unknown if our CNN model can be successfully applied to imaging

data acquired with alternative hardware & acquisition protocols; this

may require additional demonstration. Nonetheless, these datasets

were acquired with routine performance, and provide target perfor-

mance metrics which should be investigated in future studies. Perfor-

mance is also likely to improve if a larger training dataset was used.

One of the more immediate potential applications of this tech-

nique is to segment hippocampal subfields. Arguably the canonical

work in this field to date has been carried out by Wisse and colleagues

using a 700 μm isotropic T2-weighted acquisition at 7T (Wisse

et al., 2012, 2014). Inspection of images provided in these publica-

tions suggests that the boundaries between hippocampal subfields are

more radiologically evident than the imaging used in our study. It is

possible that imaging that is predominantly T2-weighted provides

contrast that may be better suited to the task of hippocampal subfield

segmentation. However it should be noted that with the minimal dif-

ference in T2 relaxation values between white and gray matter

(Bartha et al., 2002; Michaeli et al., 2002), T1 lengthening that occurs

at 7T, segmentation based on clarity of white-gray matter interfaces is

optimally acquired as a function of T1 weighting that is either directly

included in the analysis pipeline or controlled for optimal effect

(Visser, Zwanenburg, Hoogduin, & Luijten, 2010; Wisse et al., 2012).

In summary, we have demonstrated that CNNs can be trained to

label the hippocampus and amygdala using high resolution MP2RAGE

imaging acquired at 7T. We have provided preliminary evidence

supporting the potential clinical utility of the technique in individuals

with focal epilepsy. These findings suggest that CNN-based methods

may be a valuable tool for the next generation of morphometric analy-

sis tools for high spatial resolution high-field MRI neuroimaging.
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