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The human brain rapidly deploys semantic information during perception to facilitate our
interaction with the world. These semantic representations are encoded in the activity of distributed
populations of neurons (Haxby et al., 2001; McClelland and Rogers, 2003; Kriegeskorte et al.,
2008b) and command widespread cortical real estate (Binder et al., 2009; Huth et al., 2012).
The neural representation of a stimulus can be described as a location (i.e., response vector) in
a high-dimensional neural representational space (Kriegeskorte and Kievit, 2013; Haxby et al.,
2014). This resonates with behavioral and theoretical work describing mental representations of
objects and actions as being organized in a multidimensional psychological space (Attneave, 1950;
Shepard, 1958, 1987; Edelman, 1998; Gärdenfors and Warglien, 2012). Current applications of
this framework to neural representation (e.g., Kriegeskorte et al., 2008b) often implicitly assume
that these neural representational spaces are relatively fixed and context-invariant. In contrast,
earlier work emphasized the importance of attention and task demands in actively reshaping
representational space (Shepard, 1964; Tversky, 1977; Nosofsky, 1986; Kruschke, 1992). A growing
body of work in both electrophysiology (e.g., Sigala and Logothetis, 2002; Sigala, 2004; Cohen and
Maunsell, 2009; Reynolds and Heeger, 2009) and human neuroimaging (e.g., Hon et al., 2009; Jehee
et al., 2011; Brouwer and Heeger, 2013; Çukur et al., 2013; Sprague and Serences, 2013; Harel et al.,
2014; Erez and Duncan, 2015; Nastase et al., 2017) has suggested mechanisms by which behavioral
goals dynamically alter neural representation.

Here we present functional MRI data measured while participants freely viewed brief
naturalistic video clips of animals behaving in their natural environments (Nastase et al.,
2017). Participants performed a 1-back category repetition detection task requiring them to
attend to either animal behavior or taxonomy. There are several benefits to using dynamic,
naturalistic stimuli. They convey rich perceptual and semantic information (Bartels and Zeki,
2004; Huth et al., 2012) and more fully sample neural representational space than conventional
stimuli (Haxby et al., 2014). Furthermore, natural vision paradigms have greater ecological
validity (Felsen and Dan, 2005), and dynamic stimuli have been shown to drive reliable neural
responses across individuals (Hasson et al., 2010; Haxby et al., 2011). Data of this kind are
amenable tomultivariate pattern analyses (e.g., classification or representational similarity analyses;
Norman et al., 2006; Kriegeskorte et al., 2008a) or forward encoding analyses using visual
(e.g., Nishimoto et al., 2011), semantic (e.g., Huth et al., 2012), or neuromorphic models
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(e.g., recurrent or deep convolutional neural networks; Güçlü and
van Gerven, 2015). These data are intended to provide a test bed
for investigating object and action representation, as well as how
task demands alter the neural representation of complex stimuli
and their semantic qualities.

Twelve right-handed adults (seven female; mean age = 25.4
years, SD = 2.6, range = 21–31) with normal or corrected-
to-normal vision were sampled from the Dartmouth College
community to participate in the experiment. Participants
reported no history of psychiatric or neurological disorders.
All participants provided written, informed consent prior to
participating in the study in compliance with the Committee
for the Protection of Human Subjects at Dartmouth College,
including a provision for data to be shared with other researchers
around the world or on a publicly available data archive.
The study was approved by the Institutional Review Board
of Dartmouth College, and participants received monetary
compensation for their participation. All data were collected
between June 1 and September 6, 2013.

We implemented a full factorial repeated measures design
(Fisher, 1935) comprising five taxonomic categories, four
behavioral categories, and two tasks. The five taxonomic
categories were primates, ungulates, birds, reptiles, and insects.
The four behavioral categories were eating, fighting, running, and
swimming. Crossing the taxonomy and behavior factors yielded
20 total taxonomy–behavior conditions. The animal taxonomy
(i.e., object/form category) and behavior (i.e., action/motion
category) factors were chosen as these are thought to rely on
somewhat distinct, relatively well-studied neural pathways (Giese
and Poggio, 2003; Connolly et al., 2012; Oosterhof et al., 2013;
Sha et al., 2015; Wurm and Lingnau, 2015). The taxonomic and
behavioral categories roughly correspond to intermediate levels
of noun and verb hierarchies (Rosch, 1975; Fellbaum, 1990). We
designed the experiment under the assumption that the stimulus
dimensions conveying taxonomic and behavioral information are
not integral (i.e., producing facilitation or interference across
factors; Garner and Felfoldy, 1970). However, this may not
hold in practice; for example, some taxonomic features may
be necessary for behavior categorization, and certain taxa (e.g.,
birds) may interfere with the recognition of certain behaviors
(e.g., running).While the taxonomy and behavior factors are fully
crossed at the category level, it is not feasible to orthogonalize
lower-level correlates (e.g., motion energy, the specific animal
performing each action) in natural vision paradigms.

Each of the 20 taxonomy–behavior conditions comprised two
unique 2 s video clips, as well as horizontally flipped versions of
each clip for 80 visually unique stimuli in total. Video clip stimuli
were sampled from nature documentaries (Life, Life ofMammals,
Microcosmos, Planet Earth) and high-resolution YouTube
videos. Video clips were edited using the free FFmpeg software
package for handling multimedia files (https://www.ffmpeg.org).
Stimuli were back-projected onto a screen located at the back
of the scanner bore using a Panasonic PT-D4000U projector
and viewed via a mirror mounted on the head coil. Video
clips subtended a visual angle of ∼16.5◦ horizontally and ∼11◦

vertically. Stimuli were presented using PsychoPy (v1.76.00;
http://www.psychopy.org; Peirce, 2007; RRID:SCR_006571).

In designing the experiment, we adopted a condition-rich
ungrouped-events design (Kriegeskorte et al., 2008a). Each trial
consisted of a 2 s video clip presented without sound followed
by a 2 s fixation period for a trial onset asynchrony of 4 s
(Figure 1A). Each of the 80 stimuli was presented once each
run. This type of design has been argued to be particularly
efficient for characterizing the pairwise distances between neural
response patterns (Aguirre, 2007; Kriegeskorte et al., 2008a).
When convolved with a hemodynamic response function, this
design matrix will yield highly overlapping response predictors
(Figure 1B). The response magnitude for each condition can be
recovered using a conventional regression model (e.g., Nastase
et al., 2017), or regularized regression can be used to predict
responses based on an explicit model of stimulus features (e.g.,
Nishimoto et al., 2011). Each of the 80 unique stimuli can be
treated as a separate condition (Kriegeskorte et al., 2008a), or
20 conditions can be defined at the category level by collapsing
across the four exemplar clips per taxonomy–behavior condition
(Nastase et al., 2017).

In addition to the 80 stimuli, each run included four taxonomy
repetition events, four behavior repetition events, and four null
fixation events. This resulted in 92 events per run, plus an
additional 12 s fixation appended to the beginning and end of
each run, for a total run duration of 392 s (∼6.5min). Ten
unique runs were created and run order was counterbalanced
across participants using a Latin square (Fisher, 1935). Each run
was constructed in the following way. First, a pseudorandom
trial order containing all 80 stimuli and no taxonomic or
behavioral category repetitions was assembled. Second, eight
additional stimuli were inserted at particular locations in the
trial order to induce four taxonomic category repetition events
and four behavioral category repetitions events. Note that in
one run an error occurred where a behavior repetition event
was inserted that interrupted a previously inserted taxonomic
repetition event; this error went unnoticed during data collection
but is explicitly noted in text files accompanying the data. These
sparse repetition events were inserted such that a repetition
event of both types occurred within each quarter of the run. We
ensured that the same clip exemplar (or the horizontallymirrored
version) never occurred twice consecutively, and that for each
taxonomic or behavioral category repetition, the repetition
stimulus varied along the other dimension. Finally, four 2 s
null events comprising only a fixation cross were inserted at
pseudorandom locations in the trial order to effect temporal
jittering. One of the four null fixation events occurred each
quarter of the run and did not interrupt repetition events. This
resulted in an overall scan duration of∼65min.

Prior to scanning, participants were verbally familiarized with
the task and the categories. At the beginning of each run,
participants received written instructions indicating that they
should pay attention to either taxonomy or behavior and press
the button only when they observed a category repetition of
that type. Participants were informed that they should ignore
repetitions of the unattended type during that run. Button presses
were only required for the sparse repetition events (not for non-
repetitions) and the same button was used for repetitions of both
types. Although responses were collected for repetition events to
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FIGURE 1 | Experimental design. (A) Schematic of the rapid event-related design for both taxonomy attention and behavior attention task conditions. In the taxonomy

attention task, participants were instructed to press a button if they observed a taxonomic category repetition (e.g., two consecutive clips depicting reptiles; upper). In

the behavior attention task, participants were instructed to press a button if they observed a behavioral category repetition (e.g., two consecutive clips depicting

animals eating; lower). (B) Two example design matrices for predicting hemodynamic responses to the clips over the course of two runs with the taxonomy attention

task. In the condition-rich design, each of 80 visually unique stimuli receives a separate predictor (following Kriegeskorte et al., 2008a; upper), while in the category

design, the four exemplar clips per taxonomy–behavior condition are collapsed to form 20 category predictors (following Nastase et al., 2017; lower). Hypothesized

neural responses are convolved with a simple hemodynamic response function (Cohen, 1997). In this simple example, nuisance regressors for taxonomy and behavior

repetition events, first- through third-order Legendre polynomials, and run constants are appended to each design matrix. Figures were created using Matplotlib

(https://matplotlib.org; Hunter, 2007; RRID:SCR_008624) and seaborn (https://seaborn.pydata.org; Waskom et al., 2016).

ensure task compliance, this task was not intended to robustly
measure response latencies. We use the term attention loosely
here, as performing the 1-back category repetition detection
task also requires categorization, working memory, and motor
processes. Participants were instructed to maintain fixation only
during the fixation periods, and freely viewed the video clip
stimuli (cf. Çukur et al., 2013). Behavioral responses for repetition
events were collected using a single two-button Lumina LS-PAIR
response pad (Cedrus, San Pedro, CA) held in the right hand.

All functional and structural images were acquired using a 3T
Philips Intera Achieva MRI scanner (Philips Healthcare, Bothell,
WA; RRID:SCR_008656) with a 32-channel phased-array head
coil. Functional, blood-oxygenation-level-dependent (BOLD)
images were acquired in an interleaved fashion using gradient-
echo echo-planar imaging with a SENSE parallel imaging factor
of 2 (Pruessmann et al., 1999): TR/TE = 2000/35ms, flip
angle = 90◦, resolution = 3 mm3 isotropic, matrix size = 80
× 80, FoV = 240 × 240mm, 42 transverse slices with full
brain coverage and no gap. At the beginning of each run, two
dummy scans were acquired to allow for signal stabilization.
Ten runs were collected for each participant, each consisting of
196 functional volumes totaling 392 s (∼6.5min) in duration.
At the end of each session, a T1-weighted structural scan was
acquired using a high-resolution single-shot MPRAGE sequence:

TR/TE = 8.2/3.7ms, flip angle = 8◦, resolution = 0.9375 ×

0.9375 × 1.0 mm3 voxels, matrix size = 256 × 256, FoV = 240
× 240× 220 mm3. The BOLD signal reflects metabolic demands
and serves as a rough proxy for neural activity (primarily local
field potentials; Logothetis et al., 2001).

All data have been curated and organized according to the
Brain Imaging Data Structure (BIDS) standards (Gorgolewski
et al., 2016), and are freely available via the OpenNeuro
repository (https://openneuro.org; Poldrack and Gorgolewski,
2017). Data are version-controlled and conveniently accessible
using the DataLad data distribution (http://datalad.org;
Halchenko et al., 2017; RRID:SCR_003932, RRID:SCR_003931)
from their original location at http://datasets.datalad.org/?
dir=/labs/haxby/attention, as well as from OpenNeuro at
https://openneuro.org/datasets/ds000233 (RRID:SCR_005031).
According to the BIDS conventions, data are stored in separate
directories for each participant alongside the scripts used to
compile and analyze the data, a descriptive text file, and a
tab-separated text file describing participant demographics.
Within each participant’s directory, anatomical and functional
images are stored in separate directories. Both anatomical and
functional images are stored in compressed Neuroinformatics
Informatics Technology Initiative (NIfTI-1) format (Cox et al.,
2003; RRID:SCR_003141). Structural images were de-faced for
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FIGURE 2 | Behavioral and taxonomic category cross-classification using surface-based searchlights. To statistically evaluate the searchlight results, we first

computed a one-sample t-test against theoretical chance accuracy per searchlight (one-tailed test). We corrected for multiple tests by controlling the false discovery

rate (FDR) at q = 0.05 (Benjamini and Hochberg, 1995; Genovese et al., 2002). The mean classification accuracy across participants is plotted and searchlight maps

are thresholded at FDR q = 0.05. (A) Searchlight classification of behavioral categories cross-validated across taxonomic categories while participants attended to

animal behavior. Theoretical chance accuracy for four-way behavioral category classification is 0.25. The maximum mean searchlight accuracy for behavioral category

classification was 0.56 in left lateral occipitotemporal cortex (inferior occipital gyrus). (B) Searchlight classification of taxonomic categories cross-validated across

behavioral categories while participants attended to animal taxonomy. Theoretical chance accuracy for five-way taxonomic category classification is 0.20. The

maximum mean searchlight accuracy for taxonomic category classification was 0.36 in right ventral temporal cortex (lateral fusiform gyrus). Although we used a t-test

here for simplicity, note that the t-test may yield significant t-values even for near-chance accuracies, and a permutation- or prevalence-based approach may be

preferable in some cases (cf. Stelzer et al., 2013; Allefeld et al., 2016; Etzel, 2017). Surface vertices on the medial wall were excluded from the analysis and clusters of

fewer than ten contiguous significant vertices after thresholding were excluded for visualization purposes. Surface data were visualized using SUMA (Saad et al., 2004;

RRID:SCR_005927) and figures were created using GIMP (https://www.gimp.org; RRID:SCR_003182) and Inkscape (https://inkscape.org; RRID:SCR_014479).

anonymization purposes using an automated masking procedure
(Hanke et al., 2014). Each functional run is accompanied
by a file describing the acquisition parameters as well as a
tab-separated text file describing the following for each event:
the filename of the clip stimulus, the onset time, duration

(2 s), taxonomy–behavior condition, taxonomic category, and
behavioral category of the stimulus, as well as whether the
stimulus was horizontally mirrored, and whether the event was a
repetition or not (and of what type). Participant-specific button
presses and their associated response times are also included
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in the table. The 40 video clip stimuli (MPEG-4 files) are
distributed alongside the data in keeping with fair use provisions
for non-commercial scholarly research. Derived data, resulting
from preprocessing or other analyses are stored separately
in the top-level directory and recapitulate a similar directory
structure.

Behaviorally, participants reported category repetitions with
high accuracy (99% for both tasks, as reported in Nastase et al.,
2017). Although this suggests that participants allocated attention
sufficiently to perform the task, it precludes investigators
from relating the magnitude of attentional demands to neural
responses. We did not design the experiment with a “baseline”
or “no task” condition, as it is unclear what this would entail in
the context of natural vision paradigms, and any claims about
task demands must rely on relative differences between the two
tasks.

Organizing data in the standardized BIDS format facilitates
the use of portable analysis tools called BIDS Apps (Gorgolewski
et al., 2017). To assess the general quality of the data, we
used the MRIQC tool (v0.9.6; https://github.com/poldracklab/
mriqc; Esteban et al., 2017a). Across all participants and runs,
median temporal signal-to-noise ratio (tSNR) was 64.73 (range:
31.06–89.14), which approximates the expected tSNR given 3mm
isotropic voxels and 3T magnetic field strength (Triantafyllou
et al., 2005), and is comparable to existing data sets (e.g.,
Sengupta et al., 2016). Mean framewise displacement (Power
et al., 2012) was on average 0.15mm (range: 0.10–0.44mm)
across participants and runs, indicating fairly low head motion.
The full MRIQC report is available alongside the data at
OpenNeuro.org.

To verify that events were annotated correctly, we performed
a simple multivariate analysis. Data were first preprocessed
using the fMRIPrep BIDS App (v1.0.0-rc5; https://github.
com/poldracklab/fmriprep; Esteban et al., 2017b, in review), a
Nipype-based tool (Gorgolewski et al., 2011; RRID:SCR_002502,
RRID:SCR_002823). Cortical surfaces were reconstructed from
anatomical scans using FreeSurfer (v6.0.0; https://surfer.nmr.
mgh.harvard.edu; Dale et al., 1999; RRID:SCR_001847) and
spatially normalized to the fsaverage6 template based on sulcal
curvature (Fischl et al., 1999). Preprocessed data output by
fMRIPrep are available at OpenNeuro.org, including volumetric
and surface-based formats both in native space and normalized
to standardized templates. FMRIPrep also returns as a variety
of nuisance variables intended to capture head motion and
physiological artifacts. Functional images were corrected for
slice-timing (Cox, 1996), head motion (Jenkinson et al., 2002),
and aligned to the anatomical image (Greve and Fischl, 2009).
Functional data were not explicitly spatially smoothed. We then
used a general linear model implemented in AFNI (v17.1.02;
https://afni.nimh.nih.gov; Cox, 1996; RRID:SCR_005927) to
estimate response patterns for the 20 taxonomy–behavior
conditions in each run per task. Nuisance regressors comprised
framewise displacement (Power et al., 2012), the first six principal
components from an automatic anatomical segmentation of
cerebrospinal fluid (aCompCor; Zhang et al., 2001; Behzadi
et al., 2007), and de-meaned head motion parameters
and their derivatives, regressors for repetition events and

button presses, as well as first- through third-order Legendre
polynomials.

We then used linear support vector machines (SVMs; Boser
et al., 1992; Chang and Lin, 2011; RRID:SCR_010243) in surface-
based searchlights (10mm radius; Kriegeskorte et al., 2006;
Oosterhof et al., 2011) to classify taxonomic and behavioral
categories. We used a leave-one-category-out cross-classification
approach in both cases: to classify the five taxonomic categories,
we trained SVMs on three of the four behavior categories
and tested on the left-out behavior category (Figure 2A); to
classify the four behavioral categories, we trained SVMs on
four of the five taxonomic categories and tested on the left-
out taxonomic category (Figure 2B). This approach requires that
information about, e.g., behavioral categories, encoded in local
response patterns generalizes across both stimuli and taxonomic
categories (Kaplan et al., 2015; Nastase et al., 2016; Westfall
et al., 2016). All multivariate analyses were performed using
PyMVPA (v2.6.3.dev1; http://www.pymvpa.org; Hanke et al.,
2009; RRID:SCR_006099) in the NeuroDebian computational
environment (Debian “jessie” 8.5 GNU/Linux with NeuroDebian
repositories; http://neuro.debian.net; Hanke and Halchenko,
2011; RRID:SCR_006638, RRID:SCR_004401), making heavy
use of Python-based tools SciPy (https://www.scipy.org; Jones
et al., 2001; RRID:SCR_008394, RRID:SCR_008058), NumPy
(http://www.numpy.org; Walt et al., 2011; RRID:SCR_008633),
and the IPython interactive shell (https://ipython.org; Perez
and Granger, 2007; RRID:SCR_001658). All scripts used to
perform these analyses are provided alongside the data. The
resulting searchlight maps corroborate prior work on action and
taxonomic category representation (e.g., Connolly et al., 2012;
Wurm and Lingnau, 2015; Nastase et al., 2017), and demonstrate
the potential utility of the data set.
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