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Abstract: In mammals, integrins are heterodimeric transmembrane glycoproteins that represent
a large group of cell adhesion receptors involved in cell–cell, cell–extracellular matrix, and cell–
pathogen interactions. Integrin receptors are an important part of signalization pathways and have
an ability to transmit signals into and out of cells and participate in cell activation. In addition
to somatic cells, integrins have also been detected on germ cells and are known to play a crucial
role in complex gamete-specific physiological events, resulting in sperm-oocyte fusion. The main
aim of this review is to summarize the current knowledge on integrins in reproduction and deliver
novel perspectives and graphical interpretations presenting integrin subunits localization and their
dynamic relocation during sperm maturation in comparison to the oocyte. A significant part of this
review is devoted to discussing the existing view of the role of integrins during sperm migration
through the female reproductive tract; oviductal reservoir formation; sperm maturation processes
ensuing capacitation and the acrosome reaction, and their direct and indirect involvement in gamete
membrane adhesion and fusion leading to fertilization.
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1. Introduction

Mammalian reproduction is a complex physiological process that at the molecular
level involves a series of events preceding successful sperm-oocyte fusion. This process is
facilitated by mutual interactions of many molecules developing wide protein networks in
membranes of both germ cells. The main participants of these complex protein networks
are transmembrane tetraspanin receptors in cooperation with adhesion molecules called
integrins. The integrins are heterodimeric transmembrane glycoproteins that represent a
large group of cell adhesion receptors involved in cell–cell, cell–extracellular matrix, and
cell–pathogen interactions [1]. These receptors have the ability to transmit signals in both
directions, into and out of a cell, and are involved in a wide range of physiological processes
such as: immune response, lymphocyte homing, platelet aggregation, in wound healing,
cell differentiation, migration, proliferation, and even in cell survival [2,3]. To date, 18 α

and 8 β subunits have been detected in mammalian cells, which form 24 different known
heterodimer combinations [4,5]. The particular combination of subunits defines ligand
binding specificity of individual integrin heterodimers. While some integrin heterodimers
interact with only a single ligand others recognize several distinct proteins [6]. In addition
to somatic cells, integrins have also been detected on both male and female germ cells
and are known to play an important role in multiple levels during the complex event of
mammalian reproduction. The present review provides a comprehensive overview of
current knowledge of the role of integrins in gamete physiology, maturation, activation,
communication, interaction, and fusion.
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2. Integrins in Mammalian Gametes

Mammalian fertilization is based on cell–cell and cell–extracellular matrix interactions,
and integrins, as key adhesive receptors of cells, are significantly involved in this process.
The role of integrins in fertilization was investigated during the 1990s and most research
was carried out on the study of their expression in oocytes. It was shown that the use
of function-blocking monoclonal antibodies against a selected integrin during in vitro
fertilization, reduced the ability of sperm to bind or fuse with an oocyte (reviewed in [7]).
However, the experiments with integrin knock-out mice did not confirm the essential role
of integrin in gamete membrane fusion. It is significant to note that much less attention
was paid to researching the role of integrins on sperm. To date, 9 α and 7 β subunits have
been described on oocytes, but only 5 α and 3 β subunits have been detected on sperm and
are summarized in Table 1.

Table 1. Localization of integrin subunits on acrosome-intact and acrosome-reacted sperm in human and mouse. Abbrevia-
tions are as follows: (PM) plasma membrane; (OAM) outer acrosomal membrane, (IAM) inner acrosomal membrane, (AC)
acrosomal cap, (AA) apical acrosome, (AH) apical hook, (PAR) post-acrosomal region, (ES) equatorial segment, (M) middle
piece, and (*) protein localization not reported.

Subunit
Human Sperm Mouse Sperm

Acrosome-Intact Acrosome-Reacted Acrosome-Intact Acrosome-Reacted

α3 mainly AC (20% P + M) [8]
ES [9]

OAM + PM [10]
AC + OAM [11]

AA [12]
AA [10]

α4
ES [9]

mainly AC [8]
* [13]

* [13]

α5

ES [9]
PM [14]

ES + M (25% P) [8]
* [13]

* [13]

α6

ES [9]
PAR + M (40% AC) [8]

AC [15]
* [13]

PAR [15]
* [13]

ES + PAR [16]
PM + AH + ES [10]
AC + AH + ES [11]

ES [12]

AH + ES [10]
ES [12]

αV
IAM [14]

PAR + M [8]
ES + PM + OAM + IAM [17]

IAM [14]
ES + PAR + IAM + M [17]

AC + ES [18]
IAM + OAM + PM + AH [17]

AC + ES [18]
PAR + IAM + M [17]

β1
ES [9]

PM [14]
AC [15]

PAR [15]

ES + P [16]
OAM + AA + AH + PM [10]

AC + OAM [11]
AP [12]

ES + IAM + whole
head [10]

β3 PAR + M [8] IAM [14] AC + ES [18] AC + ES [18]

β4 AC (40% ES + M) [8] AA + AH + ES [11]
ES [12] ES [12]

These subunits create heterodimers, which localize differently in individual compart-
ments of the sperm head (Figure 1). The integrins are part of a wide protein network called
the tetraspanin web located in the oocyte plasma membrane (PM) called the oolemma.
Within the tetraspanin web the integrins interact and cooperate with tetraspanins such as
CD9, CD81, and CD151, as well as other receptors. Some of the integrins and tetraspanins
identified on the oocyte have also been found on sperm. For this reason, it is likely that
similar protein networks to those on the oocyte exist on sperm, where they participate
in sperm maturation, activation, and interaction with the surrounding epithelium and
ultimately with the oocyte.
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Figure 1. Localization of integrin subunits and tetraspanins in human (A,B), mouse (C,D), acrosome-intact (A,C), and 
acrosome-reacted sperm (B,D). 
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tract (the vagina or uterus, depending on the species [19,20]), and migrates into the site of 
fertilization, to fuse with the oocyte. During this journey, only a part of the ejaculated 
sperm (that without morphological defects) reaches the fallopian tube [20,21]. 

During the migration from uterus to the oviduct, particularly to its proximal part 
called ampulla, sperm have to overcome crucial barriers in the female reproductive tract 
called uterotubal junctions (UTJ). The UTJ serve as an active selective filter for sperm 
transport [22] and it is known that various proteins of otherwise morphologically intact 
and normally motile sperm play a role in this selection [23]. Experiments with mice lack-
ing genes for ADAM proteins, especially ADAM3 [24,25], point to the inability of such 
spermatozoa to pass through the UTJ. In this case, the integrins expressed on UTJ 

Figure 1. Localization of integrin subunits and tetraspanins in human (A,B), mouse (C,D), acrosome-intact (A,C), and
acrosome-reacted sperm (B,D).

2.1. Integrins as a Part of the Oviductal Reservoir of Sperm

During sexual intercourse in mammals, sperm enters into the female reproductive
tract (the vagina or uterus, depending on the species [19,20]), and migrates into the site
of fertilization, to fuse with the oocyte. During this journey, only a part of the ejaculated
sperm (that without morphological defects) reaches the fallopian tube [20,21].

During the migration from uterus to the oviduct, particularly to its proximal part
called ampulla, sperm have to overcome crucial barriers in the female reproductive tract
called uterotubal junctions (UTJ). The UTJ serve as an active selective filter for sperm
transport [22] and it is known that various proteins of otherwise morphologically intact
and normally motile sperm play a role in this selection [23]. Experiments with mice
lacking genes for ADAM proteins, especially ADAM3 [24,25], point to the inability of such
spermatozoa to pass through the UTJ. In this case, the integrins expressed on UTJ epithelial
cells could potentially be binding partners for sperm proteins of the ADAM family [26].
The failure of the ability of sperm to bind to the integrins of the oviductal epithelium, leads
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to an inability of sperm to migrate through the UTJ, however the specific mechanism of this
process is not yet known [27]. Since such sperm are also reported to have a reduced ability
to bind to zona pellucida of the oocyte, it is possible that a similar mechanism applies to both
the above-mentioned interactions [26]. The theory, that integrins may play a role in the
transfer of sperm through the UTJ, is supported by the fact that sperm with missing genes
for other proteins, such as calmegin, lack the ability to pass through the UTJ [28]. Calmegin
serves as chaperone protein and its failure leads to incorrect folding of the protein in the
endoplasmic reticulum. Mice without calmegin produce sperm without ADAM2 in their
PM [29] and these sperm also are not able to overcome the UTJ [24].

Those sperm, which pass through the UTJ, bind via sperm head receptors to the
epithelial cells in the narrowed section of the fallopian tube (isthmus), creating an oviductal
reservoir [23,30], however the molecular mechanism is not currently clear. It has been
shown that protein binding may vary from species to species, and at the same time may
be mediated by complex protein interactions of different molecules in a particular species
(e.g., [31]). Many studies have suggested that binding is mediated by glycans [32,33], and,
in some cases, by fucose [34]. It also appears that integrins may be involved in the binding
of sperm to oviductal epithelial cells. One possible mechanism is the binding of fibronectin,
which is located on the apical part of the ciliated cells of the human oviduct, and integrin
α5β1, which was detected on the surface of sperm [35]. Fibronectin binds to integrins
through its RGD domain. Integrins have also been detected on the surface of oviductal
ciliated cells, e.g., αV, β3, and β1 [27] and therefore, may also be involved in this interaction.
These oviduct-specific integrins could potentially bind to sperm-localized fibronectin [31].

In addition to integrin interactions, other molecules of epididymal origin have been
detected in sperm, which are probably involved in sperm transport through the female
reproductive tract; examples are, β-defensin [31] or lectin-like molecules as Binder of SPerm
(BSP) proteins [36]. While the β-defensin binding partner on oviductal epithelial cells is
unknown, BSPs bind to annexins. Chaperone proteins in the oviduct are also proposed to
be involved in the interaction with sperm, but their exact function is not yet known [37].
Research suggests that the binding of sperm to oviductal epithelial cells prolongs their
life by regulating the course of capacitation and affecting sperm motility thus ensuring
synchronization of sperm maturation with ovulation [38]. It is believed that this binding
process also enables a selection of sperm with the best morphology, as well as enabling the
gradual release of sperm capable of fertilization. The binding process increases the chances
of successful fertilization while also reducing the likelihood of polyspermy [39,40].

Interestingly, the rate of sperm release increases during ovulation [41]. Due to the
interaction of sperm with the components of oviductal fluid, capacitation is initiated and
the ability of sperm to bind to epithelial cells in the fallopian tube is gradually lost. It
was discovered in cattle [35,42] that an increase of fibronectin levels in an oviductal fluid
during the pre-ovulatory period may promote a sperm release from the oviductal reservoir
through the interaction with the sperm surface fibronectin receptor α5β1 integrin.

2.2. Integrins in the Interaction of Oviductal Fluid with Sperm

Integrins together with tetraspanins (e.g., CD9 and CD81) play a key role in the
interaction of sperm with components of oviductal fluid. Reproductive fluids in both male
and female genital tracts are known to contain extracellular microvesicles and exosomes.
These are membrane-coated vesicles used for transferring the required proteins onto
the sperm surface during maturation in the epididymis and subsequently in the female
reproductive tract [43]. Upon binding to the oviductal reservoir, sperm comes into contact
with oviductal fluid vesicles, so-called oviductosomes [44], which contain large numbers
of proteins [45].

Unlike somatic cells, sperm are not capable of endocytosis, where the transfer of pro-
teins, peptides, lipids, DNA fragments, and RNA molecules between extracellular vesicles
and the recipient cell occurs by endocytosis through membrane fusion [46]. Therefore,
fusion is the primary mechanism for protein transfer between sperm and microvesicles [47].
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The crucial role of integrins in this fusion process has been confirmed by the research of Al
Dossary et al. [48], who studied the presence, localization, and role of the CD9 molecule
and the αV subunit of integrin αVβ3 in a mouse model. Both molecules were detected in
oviductosomes, and the regions of sperm involved in the primary sites of gamete mem-
brane fusion (the head and neck). The study showed that the fusion of the oviductosome
with the sperm membrane can be inhibited in the presence of ligands (fibronectin and
vitronectin) binding to the integrins α5β1 and αVβ3, by adding the Arg-Gly-Asp peptide
chain (RGD motif) or antibodies against the αV subunit. This confirms that integrins play
a crucial role in this process. According to the model of Al-Dossary et al. [48], the CD9
proteins form a fusion site on both membranes of oviductosomes and sperm (Figure 2),
where adhesive proteins such as integrins α5β1 and αVβ3 are also present. The respective
ligands for the described integrins, fibronectin and vitronectin, bind to their activated
receptors, bringing the membrane of sperm and oviductosome to a distance of less than
0.5 nm [49], which ensures electrostatic repulsion of polar lipid heads. This results in the
opening of the plasma membrane outer layer, leading to the formation of hydrophilic
fusion pores between the sperm and the oviductosome and thus, fusion. In addition to
mouse sperm, αV integrin was detected on human sperm [17] where it is localized in the
PM covering the acrosomal cap (AC) and the inner acrosomal membrane (IAM). This may
suggest that a similar mechanism as the one proposed by Al-Dossary et al. [48] for mouse,
may play a role in the fusion of the human sperm membranes with oviductosomes in the
reproductive tract of women.
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Figure 2. Interaction of sperm and oviductosome membranes via integrin heterodimers.

The described sperm-oviductosomes membrane interaction is important, for example,
for the transport of the membrane protein Ca2+ ATPase (PMCA4), which serves to transfer
Ca2+ across the PM of sperm [50]. Sufficient PMCA4 is important for maintaining sperm
viability during capacitation, hyperactivation, and the acrosome reaction and all these
processes require elevated Ca2+ levels [51]. Furthermore, transmembrane and membrane
proteins can be transported to the sperm surface via oviductosomes during these final
maturation processes [48]. Interestingly, Ferraz et al. [45] observed higher success rates of
fertilization using in vitro experiments on a cat model when sperm were incubated with
oviductosomes compared to the samples where oviductosomes were not present. At the
same time, it is quite probable that the same or a similar mechanism, based on integrins
and tetraspanins, also applies to the interaction of sperm with extracellular vesicles in the
earlier stages of maturation, e.g., in the male reproductive tract.

2.3. The Role of Integrins in Membrane Reorganization and Stability

During the acrosome reaction, a significant reorganization of sperm membranes occurs,
involving the fusion of the outer acrosomal membrane (OAM) with the PM that is facilitated
by rapid depolymerization of actin fibers [52] and leads to exocytosis of the acrosome [53].
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The released content disrupts zona pellucida and allows the sperm to enter the perivitelline
space, and thus come into direct contact with the oolemma of the oocyte. At the same time,
the IAM, with its protein content, reaches the surface of the sperm head [54,55]. During
the acrosome reaction, proteins from the apical acrosome (AA), such as Izumo1 [56], CD9,
CD81, CD46 [10,57], and integrins [10,12] relocate to other compartments of the sperm
head, mainly to the primary fusion site of sperm formed by IAM and residual PM called
the equatorial segment (ES). These relocated proteins later participate in gamete membrane
interaction and fusion. The dynamic relocation of integrins during the final stages of sperm
maturation suggests their possible function in processes following the acrosome reaction.
Feasibly, protein relocation occurs by transport via hybrid vesicles, which are released
during the fusion of the PM and OAM followed by fusing with the remaining PM covering
the sperm [58]. It is known that, in addition to integrins, these vesicles also contain, for
example, the CD46 protein [10].

Actin networks play a key role in signaling pathways and processes during the acro-
some reaction. An open question remains regarding which specific proteins in addition
to actin may be involved in the reorganization and stabilization of this protein network.
Integrins are suspected to play a crucial part due to their ability to interact directly or
indirectly with the actin cytoskeleton (Figure 3) and control and regulate its rearrange-
ment [59]. The indirect interactions between actin and integrins are achieved via their
binding partners within the membrane protein network such as CD46 [60], CD81 [61], and
CD9 [62]. Based on recent research, which extended our knowledge of the existence of
the tetraspanin network in sperm [11,12], we could argue that the same mechanism also
takes place on sperm. It has been shown that the CD46 transmembrane protein represents
a binding partner of β1 integrins in sperm and both these proteins jointly relocate during
the acrosome reaction [10]. In addition, CD46 is responsible for stabilizing the acrosomal
membrane and thus the entire acrosome via the actin cytoskeleton. This acrosome stability
is achieved either via direct binding to actin filaments in the presence of the ERM (ezrin,
radixin, moesin) protein, or indirectly via interaction with β1 integrins. Interestingly, it
has been shown that mouse sperm depleted in the CD46 protein [63] have an increased
rate of spontaneous acrosome reaction that is initiated in the absence of zona pellucida. This
observation correlated with the research done on field mice (genus Apodemus) in which
sperm displayed a high rate of spontaneous acrosome reaction due to the absence of the
CD46 protein [64–66]. The above supports the theory that the CD46 protein participates in
acrosome stability, possibly in conjunction with β1 integrins.
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In addition to β1 integrins, β4 integrins, which have been detected in both human [8]
and mouse sperm [11], are possibly involved in acrosome stability and the acrosome
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reaction. Frolikova et al. [11] detected β4 integrin subunits in the PM overlying the apical
part of the acrosome and in the ES of mouse sperm. The cytoplasmic tail of β4 integrin
is significantly longer than other β integrin subunits and has the ability to be involved
in cytoskeletal reorganization. It affects, for example, the Rac1 protein (Ras related C3
botulinum toxin substrate 1 protein) and its activation [67], which plays an important role
in capacitation and the acrosome reaction, especially in the remodeling of actin in the apical
part of the acrosome [68]. Unlike other integrins, β4 binds not only to actin and tubulin
but also to intermediate filaments, such as keratin 5 via its counterpart plectin, which
surrounds the sperm nucleus [68]. This binding ability is due to the structural differences
of the cytoplasmic domain of β4 (Figure 3) and may contribute to the mechanical and
structural stability of a cell. In a similar way to β1 integrins, it is possible that β4 integrins
interact with tetraspanins. Jankovicova et al. [12] presented in a recent study, an expression
of CD151 protein in the sperm ES and confirmed its interaction with the α6 integrin subunit.
This protein assembly should result in the formation of a stabilizing protein complex at
this primary fusogenic site during the acrosome reaction.

2.4. Integrins in the Organization of Protein Complexes

Tetraspanins are the main binding partners of integrins in gametes. Several tetraspanins
have been found in sperm (Figure 1), mainly, CD9 [57,69–71], CD81 [57,72], and CD151 [12].
They are proteins with four transmembrane domains and two extracellular regions, and
their main role is to regulate the arrangement of membrane protein complexes (such as
receptors, signaling proteins, and fusogens). Tetraspanins participate in the reorganization
of membranes, relocation of proteins, stabilization of individual sperm compartments,
and can modulate the function of other members of protein networks, mainly through
association with integrins such as α3β1 and α6β1 [73] or αVβ3 [74]. These bonds can be
either direct (CD151) or indirect through other tetraspanins (CD9 and CD81).

CD9 is an essential protein in the oocyte. Anti-CD9 antibodies significantly reduce
fertilization in vitro [75] and the depletion of Cd9 gene results in almost complete sterility
of female mice, while males remain fertile [73,76]. In oocytes, the main role of CD9 proteins
is not only an interaction with other proteins (e.g., integrins) within the oolemma, called
cis-interactions (lateral bonds between proteins or subunits in the membrane of one cell),
but also protein interactions between the oolemma and sperm membrane, called trans-
interactions (antiparallel interactions between proteins or subunits between membranes of
two cells to mediate cell-cell adhesion) (Figure 4). Moreover, CD9 is responsible for the
formation of egg microvilli [77] and its crystal structure analysis suggests that this molecule
is localized in microvilli high curvature regions [78]. CD9 is probably involved in enhancing
adhesion between gametes implying the trans-protein interaction [57]. In addition, Miyado
et al. [79] suggested that CD9 plays a major role in the formation of microvesicles that are
released from the oocyte into the environment ultimately before fertilization. The transport
of CD9 from the CD9-positive oocytes to sperm via exosomes, allowed these sperm to bind
to CD9-deficient oocytes [79,80]. However, these results could also be interpreted with
later discovery of CD9 expression in sperm [57,69]. It is also feasible that other proteins
such as integrins could be exchanged between gametes via exosomes [18].

In addition to CD9, the role of the CD81 tetraspanin was addressed by the Cd81−/−

mouse model. The Cd81-depleted mice did not show a significant reduction in fertility
compared to Cd9−/−, however double CD9−/−/CD81−/− mouse model resulted in total
sterility of females [76]. Importantly, the research shows that the role of tetraspanins may
be species specific, as similarly described for integrins, and it is relevant that anti-CD81
antibodies significantly reduced fertilization in mice [76], whereas they had no effect on
human oocyte fertilization success [81]. On the other hand, anti-CD151 antibodies blocked
sperm-oocyte membrane fusion mainly in human [81].
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2.5. The Role of Integrins in Gamete Fusion

After sperm penetrate zona pellucida and thus enter the perivitelline space, they bind
to the oolemma and one of them subsequently fuses with it. To date, many candidate
proteins have been proposed, including integrins, that may play a key role during gamete
binding and in membrane-specific fusion regions. The sperm head membrane is divided
into specific domains destined to come into first contact with the oolemma, and their
specific functions are reflected in their unique protein profile [82]. In contrast, the oolemma,
is compartmented into microvilli, where sperm binding occurs [83,84], and areas that are
not specialized for sperm primary binding such as, oolemma between individual microvilli
and in some species a distinct microvilli-free region overlaying the female nucleus. Gamete
fusion is a very complex process, and it involves a number of interactions of protein
networks located in the membranes of both gametes. Based on experimental work using
monoclonal antibodies, in vitro fertilization, or knock-out models, important components
of these protein networks were identified. Additionally, certain candidate proteins were
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ruled out (e.g., fertilin or CRISP1 [85]). Based on current research, Juno and CD9 on oocytes;
and Izumo1, SPACA6, TMEM95, FIMP, SOF1, DCST1, and DCST2 on sperm (reviewed
in [86]) are considered as fertilization-essential proteins in mammals [73,87–94].

Currently, the role of integrins in sperm-oocyte binding/fusion is still not fully under-
stood. Initial hypotheses about the possible role of integrins in gamete adhesion/fusion
stemmed from the discovery of their binding partners, proteins from the ADAM family
in sperm [95,96]. Initially, fertilin, a heterodimer consisting of two subunits, fertilin α

(ADAM1B) and fertilin β (ADAM2), were investigated. Experiments with antibodies
against fertilin β and the fertilin β knock-outs resulted in a significant reduction in sperm
adhesion and fusion to the oocyte [24,96–98]. Subsequently, ADAM proteins have also
been shown to be engaged in sperm migration into the oviduct and in binding to the zona
pellucida. Most of the ADAM proteins contain a disintegrin (integrin ligand-like) domain
through which they can bind to integrins, demonstrated in somatic cells [95]. The presence
of integrins was soon confirmed in the oocyte [99–101] and the interaction of integrins
and their receptors, ADAM proteins on sperm, was suggested as a mechanism necessary
for membrane adhesion and fusion. Even though the integrin α6β1 was proposed as a
main binding partner for fertilin β [102], experiments using antibodies did not provide
a consistent outcome. Almeida et al. [103] showed that antibodies against the α6 inte-
grin subunit significantly inhibited sperm binding to zona pellucida-free oocytes, while
Evans et al. [97] did not observe such an effect. It should be noted that in both cases a
different method of removing zona pellucida was used; which could have affected the results
because methodology can significantly change the oocyte environment and distribution
of integrins and tetraspanins. Further, the inhibitory effect of anti-α6 integrin antibody
was not observed by Evans [104], while Miller et al. [105], using oocytes with zona pellu-
cida and cumulus oophorus cells attached concluded that the α6 integrin subunit was not
involved in gamete interaction in mice. Barraud-Lange et al. [16] pointed out, however,
that the methodology for detecting fertilized oocytes used by Evans [104] could lead to
false positive results. In addition, Miller et al. [105] performed in vitro fertilization in small
volumes, which could result in reduced fertilization in the control group affecting the
overall assumptions. Interestingly, all four studies showed that antibodies to β1 integrins
prevented fusion, suggesting that in oocytes, β1 subunits may bind to other α subunits, and
these heterodimers could engage in gamete adhesion and fusion [97,103–105]. Experiments
using antibodies suggested the possible role of various oocyte integrin subunits also in
other mammalian species, such as in cattle [106–109]. Interestingly, integrins may also
influence the morphology and quality of the oocytes. It was shown that an increase of
integrin protein level positively corelates with oocyte quality and morphology prior to
fertilization in pigs [110].

Later, the knock-out models shed new light on the role of integrins during gamete
binding/fusion. Due to the fact that integrins are widely distributed in various cell types,
and their systemic depletion often leads to premature lethality or developmental defects [5],
the methodology must have been adapted accordingly (collection of ovaries after birth, or
using a conditional gene knock-out line strategy). Using this approach, the sterility was
not confirmed in β3 integrins [111], or α3/α6 integrins [105,112] knock-out mice. Further,
He et al. [112] using the β1 integrin knock-out line found that oocytes were capable of
binding and fusion with the sperm. Inhibition did not occur even when such oocytes were
incubated with antibodies against β3 and αV integrin subunits. Based on all available
knowledge, it was concluded [112] that none of the integrins expressed on oocytes were
essential for sperm–oocyte binding and fusion in mouse, which was further supported
by Florman and Fissore [113]. Interestingly, it was later shown that partial α9 integrin
knock-out (resulting in about 50% of protein expression) causes a noticeable reduction
in fertilization capability in mice [114]. It is plausible that in the absence of one integrin
subunit, another takes over its place. A presence of the α9β7 integrin heterodimer on
human lymphoblastic B cells of the RPMI 8866 line, which do not naturally contain the
β1 subunit was detected and its ability to bind to the ADAM2 molecule was shown [115].
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Further, theoretical structure modelling research has shown that other yet undiscovered
combinations of integrin subunits could be predicted [116]. It is important to note that
gamete adhesion and fusion is a species-specific process and while anti-α6 antibodies have
a negligible effect in mice, they significantly inhibit fusion in human [81,117] and partial
inhibition (up to 55%) in human gametes was further observed when the integrin subunits
such as α2, α3, α5, αV, αM, β1, β2, and β3 were targeted [117].

Additionally, there was strong evidence of the existence of integrins in sperm [8,13,14],
which was known at the time of anti-integrins antibody blocking and gene knock-out
experiments performed with oocytes (described above). Surprisingly, none of the men-
tioned studies addressed any sperm specific role of integrins as possible contributors to
fertilization outcome. In addition, in documented oocyte experiments, wild-type sperm
were used for in vitro fertilization and wild-type males were used for mating and moni-
toring fertilization success in vivo. As subsequent experiments have shown, incubation
of mouse sperm with anti-α6 [16], anti-αV, or anti-β3 [18] integrin antibodies, or bovine
sperm with anti-β1 [118] or anti-β5 [119,120] integrin antibodies, reduced the ability of
sperm to bind to the oocyte. In mice, this effect was more pronounced when both gametes
were incubated with the antibodies prior to their interaction. It was suggested that under
optimal conditions, integrins in both gametes are involved in the interaction, but their
presence in either sperm or oocyte is sufficient for successful fertilization, and further, there
may be various protein exchanges between gametes [18]. Castellano et al. [121] observed a
significant linear correlation between the fertilization rate and the percentage of bovine
sperm with detectable α5β1 integrin in the ES and post-acrosomal region (PAR) suggesting
its role in gamete fusion.

Recently, Barraud-Lange et al. [122] demonstrated that the conditional knock-down of
the sperm Itgb1 gene in mice resulted in a dramatic decrease of the fusogenic ability of such
sperm. In vitro, sperm accumulated in the perivitelline space (similarly to Izumo1−/− or
SPACA6−/−), independently whether oocytes were depleted of Itgb1 gene or not, providing
the evidence that sperm β1 integrin is crucially involved in the gamete adhesion/fusion
process. Interestingly, individuals with knock-down Itgb1 gene were fertile in vivo, proba-
bly as a result of the incomplete depletion of the Itgb1 gene. The authors hypothesized that
the sperm β1 integrin subunit might be involved in the binding of sperm to the oviductal
epithelial cells and consequently only sperm with the β1 integrin subunit present, which
are destined to reach the oocyte. In addition, the role of integrins on sperm during oocyte
binding and fusion, is strongly supported by the fact that during the acrosome reaction,
these proteins (observed in mouse, human, bovine, and porcine sperm) relocate into the
ES [10,12,17,121,123]; in a similar way to other essential molecules (e.g., Izumo1, SPACA6)
necessary for successful fusion.

The co-existence of integrin subunits on sperm and oocyte provides another possibil-
ity for sperm-oocyte interaction, in addition to the originally proposed binding between
ADAM proteins and their integrin receptors on the oocyte. Integrins in gametes can also
interact through ligands which they are able to bind to, such as fibronectin or vitronectin
that were detected in sperm and result in the reduction of gamete binding and fusion [18].
At the same time, the interaction of integrins on sperm with so far unknown molecules on
the oocyte is also possible (Figure 4) [87]. Integrins probably play an indirect role in gamete
binding and fusion, as a possible secondary receptor for Izumo1, as a potential binding
partner of SPACA6 protein on sperm or through interaction with tetraspanins. In addition,
although it is likely that there are other complementary molecules that can complement in-
tegrin function, their reduced expression in gametes may be an evolutionary disadvantage,
such as in case of lack of β1 integrins, which causes slower sperm binding [124].

2.5.1. Integrins as a Potential Secondary Receptor of Izumo1

One of the essential proteins expressed in sperm is the membrane protein Izumo1,
a member of the type I immunoglobulin superfamily with an extracellular immunoglobulin
domain [91]. The binding receptor for Izumo1 on the oocyte is GPI-anchored protein
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Juno [88]. After recognition of the Juno by Izumo1 protein, there is expected to be a
secondary binding of Izumo1 to another ligand, possibly a member of integrin family,
another adhesion molecule, or a non-proteinaceous factor such as a phospholipid [125].

Izumo1 is detected on sperm only after an acrosome reaction during which it relocates
to the ES [56]. The use of antibodies against Izumo1 prevented the fusion of sperm with
oocyte, and at the same time Izumo1−/− males were sterile, despite their normal behavior,
development, sperm motility, migration through the female oviduct, acrosome reaction, and
penetration through zona pellucida. These Izumo1−/− sperm accumulated in the perivitelline
space of the oocyte and were incapable of fusion with oolemma. Such phenotype could be
overcome by intra-cytoplasmic sperm injection (ICSI), when further development in the
absence of Izumo1 was not disrupted [91]. Similarly, in the case of Juno, females lacking
this protein were shown to be sterile, despite the fact that after fertilization, Juno is shed
from the oolemma, which suggests its secondary role in blocking of polyspermia [88].

2.5.2. Integrins as a Potential Binding Partner of SPACA6

Integrins have also recently been proposed as a possible binding partner of the sperm
acrosome membrane-associated protein 6 (SPACA6). Through integrins, SPACA6 can also
interact and influence other molecules within a sperm membrane (Figure 4). However, this
has not yet been experimentally confirmed, and it is therefore possible that SPACA6 binding
to these molecules occurs via proteins other than integrins, or directly [87]. SPACA6 is
a transmembrane immunoglobulin-like protein that is localized, as well as integrins, in
the ES of sperm after the acrosome reaction [87,126]. Its key role in sperm fertilization
ability was confirmed by experiments with antibodies applied to human gametes and by
SPACA6−/− in mice. The male phenotype in this case is very similar to that of Izumo1−/−,
where sperm accumulate in the perivitelline space and are incapable of oolemma fusion [87].
The SPACA6 binding partner on the oocyte is not yet known.

SPACA6 and all other molecules (CD9, Juno on oocyte and Izumo1 on sperm), which
are considered essential for successful fertilization, are more likely to play a role during
sperm–oocyte binding than fusion, due to an absence of fusogenic domains known from,
e.g., viral fusion systems [127,128]. The identification and gamete localization of the
fusogen remains an open question. A drawback of experiments using genetically modified
organisms is, pathological embryonic development and decreased early postnatal survival
rate, including the occurrence of fatal prenatal defects or those which prevent an organism
from reaching a reproductive age. On the other hand, a biochemical approach based
on blocking the functions of a protein may not reveal a fusogen, if it is present in a low
concentration or if it is temporarily activated [127]. Over the last three decades, several
other molecules have been discovered in genomic and proteomic analyses e.g., SLLP1
protein on sperm and its partner SASB1 on oocyte; [129,130], and they are to a certain
extent involved in mediating binding/fusion of sperm and oocyte. This only confirms the
fact that in both gametes there are other molecules within multiprotein networks, which
play an important role in fertilization through mutual bonds where integrins are expected
to be involved.

3. Conclusions

This review delivers a comprehensive overview of existing literature on integrin
specific expression and localization in mammalian gametes including known specie-specific
differences. The function of integrins in sperm maturation and sperm transport through
female reproductive epithelia is addressed including the relocation of integrins during
the acrosome reaction, as summarized in Table 1. A discussion about the role of integrin
during gamete membrane binding and fusion with respect to the sperm and oocyte specific
interactive protein network is debated. Furthermore, the review presents novel diagrams
summarizing the current state of knowledge which are produced for a wide-ranging
scientific audience.
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