
RESEARCH ARTICLE

The Basic/Helix-Loop-Helix Protein Family in
Gossypium: Reference Genes and Their
Evolution during Tetraploidization
Qian Yan, Hou-Sheng Liu, Dan Yao, Xin Li, Han Chen, Yang Dou, Yi Wang, Yan Pei, Yue-
Hua Xiao*

Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically
Modified Crops, Southwest University, Beibei, Chongqing, China

* xiaoyuehua@swu.edu.cn

Abstract
Basic/helix-loop-helix (bHLH) proteins comprise one of the largest transcription factor fami-

lies and play important roles in diverse cellular and molecular processes. Comprehensive

analyses of the composition and evolution of the bHLH family in cotton are essential to eluci-

date their functions and the molecular basis of cotton development. By searching bHLH ho-

mologous genes in sequenced diploid cotton genomes (Gossypium raimondii andG.

arboreum), a set of cotton bHLH reference genes containing 289 paralogs were identified

and named as GobHLH001-289. Based on their phylogenetic relationships, these cotton

bHLH proteins were clustered into 27 subfamilies. Compared to those in Arabidopsis and
cacao, cotton bHLH proteins generally increased in number, but unevenly in different sub-

families. To further uncover evolutionary changes of bHLH genes during tetraploidization of

cotton, all genes of S5a and S5b subfamilies in upland cotton and its diploid progenitors

were cloned and compared, and their transcript profiles were determined in upland cotton.

A total of 10 genes of S5a and S5b subfamilies (doubled from A- and D-genome progeni-

tors) maintained in tetraploid cottons. The major sequence changes in upland cotton includ-

ed a 15-bp in-frame deletion inGhbHLH130D and a long terminal repeat retrotransposon

inserted inGhbHLH062A, which eliminated GhbHLH062A expression in various tissues.

The S5a and S5b bHLH genes of A and D genomes (exceptGobHLH062) showed similar

transcription patterns in various tissues including roots, stems, leaves, petals, ovules, and fi-

bers, while the A- and D-genome genes ofGobHLH110 andGobHLH130 displayed clearly

different transcript profiles during fiber development. In total, this study represented a ge-

nome-wide analysis of cotton bHLH family, and revealed significant changes in sequence

and expression of these genes in tetraploid cottons, which paved the way for further func-

tional analyses of bHLH genes in the cotton genus.
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Introduction
Basic/helix-loop-helix (bHLH) transcription factors, named from their signature bHLH do-
mains, are ubiquitously distributed in major eukaryotes and involved in diverse cellular and
molecular processes [1–3]. A bHLH domain generally comprises around 60 amino acids and
two functionally distinct segments, i.e., the basic and helix-loop-helix regions. Structural analy-
ses have indicated that the basic region forms the major interface contacting DNA, whereas the
helix-loop-helix region mediates protein-protein interactions regulating DNA binding activity
[3]. By interacting with DNA and different proteins simultaneously, bHLH proteins frequently
act as central integrators in gene regulation networks [1,2,4–7]. For example, phytochrome-
interacting factors (PIFs), the major regulators of plant photomorphogenic development, inter-
act with multiple regulatory proteins (such as DELLA, HY5, phy, BZR1) from different path-
ways and integrate diverse signals to control plant growth [1].

With more and more genomes sequenced, increasing number of bHLH proteins have been
identified and employed in classification and evolutionary comparison across a wide range of
organisms [3,8–16]. Compared to fungi and metazoans, the bHLH family expands significantly
in higher plants, harboring 88 to 289 bHLH genes in a single genome [9,12,13]. Based on their
evolutionary relationships, bHLH domains identified from representative species (Arabidopsis,
poplar, rice, moss and algae) were classified into 32 subfamilies with 2 moss-specific (S6 and
S29), and 1 algae-specific subfamily (S32) [13].

Cotton is the leading fiber crop and provides the majority of natural fibers in the world-
wide textile market. Among around 50 species in cotton (Gossypium) genus, two diploids (G.
arboreum and G. herbaceum, 2n = 2X = AA = 26) and two allotetraploids (upland cotton, G.
hirsutum, and sea island cotton, G. barbadense, 2n = 4X = AADD = 52), have been cultivated
to produce economically valuable fibers [17]. It is believed that allotetraploid cottons all de-
rive from an interspecific hybrid formed during the Pleistocene (1–2 millions of years ago).
G. raimondii is the closest living relative of the D-genome donor of allotetraploid cottons, but
it does not produce significantly elongated fibers as the A-genome donors (G. arboreum and
G. herbaceum) [17]. Upland cotton is most widely used in the modern cotton industry, and
accounts for most of the world’s cotton yield. Compared to their diploid progenitors, upland
cotton and sea island cotton have significantly higher yield and fiber quality. Agronomists
and biologists have long been interested in genomic evolution of tetraploidization and do-
mestication of cottons [17–22]. Transcriptomic analyses indicated that several pathways
were up-regulated in developing fibers and homoeologous genes might be differentially regu-
lated in tetraploid cotton tissues, implying that genes from different genomes may act syner-
gistically to enhance fiber production in tetraploid cottons [19–26]. However, the importance
of these up-regulated pathways and the mechanisms to control these pathways still need to
be elucidated. As one of the largest transcription factor families in plants, bHLH proteins
may play important roles in regulating various pathways and cotton development. Compre-
hensive analysis of cotton bHLH proteins and their evolutionary changes during tetraploidi-
zation may help to reveal molecular mechanisms underlying the varied pathways and super
quality and yield in modern tetraploid cottons. On the other hand, evolutionary effect of allo-
ploidy has long been an attracting theme in plant biology [18,27–32], since an estimate of
30–70% plant species, including many important crops such as cotton, wheat, oilseed rape,
and tobacco, are of alloploid origin. Analyses of genetic and transcriptional alterations of
bHLH homoeologous genes in allotetraploid cotton may provide useful clues to elucidate the
influence of alloploidy in plant evolution and the molecular basis of speciation and domesti-
cation of alloploid crops.
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In this study, we identified bHLH genes comprehensively from the known cotton sequences,
including the genomes of G. raimondii and G. arboreum which were recently sequenced
[18,33,34]. A set of Gossypium bHLH reference genes were constructed and employed to ana-
lyze their evolutionary relationships with homologs from the model plant Arabidopsis, and
cacao (Theobroma cacao), a sequenced species most closely related to the cotton genus. To ex-
plore evolutionary changes of bHLH genes during tetraploidization, all genes of two subfami-
lies (S5a and S5b) in upland cotton and its diploid progenitors were cloned and compared, and
transcription profiles of the genome-specific orthologous genes were further determined in
upland cotton.

Materials and Methods

Sequence sources
All sequence data were obtained from the internet (S1 Table). Arabidopsis bHLH proteins and
reference bHLH sequences of Oryza sativa, Physcomitrella patens, and Chlamydomonas rein-
hardtii (S2 Table) were retrieved from Phytozome (http://www.phytozome.net/search.php)
[35] according to Carretero-Paulet et al [13]. The annotated genome sequences of T. cacao and
G. raimondii (Gr-JGI) were downloaded from Phytozome [18,35,36]. The annotations of G.
raimondii and G. arboreum genomes (Gr-CGP and Ga-CGP) were from the Cotton Genome
Project in the Institute of Cotton Research of Chinese Academy of Agricultural Sciences
(http://cgp.genomics.org.cn/page/species/download.jsp?category = raimondii and = arboreum,
respectively) [33,34]. Upland cotton unigenes (Gh-Uni) were obtained from Plant Transcrip-
tion Factor Database (PlantTFDB, http://planttfdb.cbi.pku.edu.cn/family.php?sp=Ghi&fam =
bHLH) [37]. Gossypium bHLH contigs (Go-con) and mRNA sequences were retrieved from
Cottongen (http://www.cottongen.org/retrieve/sequences) by searching sequences containing
bHLH domain (IPR011598) [38].

Identification of bHLH proteins and corresponding bHLH domains
According to classification of plant bHLH proteins reported previously [13], 32 representative
bHLH domains (one per subfamily) and three Arabidopsis orphans were selected to constitute
a set of probe sequences (S2 Table). To identify bHLH proteins from annotated genomes (G.
raimondii, G. arboreum and T. cacao), all probe bHLHs were employed to query primary-
transcript-only proteins of the sequenced genomes by a standalone BLAST program [39]. For
each genome, repeated entries were eliminated by Microsoft Excel program, and putative
bHLH domains were retrieved according to two-sequence alignments in BLAST. The result-
ing bHLH sequences were further aligned with all probe sequences and Arabidopsis bHLH do-
mains. The sequences conforming to the following rules were validated as bHLH domains. A
bHLH domain should contain 1) at least two continuous sub-regions of basic, helix1, and
helix2 and 2) over 60% consensus amino acid residuals identified in plant bHLHs by Carre-
tero-Paulet et al [13].

To determine Gossypium reference bHLH genes, cotton bHLH proteins identified from var-
ious sources (Gr-JGI, Gr-CGP, Ga-CGP, Gh-Uni, Go-con, and mRNA) were aligned using
AlignX program in Vector II software (Invitrogen). The branch lengths (BL) in the alignment
guide tree reflecting the genetic divergences between sequences were employed as an arbitrary
standard to group corresponding sequences. The proteins with BL<0.03, 0.03 to 0.15, and
>0.15 were regarded as originating from an allele gene, orthologous genes of different genomes
and different paralogous genes, respectively. For each orthologous group, a single representa-
tive member (mainly from Gr-JGI) was selected as reference gene, and the Gossypium reference
bHLH genes included all non-overlapping paralogous genes (S3 Table).
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Phylogenetic analysis and classification ofGossypium bHLHs
Phylogenetic analysis was performed using MEGA6.0 [40]. All cotton reference bHLH do-
mains were aligned with the bHLH domains from Arabidopsis and T. cacao. Since members of
several plant bHLH subfamilies (S6, S8, S29 and S32) were not identified in Arabidopsis [13],
each two representative sequences of these subfamilies from other plants (S4 Table) were also
included in the multiple sequence alignment. The alignment was performed using clustalW
with default settings. Phylogenetic trees were constructed and tested by neighbor joining (NJ),
maximum parsimony (MP), and maximum likelihood (ML) methods, and bootstrap test was
set as 1000 replicates. Classification of bHLH proteins was performed according to evolution-
ary relationships of bHLH domains. The bHLHs on a branch supported by at least two meth-
ods and with high bootstrap (>88%) in NJ test were clustered into a subfamily. The resultant
bHLH subfamilies were compared to those determined by Carretero-Paulet et al [13], and
named accordingly.

Cloning and sequence analysis ofGossypium S5a and S5b bHLH genes
Cotton DNAs were extracted from fresh leaves using a plant DNA extraction kit (Aidlab, Bei-
jing, China). The S5a and S5b bHLH genes (except for GhbHLH062A) from G. hirsutum, G.
arboreum, and G. raimondii were amplified with primers encompassing the coding regions (S5
Table). The 25-μl PCR reactions included 100 ng cotton genomic DNA, 1×PrimerSTAR mix
(TaKaRa), 200 nM upstream and downstream primers. The PCR thermocycling parameters
were as follows: 98°C for 1 min, followed by 35 cycles of 98°C for 10s, 55°C for 15 s and 72°C
for 1 min, and a final extension of 3 min at 72°C. After A-tailing, all PCR products were cloned
into pGEM-T (Promega) and sequenced by Invitrogen (Shanghai, China).

For GhbHLH062A, we first cloned the 3’-end of coding region using the A-specific primer
and downstream coding-region primer. The upstream sequences were then amplified by two
rounds of Y-shaped adaptor dependent extension (YADE) [41] until a long terminal repeat
(LTR) retrotransposon insertion was found. Finally, the 5’-end of coding region were amplified
using the upstream coding-region primer and a LTR primer.

The exon sequences and ORFs were determined by comparing genomic sequences to EST,
mRNA or homologous proteins using BLAST program in NCBI. The deduced protein se-
quences were aligned and subjected to construction and test of phylogenetic tree using NJ
method in MEGA6.0 [40]. The genome origin (A or D) of a certain gene from tetraploid cotton
was determined according to its evolutionary relatedness to the orthologous genes from pro-
genitor diploids (G. arboreum and G. raimondii).

To detect a certain gene in tetraploid and diploid cottons, genome-specific primers were de-
signed to amplify fragments of 100 to 250 bp from genomic DNAs using 2×Taq PCR mixture
(Tiangen, China). The PCRs contained around 100 ng genomic DNAs and 200 nM upstream
and downstream primers, and amplified for 30 cycles of 94°C for 30 s, 56°C for 30 s, and 72°C
for 30 s. The PCR products were detected by EtBr staining in agarose gel.

Sequences of all PCR primers employed in this study are shown in S5 Table.

RNA extraction and real-time RT-PCR analysis
Upland cotton RNAs were extracted from roots, stems, leaves, petals, ovules, and fibers of dif-
ferent developmental stages using a rapid plant RNA extraction kit (Aidlab, Beijing, China).
The cDNAs were synthesized from total RNA using a first-strand cDNA synthesis kit
(TaKaRa, Dalian, China), and then subjected to real-time PCR analyses. Real-time PCRs were
performed on a CFX96 real-time PCR detection system using SYBR Green Supermix (Bio-
Rad, CA, USA) according to the manufacturer’s introductions. The thermocycling parameters
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were as follows: 95°C for 2 min, followed by 40 cycles of 95°C for 10 s, 57°C for 20 s, followed
by a standard melting curve to monitor PCR specificity. Cotton histone3 (AF024716) [42] and
GhUBQ14 [43] genes were amplified as internal standards. Reactions were performed for
three replicates. Data were analyzed using the software Bio-Rad CFX Manager 2.0 provided
by the manufacturer.

Results

Identification of cotton bHLH genes inGossypium genomes
The D and A genomes of diploid cottons were recently sequenced by different projects (S1
Table) [18,33,34]. To perform a comprehensive analysis of cotton bHLH family, a set of plant
bHLH probe sequences were employed to identify bHLH genes from annotated genomes of G.
raimondii and G. arboreum. Consequently, 272, 255, and 256 distinct bHLH proteins were
identified in the genomic sequences from Gr-JGI, Gr-CGP, and Ga-CGP, respectively. These
sequences were further aligned with bHLH proteins annotated in Gossypium EST contigs (Go-
con), G. hirsutum unigenes (Gh-Uni), and cotton mRNAs. Finally, 919 Gossypium bHLH pro-
teins were clustered into 289 orthologous groups (S3 Table). Each orthologous group in the
alignment might represent a distinct bHLH gene in Gossypium reference genome. Therefore,
we selected a single representative from each orthologous group to constitute Gossypium refer-
ence bHLH genes, which were coded alphabetically as GobHLH001-289 (S3 Table).

As shown in Table 1 and S3 Table, most bHLH genes (>89%) had orthologous or over-
lapped genes from other source(s). All proteins from Go-con, Gh-Uni, and mRNA could be as-
signed to a certain gene in sequenced genomes, suggesting that most bHLH-coding genes in
Gossypiummight have been revealed by genome sequencing. On the other hand, none of the
three genomic sequencing projects had annotated all the bHLH reference genes, indicating that
the cotton genome sequences were still relatively fragmented and might have missed a portion
of information.

Phylogenetic analysis and classification ofGossypium bHLH family
To analyze evolutionary relationship of Gossypium bHLH proteins, 289 Gossypium reference
bHLH domains were aligned with bHLHs from Arabidopsis and cacao, and representative se-
quences of S6, S8, S29, and S32 bHLH subfamilies from P. patens, C. reinhardtii, and O. sativa
(S1 Fig). Based on the resultant phylogenetic tree (Fig 1A; S2 Fig), 605 bHLH sequences were
grouped into 30 subfamilies (Fig 1A and 1B; S6 Table). The majority of plant bHLH subfami-
lies determined by Carretero-Paulet et al [13] remained in our classification, except that S5 and

Table 1. Numbers and overlapping of cotton bHLH genes from different sources.

Gr-JGI Gr-CGP Ga-CGP Gh-Uni Go-con mRNA

Gr-JGI 272 249 243 79 28 4

Gr-CGP 255(257)* 236 78 27 4

Ga-CGP 256(259)* 79 28 4

Gh-Uni 79(92) 27 4

Go-con 28(29) 2

mRNA 4(10)

Numbers of non-overlapping paralogous genes from a certain source are shown on the diagonal line with the initial sequence number in brackets. Other

numbers indicate overlapped or orthologous genes between two sources.

* The tandem repeat genes encoding identical proteins and orthologous to a single protein from other sources are regarded as a single gene.

doi:10.1371/journal.pone.0126558.t001
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S12 were divided into two subfamilies (S5a and S5b, S12a and S12b, respectively), and that S18,
S19, S20, S21 and S22 were merged into a single subfamily S18.

In the phylogenetic tree, Gossypium bHLHs are assigned to 27 subfamilies along with those
from Theobroma and Arabidopsis (Fig 1A; S2 Fig). Although Gossypium contains many more
bHLHmembers, the subfamily numbers in Gossypium and Theobroma are the same (27 sub-
families), and only one (S8) more than that in Arabidopsis (S6 Table). Consistent with the re-
cent genome polyploidization in Gossypium [18,33,34], Gossypium bHLH subfamily members
generally increase in number, compared to Theobroma. However, this expansion (1- to 4-fold
in gene number) is uneven, suggesting that the extent of gene deletion after polyploidization
varies among subfamilies (Fig 1B).

Fig 1. Phylogenetic relationships and classification of Arabidopsis, Gossypium and Theobroma bHLH
domains. A, NJ tree of 605 bHLH domains (169 from A. thaliana, 289 fromGossypium, 139 from T. cacao, 4
from P. patens, 2 from C. reinhardtii, and 2 fromO. sativa). Subfamilies are collapsed and represented as
triangles with both depth and width proportional to sequence divergence and size, respectively. Orphans are
represented as single lines. The scale bar indicates the estimated number of amino acid replacements per
site. For subfamilies S6, S29 and S32, only 2 reference sequences from P. patens orC. reinhardtii are used in
the alignment. The alignment used for tree construction and the full representation of the tree are shown in S1
and S2 Figs, respectively. B, Member numbers of different bHLH subfamilies in A. thaliana (At),Gossypium
(Go) and T. cacao (Tc).

doi:10.1371/journal.pone.0126558.g001
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Origin and variations of S5a and S5b bHLH genes in tetraploid cottons
Cotton fibers are ovule epidermal trichomes and flavonoids may be involved in the regulation
of fiber development [44,45]. Thus, we selected S5a and S5b bHLHs, acting as important regula-
tors of trichome differentiation and flavonoid biosynthesis in Arabidopsis (S6 Table) [4,46,47],
to explore evolutionary changes of bHLH genes in tetraploid cottons. All bHLH genes of S5a
and S5b subfamilies (GobHLH062, GobHLH064, GobHLH110, GobHLH123 and GobHLH130)
were cloned from upland cotton and its diploid progenitors (G. arboreum and G. raimondii).
These sequences were deposited in GenBank under the accession nos KP698854-KP698873.
Consistent with the number of reference genes, both diploid cottons contained five genes, while
upland cotton harbored 10 genes of S5a and S5b bHLH subfamilies. Based on deduced protein
sequences, these cotton bHLH genes could be assigned to five orthologous groups, and each
group included four genes, two from each genome (A or D; Fig 2A; S3 Fig). All of these genes
could be also detected in another tetraploid species (G. barbadense) using genome-specific

Fig 2. S5a and S5b bHLH genes inGossypium. A, NJ tree of S5a and S5b bHLH proteins from A. thaliana
andGossypium. The scale bar indicates the estimated number of amino acid replacements per site. The tree
was constructed and tested using the alignment shown in S3 Fig. Percentage of supported bootstrap for
every branch in a test of 1000 replicates is indicated. B, PCR confirmation of the genome-specific S5a and
S5b bHLH genes in tetraploid cottonsG. barbadense (Gb) andG. hirsutum (Gh), and their diploid progenitors
G. arboreum (Ga) andG. raimondii (Gr). M, DNAmarker with two bands of 250 bp (upper) and 100 bp (lower)
indicated. C, Gene structures of cotton S5a and S5b bHLH genes. The sequences corresponding to the
ORFs are depicted proportionally. Exons and introns are represented by blue bars and black lines,
respectively. Red triangle indicates the long terminal repeat (LTR) retrotransposon inserted inGhbHLH062A
(Details are shown in S4 Fig). ForGobHLH130s, the simple sequence repeats (GAA)n of various lengths in
the 6th exon are presented in green and a black triangle directs the site of a 15-bp deletion inGhbHLH130D
(see details in S5 Fig).

doi:10.1371/journal.pone.0126558.g002
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primers (Fig 2B). These data suggest that bHLH genes doubled by tetraploidization are general-
ly maintained in tetraploid cottons. For the convenience of discrimination, we name a certain
gene like GhbHLH062A, i.e., the abbreviation of species (the first two letters) plus reference
gene code plus genome name (the last letter).

The structures of S5a and S5b bHLH genes from different cotton species are shown in Fig
2C. The exon-intron patterns of these genes are highly conserved, except that the 4th intron is
lost in GobHLH110s. Comparing to their orthologs from diploid cottons, there exist three
major sequence variations, and several single-nucleotide changes in the upland cotton genes.
Firstly, a LTR retrotransposon (~5 kb in length) is inserted in the 4th intron of G. hirsutum
bHLH062A (Fig 2C). As shown in S4 Fig, this LTR retrotransposon insertion exists in different
G. hirsutum lines and also in G. barbadense, suggesting that this LTR retrotransposon duplica-
tion is a common evolutionary event during tetraploidization. Secondly, a 15-bp fragment is
deleted in the 6th exon of GhbHLH130D (Fig 2C). This deletion may be specifically in the G.
hirsutum lineage, as it is detected in two G. hirsutum lines, but not in G. barbadense and G. rai-
mondii (S5 Fig). Finally, the length of a simple sequence repeats (GAA)n in the 6th exon of
GhbHLH130D is 12-bp shorter than that of GrbHLH130D (Fig 2C).

Transcriptional profiling of S5a and S5b bHLH genes in upland cotton
To elucidate whether the doubled bHLH genes were differentially regulated at transcriptional
level in tetraploid cotton, real-time RT-PCR was employed to detect the transcript levels of
10 S5a and S5b bHLH genes in various tissues and at different fiber developmental stages
(Figs 3 and 4). The expression of GhbHLH062A was totally undetectable in all investigated
tissues, suggesting that the LTR retrotransposon insertion in this gene might lead to gene
disruption and loss of function. The rest nine bHLH genes all showed significant expression
in certain tissues and the expression levels varied in a developmentally regulated pattern.
Four pairs of homoeologous bHLH genes from different genomes (GobHLH064A and D,
GobHLH110A and D, GobHLH123A and D, and GobHLH130A and D) exhibited similar ex-
pression profiles among various tissues (Fig 3). During fiber development, similar expression
profiles of homoeologous genes occurred for GobHLH064s and GobHLH123s, but not for
GobHLH110s and GobHLH130s (Fig 4). GobHLH110A only showed significant expression in
0-DPA ovules, while GobHLH110D was also highly expressed in late-stage fibers (20DPA).
GobHLH130A had relatively high expression levels at early stage (0 and 5DPA), while high
expression levels of GobHLH130D was maintained from 5 to 15 DPA. These data show that
the homoeologous genes of different genomes may express differentially in tetraploid cot-
tons, especially in developing fibers.

Discussion
It is rather difficult to thoroughly identify bHLH proteins or coding genes in a certain genome.
Traditionally, one or several bHLH sequences were employed as probe to search homologs in
sequenced genomes. Due to the complexity and diversity of bHLH families, this method gener-
ally resulted in missing of some members. For example, different probe sequences used in ho-
molog searching detected partially-overlapped sets of bHLH proteins in Arabidopsis [13–
16,48]. In this study, a total of 35 probe sequences, including representative sequences of 32
plant bHLH subfamilies and three Arabidopsis orphans determined by Carretero-Paulet et al
[13], were used to search homologs in sequenced cotton and cacao genomes. These probe se-
quences represented a much broader set of bHLH domains, and might cover most diversity in
plant bHLH domains. Finally, we identified 272, 255, and 256 distinct bHLH genes from Gr-
JGI, Gr-CGP, and Ga-CGP, respectively. In contrast, Cottongen detected less bHLH genes
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Fig 3. Expression profiles of S5a and S5b bHLH genes in various upland cotton tissues.Genome-
specific primers were employed to detect relative transcript levels of 10 S5a and S5b bHLH genes in various
tissues of upland cotton. Both cotton histone3 (AF024716) [42] and GhUBQ14 [43] genes were amplified and
set as references. Error bars indicate SEM of three technical replicates.

doi:10.1371/journal.pone.0126558.g003
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(258 and 243 in Gr-JGI and Gr-CGP, respectively) by using a bHLH consensus (IPR011598) as
searching probe [38]. On the other hand, the bHLH domains determined in this study (except
TcbHLH087) were all clustered along with plant reference bHLHs, indicating that multiple se-
quence alignment excluded false positives efficiently. These data suggest that searching with di-
verse probes and re-confirming by multiple sequence alignment may facilitate comprehensive
detection of homologs in a certain genome.

Fig 4. Expression profiles of S5a and S5b bHLH genes at different fiber developmental stages.
Relative transcript levels of 10 S5a and S5b bHLH genes at different fiber developmental stages in upland
cotton were detected by qRT-PCR. DPA, day(s) post anthesis. Total RNAs were extracted from ovules with
fiber initials at anthesis (0 DPA) or fibers of different developmental stages (5~20 DPA). Data were analyzed
and presented as in Fig 3.

doi:10.1371/journal.pone.0126558.g004
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Genome sequences are the major sources to systematically detect protein family members,
and most of cotton bHLH genes are identified from sequenced genomes (Table 1; S3 Table).
However, the genome sequencing projects in cottons are still in infancy compared to those in
model plants, and currently available cotton genome sequences are relatively fragmented
[18,33,34]. Consequently, only a part of the 'complete' set of cotton bHLH genes could be de-
tected in a single sequenced genome (Table 1; S3 Table). For example, GobHLH130 was first
identified only in Gr-JGI (D-genome). But cloning and PCR detection showed that a full-
length GobHLH130A gene did exist in tetraploid cottons and A-genome donor G. arboreum,
indicating that the corresponding sequences were not correctly assembled or annotated in Gr-
CGP and Ga-CGP. Therefore, it is reasonable currently to integrate all the bHLHs detected in
different sources to constitute the cotton bHLH reference genes.

Classification of plant bHLH proteins varied in different studies, probably due to different
methods and sequences adopted [12–16,48]. A genome-wide classification of bHLH family in
Arabidopsis, poplar, rice, moss, and algae assigned 638 bHLHs into 32 subfamilies [13]. In this
study, the bHLHs from Arabidopsis, cotton, cacao, and some representatives from other plants
were clustered into 30 subfamilies, a little less than those determined by Carretero-Paulet et al
[13]. In our classification, S5 and S12 were divided into two subfamilies (S5a and S5b, S12a and
S12b, respectively; Fig 1; S2 Fig), and S18, S19, S20, S21, and S22 were merged into a single
group (S18). This difference may be attributed to different methods and less sequences used in
our study. Nevertheless, most subfamilies in our classification are consistent with the previous
system [13]. S5 and S12 subfamilies in Carretero-Paulet’s system are also divided into two sub-
groups [13], corresponding to the separate subfamilies (S5a and S5b, S12a and S12b, respec-
tively) in our classification. Meanwhile, the bHLH proteins of the present S18 subfamily
(including S18-S22 in Carretero-Paulet’s system) share similar structures, i.e., they are short in
length, and contain little conserved domains other than bHLH domain (S6 Table) [13,46].
Taken together, the classification of bHLH proteins in our study is comparable to the previous
system [13], and lays a good foundation for exploring the evolutionary characteristics of cotton
bHLH family.

The bHLH protein family expanded significantly in higher plants and formed one of the
largest transcription factor families [9,12,13]. In this study, we identified a total of 289 cotton
reference bHLH genes from three independent cotton genome sequencing projects. This may
be very close to the number of complete bHLH genes in a single cotton genome, although
small changes in this data can’t be excluded. Considered that the coding genes are doubled and
basically maintained after tetraploidization (Fig 2), bHLH family in tetraploid cottons may har-
bor around 580 genes. Expression analyses suggest that most of bHLH genes in tetraploids may
express in certain tissues (Figs 3 and 4). Although cotton bHLHs are clustered into the similar
subfamilies as Arabidopsis and cacao, multiple copies of bHLH genes may increase the com-
plexity in regulation and also the possibility of mutation, neofunctionalization, and subfunctio-
nalization in cotton species [1,49].

Retrotransposons comprise a large part of genomes in higher plants [18,33,34,50,51]. How-
ever, little is known about their biological function and evolutionary effects in cotton ge-
nomes. Recently, Woodhouse et al indicated that transponson-derived small RNA might
induce differential silencing of homoeologous genes from different subgenomes and lead to
genome dominance in hexaploid Brassica rapa [27]. In this study, we revealed that a LTR ret-
rotransposon inserted in GhbHLH062A gene eliminated the transcription of this gene in tetra-
ploid cotton. Interestingly, this retrotransposon may originate from D-genome progenitor,
for it shares high sequence similarity with some LTR retrotransposons from G. ramondii rath-
er those from G. arboreum (data not shown). Furthermore, this retrotransposon insertion can
be detected both in G. hirsutum and G. barbadense (S4 Fig), suggesting that retrotransposon
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duplication and insertion may be a common event during tetraploidization in cotton. It may
be valuable to elucidate the evolutionary and genetic effects of retrotransposon duplication in
tetraploid cottons.

New allopolyploids harbor divergent genomes of their progenitors, and thus entail exten-
sive genetic and epigenetic changes, including gene deletion, recombination, gene conversion,
and varied expression, to conciliate different sets of genetic materials [18,24,28,29,31,52]. Nev-
ertheless, recent genome sequencing researches indicated that, in oilseed and cotton, most of
orthologous genes from progenitors maintained as homoeologs in allotetraploid, and express-
ed in certain tissues [18,28]. Consistent with previous reports [18,24,30], all the S5a and S5b
bHLH genes remained in upland cotton. Except GhbHLH062A which was disrupted by retro-
transposon insertion, all the rest genes expressed significantly in upland cotton. Interestingly,
two pairs of homoeologous bHLH genes (GobHLH064A and D, GobHLH130A and D) had dif-
ferent, but complementary expression profiles during fiber development. The A-genome
genes expressed predominantly at the early stages (<10DPA), while D-genome ones mainly at
the late stages (>10DPA; Fig 4). S5 bHLHs in Arabidopsis function as important regulator of
trichome differentiation and flavonoid biosynthesis [4,46,47]. We envision that the comple-
mentary expression of S5a and S5b bHLH homoeologs may play a role in promoting fiber de-
velopment in allotetraploid cottons.

Supporting Information
S1 Fig. Alignment of Arabidopsis, Gossypium, and Theobroma bHLH domains. A total of
605 bHLH domains (169 from A. thaliana, 289 from Gossypium, 139 from T. cacao, four from
P. patens, two from C. reinhardtii and two from O. sativa) were aligned using AlignX program
in software Vector NTI (Invitrogen) with default parameters. The consensus sequence is indi-
cated at the bottom. The amino acid residuals conserved in over 80% and 60% sequences are
shaded in light blue and green, respectively.
(TIF)

S2 Fig. Phylogenetic tree of Arabidopsis, Gossypium, and Theobroma bHLH domains. The
phylogenetic trees were constructed and tested using NJ, ML, and MP methods on the basis of
the alignment shown in S1 Fig. The NJ tree is presented, and subfamilies are indicated by
square brackets with bootstraps (%) supported in NJ, ML and MP test (-, not supported). The
scale bar indicates the estimated number of amino acid replacement per site. The sequences
from A. thaliana (At), Gossypium (Go) and T. cacao (Tc) are marked with solid dots, open cir-
cles and squares, respectively.
(PDF)

S3 Fig. Alignment of S5a and S5b bHLH proteins from Gossypium and A. thaliana. The
S5a and S5b bHLH proteins from G. hirsutum (Gh) and the diploid progenitors G. arboreum
(Ga) and G. raimondii (Gr) are aligned with Arabidopsis homologous proteins. The amino
acid residuals conserved in 100%, over 80% and 60% sequences are shaded in black, dark
grey and light grey, respectively. The conserved domains identified by Carretero-Paulet
et al (2010) in S5 bHLH subfamily are marked by black bars, and red bar indicates the
bHLH domains.
(TIF)

S4 Fig. Alignment of GobHLH062 sequences around the LTR insertion site. The sequences
are from GobHLH062D of G. hirsutum and G. raimondii, GobHLH062A of G. arboreum, G.
hirsutum Yumian No.1 (-Y) and T586 (-T), and G. barbadense. Intron, exon, and LTR retro-
transposon sequences are marked by black lines, blue and red bars, respectively. Identical

The Cotton Basic/Helix-Loop-Helix Protein Family

PLOS ONE | DOI:10.1371/journal.pone.0126558 May 18, 2015 12 / 16

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0126558.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0126558.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0126558.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0126558.s004


sequences are shaded in grey. Dashes indicate gaps in the alignment, while dots represent the
omitted LTR sequences.
(TIF)

S5 Fig. Alignment of GobHLH130 sequences around the deletion site. The sequences are
from GobHLH130A of G. hirsutum and G. arboreum, GobHLH130D of G. raimondii, G. hirsu-
tum Yumian No.1 (-Y) and T586 (-T), and G. barbadense. Identical and conserved (>60%) se-
quences are shaded in light blue and pink, respectively. Dashes indicate the deleted sequences
in GhbHLH130D.
(TIF)

S1 Table. Internet sources of cotton bHLH sequences.
(XLSX)

S2 Table. The probe sequences used for searching bHLH protein.
(XLSX)

S3 Table. Coding of Gossypium bHLH reference genes and the corresponding sequences in
different sources.
(XLSX)

S4 Table. Plant bHLH proteins used in phylogenetic analysis from species other than Gos-
sypium.
(XLSX)

S5 Table. Primers used in this study.
(XLSX)

S6 Table. Phylogenetic classification, conserved domains, and known biological functions
of bHLH proteins from Arabidopsis, Theobroma and Gossypium.
(DOC)
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