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A novel synthesis of the aggregation pheromone of the Colorado potato beetle, Leptinotarsa decemlineata, has been developed

based on a Sharpless asymmetric epoxidation in combination with a chemoselective alcohol oxidation using catalytic

[(neocuproine)PdOAc],OTf,. Employing this approach, the pheromone was synthesized in 3 steps, 80% yield and 86% ee from

geraniol.

Introduction

The Colorado potato beetle Leptinotarsa decemlineata, a world-
wide pest causing considerable damage in the US annually, has
developed resistance to more than 25 insecticides [1-4]. For
crop protection, currently several insecticides are used such as
the neonicotinoids imidacloprid, thiamethoxam and thiachlo-
prid [1,5], albeit these are expensive and moreover resistance
lies in wait [6]. From the standpoint of environmental protec-
tion and economics, it is important to reduce the use of insecti-
cides controlling the Colorado potato beetle, and an attractive
alternative is to use a pheromone management strategy.

An important finding in this connection was the isolation of the
male produced aggregation pheromone by Dickens and Oliver
et al. in 2002 [7], which was subsequently identified as (S)-1,3-

dihydroxy-3,7-dimethyl-6-octen-2-one (1, Figure 1) [8]. (S)-1 is
attractive for both male and female Leptinotarsa decemlineata
while (R)-1 is inactive or inhibitory, as was demonstrated by the
inactivity of the racemate [7]. Since then, (S)-1 has been synthe-
sized by the groups of Oliver [8], Mori [9], Chauhan [10] and

Figure 1: (S)-1,3-dihydroxy-3,7-dimethyl-6-octen-2-one (1).
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very recently by Faraldos [11] respectively, and the first field
evaluation of synthetic (S)-1 in a trap crop pest management

strategy showed its practical utility [1].

The commercial enantioselective production of chiral
pheromones of many pest insects is hampered by prohibitively
high costs. The selective introduction of stereocenters and the
number of steps are the main reasons. In 2002, Oliver described
the first synthesis of both enantiomers of 1 from (R)- and (S)-
linalool, and also the synthesis of its racemate from geraniol, to
establish the absolute configuration. Although the approach is
elegant, (S)-linalool required for natural (S)-1 is not commer-
cially available. In 2005, Mori employing lipase-catalyzed
kinetic resolution of (+)-2,3-epoxynerol as the key step, synthe-
sized both (S)- and (R)-1 in gram quantities with high ee. In
Chauhan’s work, Grignard reaction, oxidation and stereo-
selective methylation using organometallic reagents are the key
steps, affording (S)-1 in high enantiomeric purity and in gram
quantities. In all these approaches, however, protection of the
primary hydroxy group of the 1,2,3-triol substructure is required
for the selective oxidation of the secondary alcohol at C-2. The
synthesis by Faraldos runs via epoxidation of fluoronerol,
subsequent acetylation of the alcohol and solvolysis.

In 2010, Waymouth reported the chemoselective, catalytic oxi-
dation of glycerol to dihydroxyacetone (Scheme 1) using
catalytic [(neocuproine)PdOAc],OTf, (2) in the presence of
either benzoquinone or air as the terminal oxidant [12]. More
recently, the transformation of unprotected vicinal polyols to
a-hydroxy ketones was achieved by regio- and chemoselective
oxidation using catalyst 2 [13]. We used this method for the
catalytic regioselective oxidation of glycosides (Scheme 1) [14]
and expected that the approach might also be applicable in the
synthesis of (S)-1. Triol 3, with vicinal primary, secondary, and
tertiary hydroxy groups should be a suitable substrate for
chemoselective oxidation with catalyst 2, enabling a protecting
group-free synthesis of the Colorado potato beetle pheromone

(Scheme 2). An additional challenge was the presence of an
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alkene in the substrate, as the orthogonality of 2-catalyzed
alcohol oxidations with alkenes had not been studied.

(35)-3

Scheme 2: Approach of synthesis of (S)-1.

In our approach, Sharpless asymmetric epoxidation of readily
available geraniol or nerol [16-18] followed by stereoselective
ring-opening with water would lead to the desired triol 3.
Subsequently regioselective oxidation of 3 would provide (S5)-1
in a concise 3 step route. The resulting synthesis would be
interesting also for commercial application, moreover because
the oxidation pattern in 1 occurs more widespread in natural
products and pharmaceuticals such as in cortisol (hydrocorti-

sone).

Results and Discussion

The synthesis of (S)-1 is summarized in Scheme 3. The choice
for either geraniol or nerol should have been based on the
stereoselectivity of the Sharpless epoxidation. For both reac-
tions, however, varying enantioselectivities had been reported,
so both substrates were studied. According to the published
procedure, upon treatment of freshly distilled geraniol
(Scheme 3) with fert-butyl hydroperoxide in the presence of
D-(—)-diisopropy! tartrate (DIPT) and Ti(OiPr)4 in dry CH,Cl,
at —10 to —23 °C for 2 h, the desired epoxide (2R,3R)-4 was
obtained in 93% yield and 88% ee. The ee was determined by
HPLC analysis of its corresponding TBDPS ether. This result
compares well with the ones reported in the literature: 77-95%
yield and 81-95% ee [17-21]. According to Sharpless et al.
[18], 5 mol % of Ti(OiPr)4 and 7.5 mol % of DIPT were used,

so at least 20% excess of tartrate ester in order to obtain the
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AYWAYAWA SR
HO OH " DMSO or CH4CN, rt Ho _J\_oH
=N N= =N N=
Pd Pd
o cat. 2 o O/ \O O/ \O
HO Q benzoquinone HO 0 Y/
HO o) [©)
HO OMme 0 HOoume | _
2

Scheme 1: Selective oxidation of glycerol [15] and methyl a-D-glucopyranoside.
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(2R,3S)-3

(S)-1

Scheme 3: Synthesis of (S)-1 from geraniol. Reagents and conditions: a) D-(-)-diisopropyl tartrate, Ti(OiPr)4, tert-butyl hydroperoxide, CH,Cly,
4 AMS, —10 to —23 °C, 2 h, 93%, 94:6 er; b) HCIO4 (70%), THF/water, rt, 30 min, 94%; c) 0.5 mol % 2, p-benzoquinone, CH3CN/water, rt,

overnight, 91%.

maximum enantiomeric excess. The use of freshly distilled
DIPT and Ti(OiPr)4 was important to obtain consistently 88%
ee. With epoxide (2R,3R)-4 at hand, an acid-catalyzed ring-
opening reaction was carried out using HC1O4 in THF/water at
room temperature [22]. In the process of ring-opening, close to
quantitative inversion of configuration at C-3 takes place
[23,24], a result which was confirmed in our research as
determination of the ee of both substrate and product shows a
slight drop in ee from 88% to 86% (see Supporting Information
File 1). Triol (2R,35)-3 was obtained from (2R,3R)-4 in high
yield by this regio- and stereoselective ring-opening reaction.
Subsequently (2R,35)-3 was converted into (S)-1 by treatment
with 0.5 mol % of catalyst 2 and benzoquinone in CH3CN/
water at room temperature. The reaction turned out to be very
selective for the secondary alcohol and neither oxidation of the
primary alcohol nor of the alkene was observed. (§)-1 was
obtained in 91% yield and both 'H NMR and '3C NMR spectra
coincided with those reported in the literature [8,9].

Starting from nerol, Sharpless asymmetric epoxidation afforded
the epoxide (25,3R)-4 in a disappointing 74% ee, a result which
is nevertheless in accordance with the reported values: 70-94%
[25-30] (Scheme 4). Applying the same ring-opening reaction
to epoxide (2S5,3R)-4, triol (25,35)-3 was obtained in high yield
but a 6% loss in enantiomeric excess was observed (see
Supporting Information File 1). Considering these disap-
pointing results using nerol as the starting material, oxidation to

(5)-1 was not performed.

nerol (2S,3R)-4

(25.,35)-3

Scheme 4: Synthesis starting from nerol. Reagents and conditions:
a) L-(+)-diisopropyl tartrate, Ti(OiPr)4, tert-butyl hydroperoxide,
CH,Cly, 4 AMS, -10 to -23 °C, 2 h, 89%, 87:13 er; b) HCIO4 (70%),
THF/H20, rt, 30 min, 92%.

Conclusion

In summary, we have developed an efficient synthesis of the
aggregation pheromone of the Colorado potato beetle (5)-1,3-
dihydroxy-3,7-dimethyl-6-octen-2-one (1). Combining
Sharpless asymmetric epoxidation, stereoselective epoxide ring-
opening and catalytic chemoselective alcohol oxidation with
[(neocuproine)PdOAc],OTf; (2), (S)-1 was synthesized in 80%
overall yield and 86% ee over 3 steps from geraniol. Nerol
turned out to be less suitable as starting material as its asym-
metric epoxidation provided a lower ee. It has been shown that
(5)-1 with an ee of 92% is as active as enantiopure (S)-1 (99%
ee), therefore it is probably safe to conclude that the currently
obtained 86% ee suffices.

Supporting Information

Supporting Information File 1

Experimental and spectroscopic details for 1, 3 and 4, and
determination of the ee of 3 and 4.
[http://www.beilstein-journals.org/bjoc/content/
supplementary/1860-5397-9-273-S1.pdf]
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