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Abstract

Insects change their stimulus-response through the perception of associating these stimuli

with important survival events such as rewards, threats, and mates. Insects develop strong

associations and relate them to their experiences through several behavioral procedures.

Among the insects, Apis species, Apis mellifera ligustica are known for their outstanding

ability to learn with tremendous economic importance. Apis mellifera ligustica has a strong

cognitive ability and promising model species for investigating the neurobiological basis of

remarkable olfactory learning abilities. Here we evaluated the olfactory learning ability of A.

mellifera by using the proboscis extension reflex (PER) protocol. The brains of the learner

and failed-learner bees were examined for comparative transcriptome analysis by RNA-Seq

to explain the difference in the learning capacity. In this study, we used an appetitive olfac-

tory learning paradigm in the same age of A. mellifera bees to examine the differential gene

expression in the brain of the learner and failed-learner. Bees that respond in 2nd and 3rd tri-

als or only responded to 3rd trials were defined as learned bees, failed-learner individuals

were those bees that did not respond in all learning trials The results indicate that the learn-

ing ability of learner bees was significantly higher than failed-learner bees for 12 days. We

obtained approximately 46.7 and 46.4 million clean reads from the learner bees failed-

learner bees, respectively. Gene expression profile between learners’ bees and failed-learn-

ers bees identified 74 differentially expressed genes, 57 genes up-regulated in the brains of

learners and 17 genes were down-regulated in the brains of the bees that fail to learn. The

qRT-PCR validated the differently expressed genes. Transcriptome analyses revealed that

specific genes in learner and failed-learner bees either down-regulated or up-regulated play

a crucial role in brain development and learning behavior. Our finding suggests that down-

regulated genes of the brain involved in the integumentary system, storage proteins, brain

development, sensory processing, and neurodegenerative disorder may result in reduced
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olfactory discrimination and olfactory sensitivity in failed-learner bees. This study aims to

contribute to a better understanding of the olfactory learning behavior and gene expression

information, which opens the door for understanding of the molecular mechanism of olfac-

tory learning behavior in honeybees.

Introduction

Insects are essential for agriculture, orchards, horticultural crops, and seed production for

fiber and forage crops [1]. Insects such as bees, butterflies, wasps, and beetles are increasing

the output of the world’s food crop production. Most insects learn about the ecologically

related stimuli and modify the behavioral responses to these stimuli to accept the new associa-

tions in their ecosystem. Diverse methods can trigger these behavioral changes due to new sti-

muli [2, 3]. These plasticity types vary how the behavior and stimuli are linked with significant

events, including the availability of food, danger, or a mate. It is quite essential to understand

these mechanisms of plasticity for preliminary research on how it influences the nervous sys-

tem’s ability to process olfactory learning [4, 5]. The evaluation of behavioral plasticity in any

organism involves an experimental level of control throughout several factors, which is not

accomplishable in field conditions to conduct behavioral research in natural circumstances, it

is necessary to develop a standard conditioning procedure that can be performed under con-

trolled conditions while still being useful [6].

The A. mellifera ligustica is a well-known and excellent insect for, how to establish a stan-

dard protocol for carrying out a study of behavioral plasticity under controlled conditions [6–

8]. In honeybees, the proboscis extension response is a natural response in which they elongate

their proboscis (elongated feeding tube) by touching the antenna with the sucrose solution.

Proboscis extension response (PER) is established whenever honeybees find nectar in flowers

during foraging behavior. Interestingly, the honeybee will promptly show this easy and simply

assessable behavior under laboratory conditions. It enables us to investigate the mechanisms

under a controlled setting that influence this environmental significance behavior [9]. In stan-

dard conditioning protocol, PER can be applied to evaluate the learning, stimulus perception,

and memory under the various experimental conditions which are developed to disclose the

neural and behavioral mechanisms that underlie plasticity [10]. In 1957, since the first study

proboscis extension protocol was performed by Kuwabara [11], PER protocol has been exten-

sively used to investigate the operant, associative and failed-associative mechanism that basic

learning behavior of the honeybee [12]. The proboscis extension reflex (PER) experiment was

carried out for the first time by Takeda in 1961, who combined an olfactory stimulus with a

sucrose reward [13].

A universal distinctive feature of sensory perception is its dynamic nature. It continually

accepts the ecological situation, that instigates different variations in behavioral response and

odor perception and processing. The cognition behind this dynamical nature is almost omni-

present in the sensory pathways impacting the entire level of olfaction circuits, from sensory

receptors to sensory centers and primary neuropils [14]. Many studies on honeybees also

exhibited that conditioning trials interval also affects learning and memory formation [15].

Honeybees are trained, rewarded with sucrose solution with three consecutive conditioning

trials with inter-trial interval -10 min. Where a stimulus odor takes 4 seconds and is associated

with a food reward to evaluate the learning performance [16], Honeybees have excellent olfac-

tory learning abilities. Bees learn about odor through olfactory receptor cells which are present
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on their antenna, changing these odor cues to chemical signals and subsequently transferring

them into the mushroom body [17, 18]. The classical experimentation design for olfaction

learning has been progressively improved [19]. In bees, several studies have been done on

learning skills in the honeybee, the underlying molecular process is still unknown, particularly

for olfaction behavior by using a stimulation device controlled by a computer. Up to now, only

a few genes have been identified as being involved in the learning process of honey bees [20,

21].

For molecular studies of social behavior, A. mellifera is known as an ideal insect [22, 23].

The genome of A. mellifera provides us with valuable evidence that significantly promotes the

intriguing study of future olfactory research [24]. Natural learning selection has developed the

bee brain to link signals that prognosis the availability of nutrient-rich foods. Sensory percep-

tion is coordinated to develop cognitive traces of stored nutriment (food) for restoration if

bees are starving so that these honeybees can recognize stimuli related to nutritious food

rewards. Post-ingestive signaling is an essential system for evaluating food importance and

developing sensory signals with long-term memory [25]. The most excellent and crucial func-

tion of the bee’s brain is to remember and learn about the tasks connected with sucrose solu-

tion and food [26]. In honeybees, olfactory learning, particularly odor learning is supposed to

form by integrating sensory information into the mushroom bodies (prominent and outstand-

ing part in the brain) [27]. Gene expression has been studied in the brain of bees to identify

genes that have a major function in olfaction behavior. Certain genes are mainly expressed in

the intrinsic neurons named Kenyon cells in the mushroom body [28].

In previous studies, the researchers examined olfactory associative learning performance by

using PER conditioning protocol [7, 29]. According to our investigation, the system for com-

paring the gene expression profiles of the 12-days old bees with unique olfaction learning

skills. The first time, we used an olfaction stimulation device controlled by a computer to eval-

uate the performance of olfactory learning behavior of same-age honeybees. In the article, we

analyzed the patterns of genes expressed in the brain of the learner and a failed-learner group

of bees to display and identify the differentially expressed genes responsible for the learning

ability development of honeybees. The goal of this experiment to transcriptome of bees’ brain

after olfactory conditioning trials to test the hypothesis that learner bees have high expression

of genes as compared to failed-learner bees involved in olfactory learning behavior, also find

the genes involved in olfactory learning behavior by adopting the DEG approach at genome

wide level. We also tested the learning performance of A. mellifera legustica because honeybees

have a major ecological role as pollinators in multiple ecosystems. We analyzed the transcrip-

tome of individual bee brains of learner and failed learner bees using RNA-Seq to provide the

robust analysis of learner and failed learner bees. To confirm the RNA sequencing outcomes,

quantitative real-time-PCR (qRT-PCR) was performed.

Material and methods

Experimental location and handling of bees

A. mellifera ligustica bees were obtained from the experimental apiary of the College of Animal

of sciences, Fujian Agriculture and Forestry University, China (26˚05’9.60" N 119˚14’3.60" E).

Capped combs were collected from three different healthy colonies and kept in an incubator.

The newly emerged bees were obtained every day and were transferred into ten laboratory

rearing glass cages (Number of bees/cages = 48). In an incubator (30˚C, RH -70%), the caged

bees were placed and fed for 12 days with sucrose solution 30% and a mixture of sucrose solu-

tion 50%, and pollen. When the bees were 12 days old, they were brought to the laboratory for

olfactory PER conditioning.
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Olfactory proboscis extension response conditioning

Bees were harnessed following a standard procedure [30, 31]. and kept in an incubator at a

temperature of 30˚C and relative humidity of 70% (±1, 70%) for one hour. Before condition-

ing, a drop of 30% (w/v) sucrose solution was delivered to the antennae to check for intact

PER. Bees not responding with PER to this stimulation were discarded from the experiment.

Population responses of bees (n = 251) were trained to discriminate between the learner and

failed-learner during three conditioning trials. Twelve old days’ bees were used to discriminate

the olfactory learning trials. Bees were trained using a conditioning procedure to discriminate

learner and failed-learner by using 1-nonanol (Sigma Aldrich, France) paired with sucrose

solution 30%. Each conditioning trial lasted 39 sec. First, the harnessed bee was positioned in

front of the olfactometer, and clean air was delivered to the antennae during 15 s. An odorant

was then delivered in 4 sec. Two sec after odor onset, sucrose solution was delivered for 2 sec.

Thus, the interstimulus interval was 2 sec and the Conditioned stimulus and unconditioned

stimulus ended at the same time. Finally, clean air was delivered in the absence of other stimu-

lations for 20 sec to complete the 39-sec trial. The intertrial interval was 10 min.

At the end of the learning trials, individuals that respond in the 2nd and 3rd trials or only

responded to 3rd trials were defined as learned bees, failed-learner individuals were those bees

that did not respond in all learning trials. After the third learning trial, samples from the

learner and failed-learner groups of honeybees were stored at 80˚C until brain dissection after

being frozen in liquid nitrogen [32].

Library preparation and RNA sequencing

Three repeated samples were used for learner and failed-learner bees, respectively. Total RNA

contamination and degradation were examined by denaturing gel electrophoresis (1.0%).

Purity and total RNA concentration were measured and checked by Qubit1 RNA Assay Kit

in Qubit1 2.0 Fluorometer (Life Technologies, CA, USA) and Nano Photometer1 spectro-

photometer (IMPLEN, CA, USA) respectively. Moreover, the integrity of RNA was validated

using the RNA Nano 6000 Assay Kit of the Bioanalyzer 2100 system (Agilent Technologies,

CA, USA). Concisely, the mRNA was purified from total RNA with a magnetic beads oligo.

Fragmentation was performed under elevated temperature using the divalent cationed in NEB

Next First-Strand Synthesis Reaction Buffer (5X). The first cDNA strand (from the fragmented

mRNA) was synthesized with random hexamer primers using M-MuLV Reverse Transcriptase

(RNase H-). Using DNA polymerase I and RNase H, second-strand cDNA synthesis was con-

sequently performed. Polymerase/exonuclease activities changed the lasting overhangs into

blunt ends. NEB Next Adaptor with hairpin loop structure was ligated to prepare for hybrid-

ization after adenylation of 3 "ends of DNA fragments. To select cDNA fragments of 150~200

bp, preferably in length, With the AMPure XP system (Beckman Coulter, Beverly, USA), and

the library fragments were purified. Therefore, 3 μl USER Enzyme (NEB, USA) was used with

selected size and adaptor-ligated cDNA at 37˚C for 15 minutes succeeded by 5 minutes at

95˚C before polymerase chain reaction. The PCR was carried out using Phusion High-Fidelity

DNA polymerase, Universal PCR primers, and Index (X) Primer. PCR products (AMPure XP

system) were lastly purified, and library quality on the Agilent Bioanalyzer 2100 system was

measured.

Illumina sequencing, assembly, and annotation

Index-coded samples were clustered using TruSeq PE Cluster Kit v3-cBot-HS (Illumina) per

provided by the manufacturer requirements in a cBot Cluster Generation System. The library

preparation was sequenced on the platform of Illumina Hiseq after the cluster generation. The
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paired-end reading ranged in length from 125 to 150 bp. Clean reads were filtered by discard-

ing the adopter sequence, and reads were discarded when more than 10% (N > 10%) of either

read was unsure nucleotides. Ultimately, remove the reads when nucleotides of low quality

(basic quality below 20) constitute over 50% of the reading. The differential gene expression

was carried out through the abundance of transcripts. The higher the abundance, the higher

the level of gene expression. The level of gene expression was calculated in our RNA sequence

assessment by counting the reads that map to genes or exons. Not only is the read count pro-

portional to the actual level of gene expression, but it is also comparable to the length of the

gene and the depth of sequencing. The FPKM was used to compare the levels of gene expres-

sion estimated from different experiments. In RNA—sequence, FPKM (Fragments Per Kilo-

base of transcript sequence per Millions of base pairs sequenced) is the most standard method

of estimating levels of gene expression, considering the effects of both sequencing depth and

gene length on fragment counting. Differential gene expression (DEGs) was performed using

DESeq (R package) between learner and failed-learner libraries. Directed Acyclic Graph

(DAG) is a way of showing Gene Ontology (GO) enrichment results for differentially

expressed genes (DEGs). The enrichment pathway analysis identifies metabolic pathways or

signal pathways significantly enriched with differentially expressed genes compared to the

entire genome [33].

N is the number of all genes with a KEGG annotation, n is the number of DEGs in N, M is

the number of all genes annotated to specific pathways, and m is the number of DEGs in M.

Analysis of quantitative real-time-PCR (qRT-PCR)

To confirm the RNA sequencing outcomes, the integumentary system, storage proteins, brain

development, sensory processing, and genes from enriched KEGG pathways and GO catego-

ries were analyzed through quantitative real-time PCR (qPCR). cDNA was synthesized using

the RT mentioned above Reagent Kit with gDNA Eraser (Takara, China) from RNA samples

gained as directed by the manufacturer. Mixed Total RNA (1 μg) with 2 μl (5 x gDNA Eraser).

RNase-free water and 1μl of gDNA Eraser and a final volume of 10μl was added. To eliminate

genomic DNA, the incubation of the reaction mixture for 2minutes at 42˚C. The reaction

blends mixed in 4 μl 5 μl PrimeScript,1 μl RT Primer,4 μl RNase Free water, 1 μl Prime Script

RT enzyme, incubated for 5s at 85˚C and 2 minutes at 37˚C. The prepared complementary

DNA (cDNA) was stored at -20˚C for subsequent use. Every qPCR-10 μl reaction was made

up of 5 μL of 2x SYBR Premix Ex Taq II (Tli RNase H Plus, TaKaRa), 0.8μl of every primer

(10 μM) first, cDNA1 μl (1:3 dilution), and RNase-free water 3.2 μl. The Bio-Rad CFX 384

real-time system was used to perform qPCR, and every reaction was repeated three times. The

reaction conditions were for the 30 sec at 95˚C and 40 Cycles for 5 sec at 95˚C and 30 sec at

60˚C, followed by the analysis of the melting curve. Each target’s Ct values were normalized to

the geometric mean of one’s Ct values [33].

Statistics

For RNA-Seq data analysis, the resulting P-values were adjusted using the Benjamini and

Hochberg’s approach for controlling the false discovery rate. Genes with an adjusted P-

value < 0.05 found by DEGseq were assigned as differentially expressed genes [34]. The

unpaired Student’s t-test was used to examine differences in learner and failed-learner group

of bees. ANOVA test was used to different the three learning trials of A. mellifera legustica. For

statistical significance real-time PCR data, independent-samples t-test was used. Data are pre-

sented as mean ± SD [35, 36].
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Results

Olfactory learning performances

Our result revealed that percent responses were lower on the first conditioning trial and

increased on subsequent trials, indicating that the bees learned the odor-sucrose association

Fig 1. The significant differences among the conditioning trials (T1, T2, T3) were represented

in small alphabetical letters (a, b, c). (F 282.184; P< 0.0001), (���p� 0.001, IBM SPSS Statistics

21, ANOVA).

During the proboscis extension response, we used 251 bees. After conditioning trials, we

defined the learner and failed-learner groups. The number of learner bees was “216,” and

failed-learner bees were “35” Fig 2. The data of learner and failed-learner group of A. mellifera
bees expressed in (mean ± SD) (t-test, t = 17.531, df = 10, P < 0.0001).

Fig 1. Proboscis extension response percentage of A. mellifera bees (12-day adult bees) of in odor response and

sucrose reward. PER (%) explicit the significantly higher learning response 3rd conditioning trial as compared to 2nd

and 1st trials.

https://doi.org/10.1371/journal.pone.0262441.g001

Fig 2. Proboscis extension response learning trials of A. mellifera bees to odor response and sucrose reward. PER

(%) exhibited that learner bees significantly higher learner response as compared to failed learner bees, x-axis and y-

axis represents the learner and failed-learner bees and percentage of proboscis extension response respectively.

https://doi.org/10.1371/journal.pone.0262441.g002
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Sequencing analysis and quality control

Transcriptome analysis of A. mellifera ligustica bees was performed to understand the tran-

scriptional changes in learner and failed-learner bees. After removing low-quality reads, fur-

ther than 6.77 billion clean reads with suitable quality were generated in three samples. After

cleaning and quality checks, the percentage of Q30 and GC exceeded 92% and 38%, respec-

tively Table 1.

Analysis of differentially expressed unigenes (DEGs) by RNA-Seq

The average number of clean reads of learner and failed-learner bees were 46.7 and 46.4 mil-

lion reeds, respectively after, filtering low-quality reads. Approximately 93% of the clean reads

were mapped of learner bees and failed-learner bees. In total, 74 genes were identified that

were differentially expressed from the learner bees and failed-learner bees (padj < 0.05).

Among the 74 differentially expressed genes (DEGs), 57 genes were down-regulated in failed-

learner, and 17 genes were upregulated in the brains of learner bees Fig 3.

Up-regulated and down-regulated genes are significantly presented in the red part (red

dots) and green part (green dots) respectively (padj < 0.05). There was no differential expres-

sion was found presented in blue color between the learner and failed-learner groups

(padj > 0.05).

The x-axis is gene ontology (GO) terms enriched, and the y-axis represents the differential

expression genes. The (GO) terms are extensively used to describe the biological process,

molecular function, cellular component of genes. GO enrichment bar chart is used to clarify

the differentially expressed genes enriched GO terms and the counts of genes for each GO

term. The most enriched 30 GO terms are shown in Fig 4.

Validation by qRT-PCR

The relative expression level of seven DEGs is associated with brain development, integumen-

tary system, storage proteins, sensory processing, and neurodegenerative disorder, further-

more, confirmed by qRT-PCR Fig 5. The distinct expression of seven DEGs by qRT-PCR

agreed substantially with RNA-Seq genes expression data. The relative gene expression levels

of the seven DEGs were significantly lower in failed-learner honeybees than learner bees (P<

0.05; P< 0.01) Fig 5. The expression levels of caste differentiation and transmembrane trans-

port genes MRJP1 (GB45797) and battenin (GB49799) in learner bees were significantly higher

than in failed-learner honeybees. The expression levels of immune system genes, rhythmic

behaviors, detoxification, storage protein including probable cytochrome P450 6a14

(GB49878), protein unc-80 homolog (GB50715), esterase A2 (GB43571), apidermin 2

(GB53119), hexamerin 110 (GB44996) in learner bees, were significantly high in learner

honeybees.

Table 1. Summary of data quality control.

Sample name Raw reads Clean reads Q20 (%) Q30 (%) GC content (%)

L1 47959604 46643000 97.10 92.31 39.78

L2 41507724 40104884 97.01 92.09 39.47

L3 55067748 53512630 96.96 92.00 38.97

NL1 4960828 47971142 97.07 92.27 39.34

NL2 46229844 45141096 96.81 91.70 38.28

NL3 47197408 46098262 96.97 92.06 38.26

https://doi.org/10.1371/journal.pone.0262441.t001
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The results confirmation of the seven DEGs showed that the qRT-PCR values were well cor-

related and confirm the significance of the transcriptome data because selected genes are also

involved in several functions such as caste differentiation, transmembrane transport, and

immune system in the brains of honeybees.

Discussion

The study was conducted to identify the gene whose expression differs in the learner and fail-

learner bees following proboscis extension response, olfactory learning was performed on

restrained individuals using the conditioned proboscis extension response. The results

revealed that the learning performance of A. mellifera (12 days) showed significantly different

between learner and fail-learner bees. We obtained approximately 46.7 and 46.4 million clean

reads (average) from the brains of learner bees and fail-learner bees, respectively. The results

showed that 74 differentially expressed genes were identified between learner and fail-learner

bees, including 57 up-regulated and 17 down-regulated genes. RNA sequencing data were con-

firmed by qRT-PCR. Transcriptome analyses revealed that specific genes in learner and fail-

learner bees either down-regulated or up-regulated involving brain development and learning

behavior. Our finding suggests that the downregulation of brain genes involved in the

Fig 3. Volcano plot for (DEGs) differentially expressed genes between learner and failed-learner groups.

https://doi.org/10.1371/journal.pone.0262441.g003
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integumentary system, storage proteins, brain development, sensory processing, and neurode-

generative disorder may reduce olfactory discrimination and olfactory sensitivity fail-learner

bees. Olfactory cognition triggered by odor (smell, scent) experience, the olfactory pathway

Fig 4. Gene ontology functional classification.

https://doi.org/10.1371/journal.pone.0262441.g004

Fig 5. qPCR analysis of differentially expressed genes between learner and failed-learner bees. Independent t-test, �

P<0.05, �� P< 0.01.

https://doi.org/10.1371/journal.pone.0262441.g005
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has been well documented, and adaptive behavior depends on learning to improve experiential

choices. A stable combination of sugar reward and odor will reliably provoke a suitable behav-

ioral response (PER). Even "simple" classical conditioning protocol and experiment leads to

many brain changes including changes in the experiment pattern [37], variations in basic odor

proceeding [38–40] and distinctive traces of associative memory [41]. The protein portion

consists primarily of major royal jelly proteins (Mrjps), among them nine (Mrjp1-9) encoding

genes identified [42–44]. The (Mrjp 1–9) encoding genes are present in the Apis genus and

other species, including, Megachile rotundata, Nasonia vitripennis, and in ants and several

bumble bees [43]. Mrjps also found in Polistes canadensis [45]. The first Mrjp exhibited species

in the Vespidae family [46]. A family of multi-functional proteins, (Mrjps) in bees are directly

and indirectly involved in regulating the behavioral, developmental, and physiological process-

ing [43]. Mrjp1 is the most important and abundant protein in royal jelly. Mrjp1 was already

demonstrated and expressed in the brain [47–49]. At the same time, prominent expression of

mrjp1 in Kenyon cells, which is crucially performed special task in the formation of olfaction

learning abilities of honeybees [49]. Honey bees with reduced learning skills did not showed

high-levels of mrjp1 expression [47]. The mrjp1 was significantly expressed in the brains of

learner group bees involved in learning performance. This finding provides additional evi-

dence and fits well with our results that Mrjp1’s key role in developing honeybee-learning

capabilities. The functional and molecular characteristics of Mrjp1 have remained unclear in

the same age bees of A. mellifera ligustica. Besides the expression of the Mrjps in the hypophar-

yngeal glands (HGs), several investigations were reported using proteomic examines of royal

jelly and major royal jelly protein [47, 49–51]. Furthermore, findings on the transcriptome

analysis of A. mellifera L. shown contigs of Mrjps, mainly Mrjp1, in libraries of the honeybee

brain [48, 52, 53]. In addition to the expression of these proteins in the (HGs), in the brain of

working bees, Mrjp1 also identified [54, 55]. Mrjp1 is an essential royal jelly (RJ) protein [44].

The Mrjp1’s expression showed in the brain [47, 56], and more particularly in the mushroom

bodies (Kenyon cells) of the brain, Kenyon cells involved in the learning and memory forma-

tion [49]. Juvenile NCL (JNCL) is a hereditary (an autosomal recessively) neurodegenerative

disturbance that is concerned with a mutation in the battenin gene. JNCL has been considered

by the accretion of motor decline [57] of neurons and diminished brain mass. CLN3 is a

hereditary disease that affects the nervous system. In the human being, with CLN3 disease,

faced difficulty learning the ability of new information and started losing previously acquired

skills [58–62]. Due to a mutation in CLN3, there are clear indications of cognitive impairment,

depressed mood, anxiety, loss of learning abilities, attention, loss of memory, feeding, and

adaptive skills [51, 63–66]. The CLN3/battenin gene mutations lead to Juvenile (neuronal cer-

oid lipofuscinosis) NCL, cognitive decline, and movement disorders [67–69]. Our outcomes

provide significant clues about the role of battenin in the brain during learning trials, especially

the involvement of learning behaviors. According to different studies, lacking or mutation in

the battenin gene causing abnormalities in mice brain, changes in behavior such as learning

and memory impairment, and also minimize the involuntary activity level [59]. The CYPs

were identified in the brains of several species as well as the honeybee, rat, human, monkey,

dog, and mouse [70, 71]. In the central nervous system, CYPs can also play a significant role in

regulating brain activity, learning behavior, CNS disease susceptibility, and consequences of

treatment [72]. Cytochromes P450 are expressed in the brain, liver, and including other organs

[73]. After completion of brain development, it is far from static. The brain evolves to stimuli

that underlie learning, behavior, and memory functions throughout life, and the ability of the

brain overcome to damage [74]. The CYP450 affects isoforms in the metabolism of neuroster-

oids, cholesterol, and neurotransmitters, therefore their potential participation in animal

behavior, such as in learning and memory, cognitive processes, schizophrenia stress,
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depression. CYP450 facilitated alternative serotonin and dopamine pathways, synthesis may

play a significant role in the local production of such neurotransmitters in brain regions, and

integration of local alternate neurotransmitters can be extremely important in the brain [75].

Recent work supports this possibility that cytochrome P450 (GB49878) is essential for brain

development and has a significant role in the learning of bees. Cytochrome P450 has a critical

function in the hippocampus (a necessary part of the brain of invertebrate and vertebrates)

[76]. The hippocampus is mainly associated with mechanisms of learning and memory have a

particular contribution as neuromodulators to quick action on memory formation [77, 78].

Several individuals have behavioral issues, such as self-stimulatory and repetitive behaviors

and sensitivity. Mutation in UNC80 shows tactile learning and hypersensitivity to stimuli. The

presence of UNC80 is crucial for the channel function of NALCN [79–82]. Mutation of the

UNC80 in mouse brains demonstrates the interdependency of NALCN sensitivity to extracel-

lular calcium in the channel complex. UNC80 is essential for NALCN sensitivity to extracellu-

lar calcium [83]. We reported the first time that UNC80 is indirectly involved in the learning

and memory of honeybees and causes a lack in the cognitive task [84]. Animals require intact

learning and well-kept memory for the survival of various environmental circumstances. Cir-

cadian rhythms are fundamental biological concepts that are conserved in multiple organisms.

A network of circadian neurons in the fruit fly Drosophila melanogaster drives daily rest and

activity rhythms [85]. In the central nervous system and on the periphery, including in the hip-

pocampus, circadian rhythmicity in gene expression and physiological processes was observed.

The hippocampus is a brain-critical region for learning formation. UNC80 is essential in dro-

sophila to promote circadian behavioral rhythm [86]. Our recent findings and previous behav-

ioral facts suggest genes involved in caste differentiation, depression; facilitate pathways for

neurotransmitters, integumentary system, storage proteins, brain development, sensory pro-

cessing, and neurodegenerative disorder, which may cause impairment learning and reduce

the learning performance in failed-learner bees [87–90].

To the best found of knowledge, this is the first study to be examined transcriptome expres-

sion patterns in the brain of honeybees (12-days old), revealing the odor learning behaviors

between learner and failed-learner. The profiles of gene expression underlying cognitive pat-

terns indicate that genes are associated with brain development; integumentary system, storage

proteins, sensory processing, and neurodegenerative disorder were down-regulated signifi-

cantly in failed-learner brains of the bees. These results together show that most differentially

expressed genes were significantly down-regulated in failed-learner group. Down-regulated

brain genes were involved in multifunction, such as mood regulation, stress, anxiety, integu-

mentary system, storage proteins, brain development, sensory processing, a neurodegenerative

disorder, and circadian rhythms. It leads to reduced learning skills.

Conclusion

In our study, we obtained a total of 74 differentially expressed genes through DEG analysis after

olfactory learning trials, among them few were reported to be important genes involved in olfac-

tory learning behavior. As a result, we obtained worthy information. These genes also provide

important clues for future studies related to olfactory learning response in bees and greatly

expanded the scope of molecular mechanism related to olfactory learning behavior in bees.
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Rizwan, Zhiguo Li, Hongyi Nie, Pavol Hlaváč, M. Ajmal Ali, Ahmed Rady, Songkun Su.

Data curation: Muhammad Fahad Raza.

Formal analysis: Zhiguo Li, Hongyi Nie, Songkun Su.

Funding acquisition: Zhiguo Li, Pavol Hlaváč, M. Ajmal Ali, Ahmed Rady, Songkun Su.
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