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Abstract

Background: Due to tumor heterogeneity, the diagnosis, treatment, and prognosis of patients with lung squamous
cell carcinoma (LUSC) are difficult. DNA methylation is an important regulator of gene expression, which may help
the diagnosis and therapy of patients with LUSC.

Methods: In this study, we collected the clinical information of LUSC patients in the Cancer Genome Atlas (TCGA)
database and the relevant methylated sequences of the University of California Santa Cruz (UCSC) database to
construct methylated subtypes and performed prognostic analysis.

Results: Nine hundred sixty-five potential independent prognosis methylation sites were finally identified and the
genes were identified. Based on consensus clustering analysis, seven subtypes were identified by using 965 CpG
sites and corresponding survival curves were plotted. The prognostic analysis model was constructed according to
the methylation sites’ information of the subtype with the best prognosis. Internal and external verifications were
used to evaluate the prediction model.

Conclusions: Models based on differences in DNA methylation levels may help to classify the molecular subtypes
of LUSC patients, and provide more individualized treatment recommendations and prognostic assessments for
different clinical subtypes. GNAS, FZD2, FZD10 are the core three genes that may be related to the prognosis of
LUSC patients.
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Background
Lung cancer, the most commonly diagnosed cancer
(11.6%), is the leading cause of cancer death, which ac-
counts for 18.4% of cancer deaths among men and
women [1]. The incidence of lung cancer is increasing
rapidly, causing a huge economic burden. Approximately

66% patients have lost the opportunity to undergo rad-
ical surgery after the diagnosis of lung cancer in China
[2]. Non-small cell lung cancer (NSCLC), a heteroge-
neous disease, accounts for more than four-fifths of all
lung cancers, and the pathological classification and clin-
ical stage of patients are closely related to their progno-
sis [3]. Patients with LUSC account for more than 30%
of patients with NSCLC [4].
In the past two decades, the epigenetic understanding

of lung cancer has developed exponentially [5]. Epigen-
etic research has provided key data for the occurrence of
lung cancer. DNA methylation is the presence of methyl
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cohorts at the CpG dinucleotides, which usually locates
near the gene promoter and affects gene expressions [6].
Transcriptional silencing caused by hypermethylation of
CpG islands has become a key factor in the occurrence
and development of lung cancer [7]. Abnormal DNA
methylation silences the expression of tumor suppressor
genes (TSG) by methylation of the promoter regions [8,
9].DNA methylation markers have important value in
the early diagnosis of lung cancer, predicting the treat-
ment effect and tracking the resistance of treatment.
The methylation of p16INK4a and MGMT, which can
be detected in the sputum of most LUSC patients, could
be used to predict the risk of lung cancer in smokers [5].
However, a large number of patients with LUSC have
not been screened for abnormal methylation genes in
the promoter region, and further analysis of their associ-
ation with tumor classification and patient survival time.
In this research, based on the TCGA and UCSC
databases, we screened out multiple DNA methylation
biomarkers to construct and verify the prognostic pre-
diction model, which could be used to provide more in-
dividualized treatment recommendations and prognostic
assessments for different clinical subtypes.

Methods
Data download and preprocessing
Downloaded RNA sequencing data which came from
504 primary LUSC samples from the TCGA databases
(https://cancergenome.nih.gov/ 2020-07-08). Add-
itional file 1 shows the clinical information of these 504
patient samples, including follow-up data. Downloaded
the DNA methylation data of Illumina Infinium Human-
Methylation450 and 27 BeadChip arrays, respectively.
This study only includes sample data with clinical

follow-up times exceeding 30 days. β-value ranging from
0 (unmethylated) to 1 (fully methylated) represented the
DNA methylation level of each site. Use the “impute”
and “sva” packages in R language to eliminate the effect
of batch effect. CpG sites were filtered by using the next
4 processes: (1) Remove the CpG sites with data less
than 30% of samples. (2) Remove the unstable CpG sites
which located on single nucleotide polymorphisms and
sex chromosomes. (3) only the CpG sites in the pro-
moter region (2 kb upstream to 0.5 kb downstream from
the transcription start site) were retained. (4) Remove
the CpG sites which in the Illumina Infinium Human-
Methylation 450 microarray existed the polymorphic
CpG and cross-reactive probes. (5) CpG sites which
existed in the DNA methylation data of the downloaded
Illumina Infinium HumanMethylation 27 and 450 Bead-
Chip arrays were retained. The data from HumanMethy-
lation 450 microarray is classified as the training cohort,
and the data from 27 BeadChip is classified as the exter-
nal test cohort. Additional files 2 and 3 show the

methylation site profiles and clinical information of the
two cohorts, respectively.

Selecting characteristic CpG sites
CpG sites were selected by using the next 3 pro-
cesses:(1) For each CpG site, TNM stage, age, gender
and survival data, use methylation levels to construct
a univariate Cox proportional risk regression model.
(2) Introduce Sites with significantly different levels of
methylation expression (p ≤ 0.05) from univariate Cox
proportional hazards regression model into multivari-
ate Cox proportional risk regression models con-
structed from TNM staging, age, gender and survival
data.(3) Select the characteristic CpG sites which are
significant in multivariate and univariate Cox regres-
sion analysis.

Identification molecular subtypes related to prognosis
Based on the CpG sites with significantly different
levels of methylation expression “ConsensusCluster-
Plus” package in R was used for consensus clustering
to identify LUSC molecular subtypes. This algorithm,
one of the unsupervised class discovery algorithms,
defined “consensus” clustering by estimating the sta-
bility of clustering results by applying a specific clus-
tering means to the random subsets of data. After
100 iterations, we gained the project-consensus results
and cluster consensus.
The heatmap of the consensus matrix which came

from the graphical output results included the consensus
cumulative distribution function (CDF) plots, delta area
plots and clustering results. According to the following
criteria the sorts of clusters were determined: (1) The
consistency within the cluster was high. (2) The coeffi-
cient of variation is relatively low. (3) The area under
the CDF curve did not increase significantly. The area
under the CDF curve was used to define the category
number. Tend to use more categories for LUSC to get
more detailed classification categories. Utilize the
“pheatmap” R package to get heatmap which correspond
to consensus clustering. Use a color gradient to indicate
the consensus value from 0 (white) to 1 (dark blue); sort
out the matrix so that the items which belongs to the
same cluster can be put together. In this arrangement,
the perfect consensus matrix will show a heatmap, which
is displayed by the diagonal blue blocks on a white
background.

Analyses of survival and clinical characteristics
Use Kaplan–Meier plots to demonstrate overall survival
among LUSC subtypes which was determined by DNA
methylation profiles. Utilize the log-rank test to assess
the significance of differences among the subtypes. Use
the “survival” R package to execute survival analyses.
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The chi-squared test was used to analysis the connection
between DNA methylation clustering and both biological
and clinical characteristics. All tests used two-sided, and
only p < 0.05 was thought statistically significant.

GO and KEGG enrichment analysis
The “clusterProfiler” and “ggplot2” R package combined
with Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) database were applied to
process gene enrichment analysis of the biological
process, cell component, molecular function and bio-
logical pathways.

Construction and testing of the prognostic prediction
model
Based on the prognostic information of patients and
methylation profiles of 26 CpG sites, Use the “survival”
R package to construct and verify the Cox proportional
hazards model. The formula of the model is: risk score =
cg01775414*7.35-cg03522063*1.71-cg03954587*0.65 + cg
05158615*0.49-cg06918467*0.55-cg07850604*0.08-cg093
39527*0.46-cg10332700*0.07-cg11814446*1.64 + cg11846
236*2.60 + cg13739417*2.52-cg14776962*0.38-cg1500138
1*6.07-cg17619823*0.12 + cg19255783*0.10 + cg2085556
5*0.05-cg21331821*0.33 + cg21663122*1.51-cg23054883*
3.52 + cg24402880*0.42 + cg24892510*0.90-cg25228126*
0.08 + cg25533774*0.56-cg25856383*0.93-cg25983380*0.
30-cg27654142*1.88. Internal verification randomly di-
vided the data from the 450 k BeadChip into an in-
ternal training cohort and an internal testing cohort
for verification, while external verification used all
data of the 450 k BeadChip as the external training
cohort and all data of the 27 k BeadChip as the exter-
nal testing cohort.
We probed the genetic alterations connected with

the 24 genes corresponding to 26 prognostic-related
methylation sites, and the correlation between mes-
senger RNA (mRNA) and DNA methylation by utiliz-
ing the cBioPortal tool. The clinical characteristics
and prognosis model of the patient were used as dif-
ferent influencing factors, and the prognostic informa-
tion of the patient was analyzed by univariate and
multivariate Cox analyses, and the corresponding
ROC curve is drawn.

Results
Select potential methylation sites associated with the
prognosis of patients
After preprocess the downloaded patients data ac-
cording to the description in Materials and Methods,
we identified 21,122 methylation sites. Then, the pa-
tients were divided into two cohorts, namely the
training cohort and the test cohort, and detailed pa-
tient data is shown in the Additional files 2, 3. With

p < 0.05 as the screening condition, the univariate Cox
regression analysis was used to select the CpG sites,
which could be used to serve as potential DNA
methylation biomarkers for overall survival of patients
with LUSC. Finally, obtain 1160 related CpG sites
(Additional file 4). The T, N, M, stage and age as co-
variates Multivariate Cox regression analysis was
performed on 1160 methylation sites, and 965
independent CpG sites, which were considered poten-
tial prognostic methylation sites were identified
(Additional file 5).

Consensus clustering to identify different subtypes of
DNA methylation prognosis and prognostic analysis
among subtypes
The consensus clustering of 965 potential prognostic
methylation sites were utilize to identify different sub-
types of LUSC for prognostic purposes. The amounts of
clusters were decided by using the next 2 standards: (1)
The consistency within the cluster is high. (2) The area
under the CDF curve is not increase significantly. Based
on the category number, the average clustering consen-
sus was calculated. As shown in Figs. 1a and b, after six
categories the area under the curve (AUC) of CDF
started to stabilize. We chose a larger number of clusters
to increase the prognostic value of LUSC subtypes. Next,
we also utilized the consensus matrix to decide the opti-
mal amount of subtypes. As shown in Fig. 2a, the con-
sensus matrix, which showed a well-defined block
structure represented the consensus of 7. DNA methyla-
tion subtypes, stage, age and TNM category are dis-
played as annotations in Fig. 2b which corresponds to
the dendrogram of the Fig. 2a.
The Kaplan-Meier survival analysis showed signifi-

cant differences in prognosis between the 7 subtypes
(p < 0.001). The proportions were shown in Fig. 3a-f.
The correlation tendencies among the 7 clusters were
shown in the figure: (1) Cluster 4 had the smallest
proportion of patients over 65 years of age, while
Cluster 7 had the highest proportion of patients over
65 years of age. (2) The proportion of female patients
in cluster 2 was the largest, while the proportion of
female patients in cluster 6 is the smallest. (3) Cluster
7 has the largest proportion of patients in stage I,
and Cluster 5 had the smallest proportion of patients
in stage I. (4) Cluster 4 had the largest proportion of
patients with T1. (5) Cluster 7 had the largest pro-
portion of patients with N0, and Cluster 5 had the
smallest proportion of patients with N0. (6) Almost
all patients did not have distant metastasis. These
tendencies revealed that each clinical parameter had a
different ratio among 7 clusters. As shown in Fig. 3g,
cluster 5 has the worst prognosis, while cluster 7 has
the best prognosis. Then base on the clinical
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information of age, gender, stage score, topography
score, lymphocyte infiltration and metastasis, we ana-
lyzed intra-subtype ratio for the 7 subtypes.

Recognize different features according to DNA
methylation clustering and selecting the cluster-specific
methylation sites
Though the above-mentioned genome annotations for
the 965 CpG sites, we identified 1037 corresponding
genes altogether. Next these 1037 genes were identified
27 significant enrichment pathways (P < 0.05) which
were displayed in Fig. 4 and Additional file 6 by process-
ing KEGG pathway enrichment analysis. Cell cycle, Fc
gamma R-mediated phagocytosis, Non − homologous
end−joining, Protein digestion and absorption, Cellular

senescence was the top five pathways with significant
differences. Using “enrichplot” R package to analysis the
crosstalk of pathways identified by KEGG pathway en-
richment analysis (Fig. 4b). Renal cell carcinoma, chronic
myelogenous leukemia, and FoxO signaling pathway
were the three most connected pathways with other sig-
naling pathways.
Then, we selected the cluster-special methylation

sites by including the CPG methylation sites as fea-
tures of the clusters. Nine hundred sixty-five genes in
266 external training data set samples were available.
The gene expression heat map is shown in Fig. 4c,
and the original data is shown in Additional file 7.As
description of Materials and Methods, analyze the
differences between the 7 clusters at each methylation

Fig. 1 Standard for choosing amount of subtypes. a Consensus among subtypes for each cluster number k. b The Delta area curve used for
consensus clustering represents under the CDF curve the relative change in the area for each cluster number k compared to k-1. The category
number k is indicated by the horizontal axis coordinate, and the relative change of the area under the CDF curve is indicated by the vertical axis
coordinate. c Box plot of CpG methylation levels of the 7 Clusters. (All figuress were generated by “R” (3.6.2) software and Adobe Illustrator
(23.0.2) software)

Fig. 2 Consensus matrix and corresponding heat map of DNA methylation subtypes. a Color-coded heatmap which corresponds to the
consensus matrix(k = 7) gained by processing consensus clustering. Use a color gradient to indicate the consensus value from 0 (white) to 1 (dark
blue). b A heatmap which corresponds to the Fig. 2a with the annotation of the DNA methylation subtypes, stage,age and TNM category. (All
figuress were generated by “R” (3.6.2) software and Adobe Illustrator (23.0.2) software)
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sites (Additional file 8). Forty-one cluster-special
methylation sites identified was displayed in Add-
itional file 9. Enrichment analysis of KEGG signaling
pathway was performed to analysis genes correspond-
ing to 41 cluster-special methylation sites (Fig. 5b).
The enrichment analysis of KEGG signaling pathways
resulted in 30 related signaling pathways. Analysis of
the genes that make up the pathway revealed that the
genes GNAS, FZD2, FZD10, GNG4, and AXIN1 par-
ticipated in the most relevant pathways. Genome an-
notations of the 41 specific sites were used to
identify their corresponding genes (Additional file 10).

The analysis of the 10 signaling pathways with the
smallest p-values revealed that these 46 genes were
related to diseases such as Basal cell carcinoma,
Breast cancer, Gastric cancer, etc., and pathway such
as Signaling pathways regulating pluripotency of stem
cells, Hippo signaling pathway, Wnt signaling
pathway.
The 30 signal pathways obtained by enrichment

analysis were only enriched in Clusters1, 2, 4, and 6
(Additional file 11). Cluster 7 has the lowest methylation
level among all clusters, while cluster 5 has the highest
methylation level (Fig. 1c).

Fig. 3 Comparison of age, gender, stage, TNM stage and prognosis among the DNA methylation subtypes. a, b, c, d, e, and frepresent age,
gender, stage score, topography score, lymphocyte infiltration and metastasis distributions for every DNA methylation cluster in the training set.
The DNA methylation subtypes are represented by the coordinates of the horizontal axis. g Survival curves for every DNA methylation cluster in
the training group. The survival time (years) is represented by the horizontal axis, and the survival probability is represented by the vertical axis.
Use the log-rank test to evaluate the statistical significance of differences among clusters. (All figures were generated by “R” (3.6.2) software and
Adobe Illustrator (23.0.2) software)
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Construction and evaluation of LUSC prognostic model
Cluster 6 with 26 specific methylation sites was selected
as the seed cluster, because it has a good prognosis and
the largest number of specific methylation sites among
clusters. For all samples in the Training cohort, the
methylation levels of these 26 specific sites were ob-
tained. Next, we built a Multistate Cox risk regression
model, and used this model to calculate the risk value
of each patient. Utilizing the “survival” and “survminer”
R package to plot survival curves, the results showed
that there were significant differences between the two
cohorts (Fig. 6). Specifically, the prognosis of the high-
risk cohort was poor, indicating that these specific
methylation sites might be a sign of prognosis. The
ROC analysis was performed using the risk score com-
puted for each training cohort sample, and the results
are shown in Fig. 6a.The AUC as 0.714, indicated that
the model worked well. Then sort the samples by risk
score and find that as the score increases, the risk of

death is higher (Fig. 6b). According to the cut-off risk
score of − 0.70491, the patients in the training cohort
were divided into high-risk cohort and low-risk cohort
evenly, and the heat map was used to show the methy-
lation level of 26 special sites in the training cohort
(Fig. 6d).
Then, we used the caret R package to divide the pa-

tients in the external training cohort into two cohorts,
namely the internal training cohort and the internal test
cohort. We calculated the patient’s risk value, and used
the R language to draw the survival curve and ROC
curve of the two cohorts of patients. As shown in Fig. 7,
the prognosis of patients in the high and low risk co-
horts is statistically significant, and the p value was less
than 0.001. The AUC is 0.735 and 0.662, respectively,
which in consistent with the results of the external train-
ing cohort.
Finally, the data of the patients in the testing cohort

were collated to obtain the methylation levels of the

Fig. 4 Gene annotations of 965 methylated sites. a KEGG pathway enrichment analysis of annotated1037 genes for the 965 CpG sites. b Crosstalk
analysis of the results from KEGG pathways enrichment analysis using “Enrichment” R package. c Cluster analysis heat map for annotated genes
associated with the 966 CpG sites. (All figuress were generated by “R” (3.6.2) software and Adobe Illustrator (23.0.2) software)
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Fig. 6 Construction of the model for forecasting prognosis of LUSC patients in the external train group. a The ROC curve of the prognostic
indicators of 1 year, 3 years and 5 years. b The horizontal axis represents patient samples, and the vertical axis represents the risk score (upper)
and the overall survival (lower). c Prognostic difference analysis between high-risk group and low-risk group. d The Heat map showing the
expression levels of 26 methylation sites which were used to build the prognostic model in the high-risk and low-risk groups in external train
group. (All figuress were generated by “R” (3.6.2) software and Adobe Illustrator (23.0.2) software)

Fig. 5 Specific hypo/hyper-methylation CpG sites for every DNA methylation cluster. a Specific CpG sites are displayed for every DNA methylation
prognosis subtype. Hypo- and hypermethylation CpG sites are represented by red and blue bars. b Crosstalk analysis of the results from KEGG
pathways enrichment analysis using “Enrichment” R package. (All figuress were generated by “R” (3.6.2) software and Adobe Illustrator (23.0.2) software)
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patients at 26 special sites (Fig. 8d), and the obtained
prognostic model was applied to the patients in the ex-
ternal test cohort which came from the 27 BeadChip to
calculate their risk scores. Using − 0.70491 as the critical
value, it was divided into high-risk cohort and low-risk
cohort (Fig. 8b). The prognosis of the low-risk cohort
was significantly better than that of the advanced cohort
(Fig. 8c), and there was a significant difference between
the two cohorts (p = 0.03743), Consistent with the re-
sults of the training cohort, it was proved that this
model could be used to predict the prognosis of
patients.
The alteration information of the 24 genes was

showed in Fig. 9. We found that the 24 genes were
altered in 219 (43%) of the 511 sequenced cases/pa-
tients (511 total). The ADRB3 was altered most often
(18%), including deep deletion, amplification, mRNA
high, etc. The correlation between mRNA and DNA
methylation of the 5 genes with highest degree of

genetic alterations in the TCGA LUSC patients was
demonstrated in Fig. 9c. We found that the correl-
ation was most negative, indicating that methylation
regulated the mRNA expression of these genes (ex-
cept for EMX2, LEMD3, ZFP2, ZSCAN1). The results
illustrated that the DNA methylation played an sig-
nificant role in the expression of these genes.
The clinical characteristics and prognosis model of

the patient were used as different influencing factors,
and the prognostic information of the patient was an-
alyzed by univariate and multivariate Cox analyses,
and the corresponding ROC curve is drawn. The re-
sults of the univariate Cox analysis found that the
predictive effect of the prognostic model and patient
stage was higher than other clinical characteristics
(Fig. 10a). However the results of multivariate Cox
analyses showed that only the prognostic model can
independently evaluate the prognosis of the patient
(Fig. 10b).

Fig. 7 Construction and internal verification of the model for forecasting prognosis of LUSC patients. a ROC curves of prognostic
predictors in the internal training group. b Prognostic difference analysis between high-risk group and low-risk group in the internal
training group. c ROC curves of prognostic predictors in the internal testing group. d Prognostic difference analysis between high-risk
group and low-risk group in the internal testing group. (All figuress were generated by “R” (3.6.2) software and Adobe Illustrator
(23.0.2) software)
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Discussion
The study processed data of patients with LUSC
which download from the TCGA database and
UCSC database. Through univariate Cox regression
analysis and multivariate Cox regression analysis,
965 potential prognostic methylation sites were
screened out. According to the selected prognostic
methylation sites, the consensus clustering method
was used to identify 7 different subtypes of LUSC.
The subtype with the best prognosis was selected to
construct a multivariate Cox risk regression model
which was used to calculate the prognostic risk value
of each patient with LUSC. The survival curve found
that the higher the risk value, the worse the progno-
sis (Fig. 6b). Internal verification and external verifi-
cation found that the prognostic model has good
predictive performance.
The incidence of LUSC is high, and its five-year

survival rate is less than 15% [10]. Therefore, in order
to increase the survival time of patients, it is urgent
to integrate the clinical and related detection informa-
tion of LUSC patients to identify new early diagnosis
biomarkers, find new therapeutic targets, and predict
the prognosis of patients. The rapid development of
high-throughput sequencing technology has provided
valuable data for studying the mechanism of cancer.
Cancer is associated with genetics and epigenetics
[11]. In all DNA-based biological processes such as

transcription, modification, and replication, epigenetic
modification conveys information that can play a cru-
cial regulatory role [12]. Epigenetic changes affect the
entire process of tumorigenesis and development by
affecting genomic stability and gene expression [13].
Epigenetic changes occur in the early stages of tumor
development and can be adjusted by external factors,
such as drugs, diet, etc., so the individual’s epigenetic
analysis may provide valuable information for redu-
cing their risk of cancer [14–16]. DNA methylation,
microRNA (miRNA), nucleosome remodeling and his-
tone modification are the main mechanisms of epi-
genetics [17]. These four mechanisms have been
proven to be associated with many diseases including
tumors [18].
As an important part of epigenetics, DNA methy-

lation has long become a research hotspot. It seems
clear that the silencing expression of TSG caused by
methylation may be the origin of important events
in tumorigenesis [19]. There is increasing evidence
that DNA methylation is associated with lung cancer
[20, 21]. Studies have shown that the incidence of
H-cadherin methylation in patients with NSCLC is
significantly related to tumor stage [22]. The methy-
lation levels of VAX1, CH25H, ADCYAP1 and IRX1
genes are related to the prognosis of LUSC patients
[10]. The prognosis model of LUSC constructed in
this study uses 26 related methylation sites,

Fig. 8 Construction of the model for forecasting prognosis of LUSC patients in the external test group. a The ROC curve of the prognostic
indicators of 1 year, 3 years and 5 years. b The horizontal axis represents patient samples, and the vertical axis represents the risk score (upper)
and the overall survival (lower). c Prognostic difference analysis between high-risk group and low-risk group. d The Heat map showing the
expression levels of 26 methylation sites which were used to build the prognostic model in the high-risk and low-risk groups in external test
group. (All figuress were generated by “R” (3.6.2) software and Adobe Illustrator (23.0.2) software)
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corresponding to 24 related genes. GNAS, FZD2,
FZD10 are the core three genes that may be related
to the prognosis of LUSC patients. GNAS mutations
have been found in pancreas, colon and lung tu-
mors, and in up to two-thirds of intraductal papil-
lary mucinous tumors (IPMNs) [23–27]. According
to the results of in vitro and in vivo experiments,
Fzd2 is an oncogene, and overexpression of Fzd2
and signaling through the non-canonical Wnt path-
way can promote the development of advanced
metastatic cancer [28]. FZD10, a receptor for the
Wnt pathway, is associated with the activation of
Wnt signaling in colorectal cancer, gastric cancer,
and synovial sarcoma, and is expressed at high levels
in these cancers [29–31].
In summary, we constructed a prognostic model

based on the methylation data of patients with lung
squamous cell carcinoma. Further analysis of the
ROC curve multi-year survival rate curve shows that

as the survival time increases, the prediction results
of the model become more accurate. The con-
structed prediction model integrates independent
prognostic methylation sites, which can be used to
identify new tumor markers, guide the clinical treat-
ment of patients, and evaluate the prognosis of pa-
tients. This model can provide more individualized
treatment recommendations and prognostic evalua-
tions by classifying the molecular subtypes of LUSC
patients.

Conclutions
In this study, we divided patients into seven molecu-
lar subtypes based on their methylation expression
levels. Based on the methylation sites of the subco-
hort with the best prognosis, a model that can be
used to evaluate the prognosis of LUSC patients was
constructed. After external and internal verification,
it is found that with the extension of survival time,

Fig. 9 The genetic alterations associated with 24 genes and the correlation between mRNA and DNA methylation. a The spliced bar graph
summarizes and displays the genetic variation of 24 genes in 43% of the sequenced cases/patients (511 in total). b The specific genetic variation
of 24 genes in the TCGA lung cancer dataset. c The correlation between DNA methylation and mRNA of top 5 genes in the TCGA lung cancer
dataset. (All figuress were generated by “R” (3.6.2) software and Adobe Illustrator (23.0.2) software)
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its prediction effect shows an upward trend. Our re-
sults indicate that DNA methylation plays an im-
portant role in the occurrence and development of
LUSC and may be proposed as a diagnostic
biomarker.
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