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Abstract

The limited ability to vascularize and perfuse thick, cell-laden tissue constructs has hindered efforts to engineer complex
tissues and organs, including liver, heart and kidney. The emerging field of modular tissue engineering aims to address this
limitation by fabricating constructs from the bottom up, with the objective of recreating native tissue architecture and
promoting extensive vascularization. In this paper, we report the elements of a simple yet efficient method for fabricating
vascularized tissue constructs by fusing biodegradable microcapsules with tunable interior environments. Parenchymal cells of
various types, (i.e. trophoblasts, vascular smooth muscle cells, hepatocytes) were suspended in glycosaminoglycan (GAG)
solutions (4%/1.5% chondroitin sulfate/carboxymethyl cellulose, or 1.5 wt% hyaluronan) and encapsulated by forming
chitosan-GAG polyelectrolyte complex membranes around droplets of the cell suspension. The interior capsule environment
could be further tuned by blending collagen with or suspending microcarriers in the GAG solution These capsule modules
were seeded externally with vascular endothelial cells (VEC), and subsequently fused into tissue constructs possessing VEC-
lined, inter-capsule channels. The microcapsules supported high density growth achieving clinically significant cell densities.
Fusion of the endothelialized, capsules generated three dimensional constructs with an embedded network of interconnected
channels that enabled long-term perfusion culture of the construct. A prototype, engineered liver tissue, formed by fusion of
hepatocyte-containing capsules exhibited urea synthesis rates and albumin synthesis rates comparable to standard collagen
sandwich hepatocyte cultures. The capsule based, modular approach described here has the potential to allow rapid assembly
of tissue constructs with clinically significant cell densities, uniform cell distribution, and endothelialized, perfusable channels.
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Introduction

Fabrication of 3D constructs that promote cell-cell interaction,

extra cellular matrix (ECM) deposition and tissue level organiza-

tion is a primary goal of tissue engineering [1]. Accomplishing

these prerequisites with the currently available conventional

scaffolds and fabrication techniques still remains a challenge.

Some of the tissue types that have been successfully engineered

include skin [2], bone [3–5] and cartilage [4,6,7]. Significant

success has also been achieved in nerve regeneration [8], corneal

construction [9–11] and vascular tissue engineering [12]; Howev-

er, the success rate has been relatively low in engineering complex

tissue types such as liver, lung, and kidney due to their complex

architectures and metabolic activities.

In conventional preformed scaffolds, the cell viability depends

on diffusion of oxygen, nutrients and growth factors from the

surrounding host tissues, and it is limited to 100–200 microns

thickness at cell densities comparable to that of normal tissues [13].

Hence in constructs with larger dimensions, efficient mass transfer

and subsequent cell survival can be achieved only by significantly

reducing cell densities or by tolerating hypoxic conditions.

Moreover, in a porous scaffold, uniform distribution throughout

the construct is difficult to achieve, and the seeded cells will stay on

the peripheral surface of the construct forming a thin peripheral

layer. In addition, these scaffolds cannot facilitate incorporation of

multiple cell types in a controlled manner. Hence the slow

vascularization, mass transfer limitation, low cell density and non-

uniform cell distribution limits conventional methods from

engineering large and more complex organs. Therefore, an innate

structure that supports functional vascularization is imperative for

engineering large tissues grafts. Many strategies have been

proposed to incorporate vascular structure that includes creating

endothelial microchannels inside scaffolds [14,15], surface mod-

ification and/or controlled releasing of pro-vasculogenic growth

factor and cytokines [16–18], coculturing vascular cell types for

microvessel formation [19] etc. Despite their limited success, none

of these approaches is able to incorporate an extensive vasculature

as seen in natural organs.
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The bioinspired modular tissue engineering approach has

emerged in recent years as a promising fabrication strategy to

address the common shortcomings of a preformed scaffold by

assembling tissue constructs from the bottom up [20,21]. Using

this principle, complex tissues and organs can be engineered

efficiently from microscale modules as opposed to the top down

approach of conventional scaffolds [21]. This approach is

increasingly becoming a promising tool to study and recreate

vascular physiology in tissue engineering applications [22,23].

Some of the proposed modular TE strategies include 3D tissue

printing [24–26], cell sheets technology [27] and assembly of cell

laden hydrogels [20,28] (Figure 1).

Here we report the development of a simple yet efficient method

for assembling tissue prototypes with embedded, endothelialized

channels by fusing microscale capsules. Our method of cell

encapsulation was previously developed for perfusion culture of

highly metabolic cells [29–33].We are now extending its use to

fabricate modular tissue constructs. Capsules were seeded inter-

nally with various test cell types and externally with vascular

endothelial cells to authenticate our proof of principle and growth

and metabolic performance were studied. To enhance the

versatility of these microcapsules, the effects of tuning the capsule

interiors with collagen gels or microcarriers were explored.

Materials and Methods

Cell culture conditions
All chemical and culture reagents were purchased from Sigma-

Aldrich unless mentioned otherwise. The human trophoblast cell

line HTR-8/SVneo[34] (HTBs) was used as the model cell type

for some studies due to their high proliferative capacity and ability

to form dense, tissue-like aggregates. The cells were cultured in

10 cm tissue culture dishes, using F12/DMEM supplemented with

5% fetal bovine serum (FBS), 50 mg/ml gentamycin and 2.5 mg/

L Amphotericin-B.

For co-culture studies, vascular smooth muscle cells (SMCs)

were isolated from rat aorta and endothelial cells (AECs) were

isolated from sheep aorta using established enzymatic procedures

[2,35,36]. Sheep aortas were procured from a slaughterhouse

under an educational license (Wolverine Packing Company,

Detroit, MI). Aortas were obtained within 2 hours of slaughter

and used for AEC isolation immediately. Human umbilical vein

endothelial cells (HUVECs) obtained from ATCC (Manassas, VA)

were also used as vascular component. Primary cells were used

from passages 3 to 6. SMCs and AECs were maintained in

DMEM supplemented with 10% FBS, 50 mg/ml gentamycin, and

2.5 mg/L Amphotericin-B. In addition, SMC cultures were

supplemented with 2 ng/ml fibroblast growth factor 2 and AECs

with 50 ng/ml of epidermal growth factor. For HUVECs, MCDB

131 medium supplemented with Endothelial Cell Growth Kit-

VEGF (ATCC) was used. During co-cultures of parenchymal and

vascular components, a 50–50 mixture of the respective culture

media was used. Primary hepatocytes were isolated from Sprague

dawley rats weighing 250–450 g by the two-step collagenase

perfusion technique described by Seglen [37] and modified by

Dunn [38,39]. Cell viability averaged 90–95%, as assessed by

trypan blue exclusion, and the average yield was 46108 viable cells

per liver. Type I collagen was isolated from Sprague dawley rat tail

Figure 1. Bottom-up vs. top-down approaches in tissue engineering. The traditional, top-down approach (right) involves seeding cells into
full sized porous scaffolds to form tissue constructs. This approach poses many limitations such as slow vascularization, diffusion limitations, low cell
density and non-uniform cell distribution. In contrast, the modular or bottom-up approach (left) involves assembling small, non-diffusion limited, cell-
laden modules to form larger structures and has the potential to eliminate the shortcomings of the traditional approach.
doi:10.1371/journal.pone.0084287.g001
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tendons as previous described [38] and used for hepatocyte

collagen sandwich cultures. Hepatocyte culture medium consisted

of high glucose DMEM medium supplemented with 10% fetal

bovine serum (FBS), 0.5 U/mL insulin, 7 ng/mL glucagon,

20 ng/mL epidermal growth factor, 7.5 mg/mL hydrocortisone,

100 mg/L gentamycin and 2.5 mg/L amphotericin B. Culture

medium was collected and analyzed for albumin and urea

synthesis using established methods [33,40]. All dish cell cultures

were maintained at 37uC in a 5% CO2/95% air humidified

incubator.

Ethics statement
Harvesting of rat hepatocytes and aortic smooth muscle cells for

culture was carried out in strict accordance with the recommen-

dations in the Guide for the Care and Use of Laboratory Animals

of the National Institutes of Health. The cell isolation protocol was

approved by the Animal Investigation Committee of Wayne State

University (Protocol Number: A-07-16-10). Surgery and liver

perfusion were performed under ketamine/xylazine anesthesia,

and all efforts were made to minimize suffering.

Biopolymer materials
The materials used in preparing our microcapsules and modular

scaffolds were: chitosan from crab shells, molecular weight

,600 kDa (Sigma); chondroitin 4-sulfate sodium salt from bovine

trachea, molecular weight ,50–100 kDa (Sigma); hyaluronic acid

sodium salt from Streptococcus equii, molecular weight 1500–

1800 kDa (Sigma); dextran sulfate sodium salt, molecular weight

,500 kDa (SCBT); heparin sodium salt from porcine intestinal

mucosa, molecular weight 17–19 kDa (Celsus); carboxymethylcel-

lulose sodium salt, molecular weight 250 kDa (Sigma); polyga-

lacturonic acid sodium salt (Sigma) and collagen type-I isolated

from Sprague Dawley rat tail tendons (Invitrogen).

Aqueous solutions of the polyanions (chondroitin 4-sulfate

(CSA), carboxymethylcellulose (CMC), hyaluronic acid (HA),

polygalacturonic acid (PGA)) were prepared in a HEPES-sorbitol

buffer containing: 0.4 g/L KC1, 0.5 g/L NaC1, 3.0 g/L HEPES-

sodium salt, and 36 g/L sorbitol, pH 7.3. Polyanion solutions were

sterilized by autoclaving at 121uC. The two formulations of

polyanionic solutions studied for capsule formation were: (a)

4 wt% CSA/1.5 wt% CMC and (b) 1.0 or 1.5 wt% HA. To

prepare the polycationic solution, chitosan powder was suspended

in water (3 g in 250 ml) and autoclaved at 121uC. Under sterile

conditions, 0.6 ml of glacial acetic acid was added to the aqueous

suspension and stirred for 4 hours to partially dissolve the

chitosan. Likewise, 19 g of sorbitol was autoclaved in 250 ml of

water and then mixed with the chitosan solution. Undissolved

chitosan was removed by centrifugation at 500 G. PGA (0.1 wt%)

in HEPES-sorbitol buffer was used for surface stabilization of

capsules. For capsule experiments employing collagen, cold

collagen-I solution was diluted to 2 mg/ml in 1 mM HCl, and

then neutralized with 10X DMEM (9:1 ratio). Normal saline

(0.9 wt% NaCl) was used for capsule washing immediately after

formation.

Cell encapsulation
Cells were encapsulated in microcapsules produced by poly-

electrolyte complexation between cationic chitosan and polyanions

as described in detail previously [29,30]. In brief, the 5–10 million

cells were suspended in 1 ml of a polyanionic solution (either

4 wt% CSA/1.5 wt% CMC, or 1.5 wt% HA). Droplets of the cell

suspension (,0.8 mm diameter) were dispensed into 30 ml of

stirred chitosan solution containing 2–3 drops of Tween 20. A 24

gauge Teflon catheter was used to generate droplets and filtered

air was blown coaxially to shear away the droplets at a suitable

size. Care was taken during encapsulation process to ensure

uniform droplet size. Capsule membranes were formed almost

instantaneously by ionic complexation between the oppositely

charged polymers. Capsules were allowed to mature for ,1 min in

the stirred chitosan, followed by two washes with normal saline

and surface stabilization by washing with 0.1% PGA solution.

Microcapsules were subsequently equilibrated with culture medi-

um for ,60 min and then transferred to suitable culture

conditions (Figure 2A).

The interior environment of the capsules could be enhanced

with collagen gel or adhesion surface-providing microcarriers

when desired. For capsules with an internal collagen matrix,

chilled Type I collagen solution (1 mg/ml in 1 mM HCL) was

neutralized with 10X DMEM in a 9:1 ratio, and mixed with an

equal volume of double strength polyanionic solution (e.g. 8%

CSA/3% CMC). Cells were then suspended in this mixture

instead of the regular polyanion solution, and capsules were made

as described previously. For microcarrier co-encapsulation, PBS

swelled microcarriers were suspended along with cells in normal

strength polyanionic solution at a volume ratio of 0.5:1 (packed

cells+microcarriers:polyanion solution). The suspension was then

dispensed as droplets to generate capsules as described above.

Capsules enhanced with interior collagen or microcarriers were

subjected to similar washing and surface stabilization steps as

described above prior to culture.

Endothelial cell seeding on capsule surfaces
Capsules were coated with an adsorbed layer of Type I collagen

prior to externally seeding endothelial cells. For coating collagen

on the outer surface, non-surface stabilized capsules (i.e. capsules

without a PGA final wash) were washed in dilute acidic collagen

solution (0.2 mg/ml of collagen in 1 mM acetic acid) for 1–2 min

and then equilibrated with culture medium for 30 mins. Capsules

that had been previously surface stabilized with PGA, were first

washed with dilute chitosan solution (0.06% chitosan) prior to the

dilute collagen wash. The equilibration culture medium was then

removed and an endothelial cell suspension (HUVECs or AECs)

in medium was added to settled capsules in a 50 ml centrifuge

tube. Cells were seeded at a density of 106 cells per ml of capsules

and incubated at 37uC for 60 minutes with gentle resuspension

every 10 min. After incubation, the seeded capsules were

transferred to bioreactor chambers or tissue culture dishes for

further experiments.

Evaluation of capsule wall permeability
The permeability of capsule walls was studied fluorometrically

by measuring the rate of diffusion of tetramethylrhodamine-

labelled bovine serum albumin (BSA-TMR) from the capsules, as

detailed before [29,30,41]. The rate was used to calculate an

overall mass transfer coefficient for the capsule wall membrane

under mixing conditions.

A precise number of capsules (100–150 per sample, n = 3) of

similar size from each formulation were counted out and

equilibrated in HBSS (pH 7.4) containing 2.5 mg/ml BSA (13%

TMR-labeled. The equilibration saturated all the BSA binding

sites of the capsule wall and efficiently loaded BSA into the

capsules. After washing and resuspension in fresh HBSS, the

capsules were redistributed into three fluorescence cuvettes (4 ml

volume, 1 cm light path) at 35–50 capsules per cuvette. The HBSS

volume was made up to 3 ml and the cuvettes were sealed and

mixed horizontally on a linear shaker at 100 rpm. The outward

diffusion of BSA was followed by measuring the fluorescence of the

external HBSS at exitation/emission wavelengths of 541/572 nm

GAG Based Modular Tissue Scaffolds
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at regular time intervals for 3 h. The BSA concentration was

determined using a standard curve covering the range of 0–50 mg/

mL total albumin. The overall mass-transfer coefficient for

diffusion across the capsule wall (K) was calculated by solving

the differential equation obtained through an unsteady state mass

balance on the external solution [29].

V
dC

dt
~KA(CC{C) ð1Þ

NCCVCzVC~NC?VCzVC0~M ð2Þ

Where: K is the overall mass transfer coefficient for membrane

diffusion; M is the total mass of solute present in the cuvette (M =

Cr (V+NVc)); V and Vc are the volume of external solution and

volume of capsules, respectively; N is the number of capsules; A is

the total surface area (A = N*surface area of single capsule); C is

the concentration of solute in external solution; Co is the initial

extracapsular concentration; Cc is the concentration of solute in

the capsules; C‘ is the initial intracapsule concentration; Cr is the

final concentration after end of 3 hours; and t is time. The solution

to the equations 1 and 2 yields,

ln (Q)~
KA(VzNVC)

NVVC

� �
t ð3Þ

Where Q is a dimensionless concentration-dependent param-

eter defined as

Figure 2. Microencapsulation through complex coacervation and modular assembly. (A) Droplets of cells suspended in a polyanionic
solution were dispensed into a stirred chitosan solution. Ionic interactions between the oppositely charged polymers formed an insoluble ionic
complex membrane at the droplet-solution interface, thus encapsulating the suspended cells. Capsule were washed surface-stabilized with a suitable
anionic polymer solution, and transferred to culture. (B) Cell laden capsules can be assembled in a packed bed fashion with interconnected
endothelialized channels that may enable perfusion of fluids such as blood with limited adverse reactions.
doi:10.1371/journal.pone.0084287.g002
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Q~
M{(VzNVC)C0

M{(VzNVC)C

The overall mass-transfer coefficient for transmembrane diffu-

sion, K, was determined by plotting ln(Q) vs. time and

determining the slope of the linear portion of the curve by linear

regression. The intrinsic permeability, P, of each capsule wall was

determined from the relation:

K~
P

d

Where d is the thickness of the capsule wall.

Assembly of modular constructs
Individual capsules were fused into 3D constructs in one of two

ways. In the first method, freshly formed capsules were fused by

allowing them to sit in contact with each other after the second

saline wash, but before the surface stabilizing PGA wash. Freshly

formed capsules were washed once with normal saline and then

transferred in saline to a cylindrical mold with a 250 micron mesh

at the base. Capsules were allowed to settle within the mold and

held stationary for 2–3 minutes to allow inter-capsule adhesion.

The excess saline was then drained and the capsule surfaces in the

fused construct were then stabilized by briefly rinsing with saline,

followed by a diluted polyanion solution (i.e. 0.1% PGA or 0.4%

CSA/0.15% CMC), followed by a final PBS rinse.

In the second fusion method, previously stabilized and cultured

capsules were first reloaded with a polyanion by incubation in a

diluted polyanion solution (0.1% heparin or 0.4% CSA/0.15%

CMC). The capsules were then transferred to a cylindrical mold

with the mesh base. After draining excess polyanion solution, the

mold with reloaded capsules was perfused with 0.06 wt% chitosan

solution to ionically fuse the capsules. Excess chitosan solution was

drained, the capsules were rinsed with normal saline and surface

stabilized by a brief perfusion with a dilute polyanion solution. The

fused modular construct was then removed from the mold for

further culture or analysis.

Evaluation of cell proliferation inside capsules
Cell proliferation inside capsules was characterized using either

a Hoechst DNA quantification assay [42] or an MTT assay.

Briefly, 30 capsules were distributed into each well of a 24 well

plate. Capsules were maintained under standard culture condi-

tions, and one well was sacrificed at each time point. The capsules

were gently ruptured using a fire-polished Pasteur pipette, and the

cell aggregates within were lysed using cell lysis buffer (0.1% SDS,

10 mM Tris-HCl, 1 mM EDTA) to extract whole DNA. To an

aliquot of this extract was added an equal volume of Hoechst

33258 dye dissolved at 1 mg/ml in TNE buffer (50 mM Tris-

HCL, 100 mM NaCl, 0.1 mM EDTA). Fluorescence of the

mixture was then measured (EX/EM 350/450 nm). A calf thymus

DNA standard curve was used to determine the total DNA

concentration. For the MTT proliferation assay, capsules were

washed in PBS and suspended in phenol red free DMEM

containing 2 mg/ml MTT. After incubation for 4 hours at 37uC,

the solution was aspirated and 150 mL of DMSO was added to

extract the formazan crystals. After 10 mins of rotary agitation, the

absorbance of the DMSO extract was measured at 540 nm using a

spectrophotometer. Exponential cell growth was assumed and the

specific growth rate was determined by fitting the following

equation to the absorbance reading:

ln
A

A0

� �
~m t{t0)ð Þ

Where A0 and A are initial and final absorbance or fluorescence

readings respectively, t0 and t are initial and final time points, and

m is the specific growth rate in time21.

Cell viability imaging and histology
Cell viability was assessed using Calcein-AM and ethidium

homodimer (Cytotoxicity Kit L3224, Invitrogen). The cell laden

capsules were washed with PBS and incubated in serum free

DMEM containing 4 mM Calcein-AM and 4 mM ethidium

homodimer for 20 min at 37uC. For long-term tracking of

HUVECs on capsules and fused capsule constructs, CellTrack-

erTM Green CMFDA (Invitrogen) was used. Briefly, adherent cells

were rinsed with PBS and incubated in a serum free culture

medium containing 5 mM CellTracker Green probe for 45–

60 min. After the incubation the medium was replaced with pre-

warmed normal medium and incubated for another 30 min for

the dye to undergo modification due to intracellular esterases. The

cells were then trypsinized and seeded onto capsule outer surface.

Cell fluorescence was then observed using wide-field fluorescence

microscopy and laser scanning confocal microscopy (Zeiss LSM-

410).

The distribution and organization of cells and matrix inside the

encapsulated cultures were investigated by histology. Cell laden

individual capsules and fused capsule constructs were washed in

PBS, fixed in 10% buffered formalin, dehydrated in an ethanol

series, paraffin embedded, sectioned (4–6 mm) and stained using

Hematoxylin and Eosin (H&E) or Masson’s trichrome stains

(Sigma-Aldrich). The stained sections were observed using bright

field microscopy.

Perfusion culture of encapsulated hepatocytes
Encapsulated primary rat hepatocytes (encapsulation density:

206106 cells/mL of CSA/CMC) were maintained in perfusion

cultures under both packed bed and fluidized bed conditions as

previously described [29,33]. For fluidized perfusion, non-fused

capsules were fluidized by a continuous upward flow of the culture

medium in a cylindrical chamber within a continuous circulation

flow circuit. For the packed bed cultures, the capsules were fused

in a cylindrical flow chamber as described above and subjected to

a downward flow of the medium in a continuous circulation flow

circuit. Medium exiting the culture chamber was oxygenated using

a silicone tubing oxygenator (supplied with 95% air/5% CO2) and

recirculated using a peristaltic pump. The flow rates were adjusted

to maintain physiological pressure differences (,100 mmHg)

across the chamber (4–5 mL per minute). The perfusion system

was maintained at 37uC for 1–2 weeks and medium was changed

every 2–3 days. Medium samples were collected daily for

evaluation of urea and albumin synthesis by the hepatocytes.

Analysis of albumin and urea synthesis
Standard methods for measuring albumin and urea production

rates were used to assess hepatocyte function. Culture medium

collected from collagen sandwich cultures and perfusion bioreactor

cultures at regular intervals was analyzed for rat serum albumin by

ELISA with purified rat albumin (Sigma) and a peroxidase

conjugated anti-rat albumin antibody (Bethyl). Urea production
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was quantified using the diacetylmonoxime method as previously

described [43]. Standard curves for both quantification techniques

were generated using purified rat albumin or urea dissolved in

culture medium. Absorbances were measured with a Spectramax

microplate reader.

Statistical analyses
Measurements were performed in triplicate (n = 3). Data are

plotted as means with error bars representing standard deviation.

Statistical comparisons were done using Student’s t-test with a

95% confidence limit. Differences with p,0.05 were considered

statistically significant.

Results

High density encapsulated cell cultures
We investigated the effects of different polyanions and

polyanion blends on the capsule characteristics and encapsulated

cell growth patterns. The 4%CSA/1.5%CMC capsules (Figure 3

A–F) and the 1.5% HA capsules (Figure 3H) were sturdy and

could be easily handled with forceps. In contrast, the 1.5%HA/

1.5%CMC mixture formed very thin walled capsules (Figure 3G),

many of which ruptured after a week of culture. Capsules made

with 4% DXS or 3% CMC were thin walled and ruptured within

2–3 hours due to osmotic swelling (Figure 3I).

Encapsulated HTBs grew rapidly, eventually filling the capsules,

and most cells appeared viable with a distinct nucleus up to at least

day 30 (Figure 3 A, B, C, D, E, F). This indicated that the capsule

wall was sufficiently permeable to nutrients to allow maintenance

of a dense, tissue-like cell mass. The estimated capsule cell density

(,66107 cells/cm3, assessed via image analysis) at day-30 was

high enough to replicate the cell density in many tissues. By the

end of week-3, HTBs had invaded the capsule wall as seen in

Figure 3C. This in vitro invasion suggests that the capsule

materials may be degraded within a relatively short time frame

upon implantation in vivo. No necrotic core was observed within

the encapsulated cell mass at least until 45 days of static culture.

Endothelial cell growth on capsule surfaces
The growth of sheep aortic endothelial cells (AEC) and

HUVECs was investigated by seeding these cells onto the outside

surfaces of CSA/CMC capsules. Endothelial cells attached poorly

to surface stabilized capsule surfaces. However, their attachment

and growth greatly improved when type-I collagen was coated

onto the outer surface of the CSA/CMC capsules. HUVECs

seeded on the collagen coated CSA/CMC capsules attached well

and formed a viable monolayer within 24 hours of seeding

(Figure 4A, B, C). SEM images of capsules fixed 1 hour post-

seeding (Figure 4E) showed a continuous, but irregular monolayer

of cells in varying stages of spreading. SEM images 24 hours after

seeding showed a well spread and smooth endothelial monolayer,

with few areas of exposed capsule surface (Figure 4D). This

morphology was maintained for at least 14 days under static

culture conditions.

Growth rates of encapsulated smooth muscle cells
Sheep aortic smooth muscle cells were encapsulated for

purposes of evaluating the performance of a normal parenchymal

cell type. Use of these cells also allowed indirect evaluation of their

interaction with endothelial cells in a subsequent study. SMC

specific growth rate data showed that the cells proliferated

significantly better in HA than in CSA/CMC capsules (p,0.05)

during the first 36 hours of culture (Figure 5). However,

differences between the formulations were less pronounced after

36 hours (p,0.10). The difference in cell proliferation might be

attributable to hyaluronan-specific signaling through CD44 cell

surface receptors [44]. Alternatively, CSA, a sulfated GAG, may

have bound and partially sequestered growth factors necessary for

SMC growth. In addition, the HA capsules appeared to support

slightly better cell attachment to the internal surface than CSA/

CMC, thereby promoting formation of several small aggregates

rather than the single large spheroid typically seen in CSA/CMC

capsules. Smaller aggregates are less likely to be adversely affected

by diffusion limitations and may thus exhibit higher growth rates

in the early stages than larger aggregates.

Capsule membrane permeability
Results of the diffusion studies on encapsulated BSA are shown

in Figure 6. A typical plot of the dimensionless concentration

factor ln (Q) vs. time, for three replicates runs of the CSA/CMC

capsule formulation is shown in Figure 6A. The higher slope of the

curve observed at early time points, is likely due to the rapid

desorption of weakly bound albumin from the capsule wall. For

our diffusion calculations, only the slope of the later, linear portion

of the curve was used. Figure 6B compares the values of the overall

mass-transfer coefficient (K), permeability coefficient (P), and wall

thickness (d) for the two most stable capsule formulations (HA and

CSA/CMC). As expected, the HA capsules exhibited ,3 fold

higher permeability than CSA/CMC capsules due to the higher

molecular mass of HA and its expected formation of a looser

polyelectrolyte complex network with chitosan. However, the

overall mass transfer coefficient which correlates directly with the

overall rate of BSA diffusion from capsules was higher in the CSA/

CMC capsules, mainly due to their thinner walls. Significant post-

formation swelling was also observed in CSA/CMC capsules,

which nearly doubled their initial diameter. No such swelling was

observed with HA capsules. Overall, the results indicate that both

capsule types are permeable to globular proteins of moderate size,

and suggest that the permeability of the capsule wall might be

further tunable via the molecular weight of the capsule materials.

Tuning the interior capsule microenvironment
The hollow nature of the GAG-based microcapsules allowed us

to tune the inner microenvironment by co-encapsulating addi-

tional materials. We investigated the effect of incorporating a

collagen gel matrix and the inclusion of microcarriers by co-

encapsulating them in microcapsules along with cells. When a

collagen matrix was included along with the HTBs, the aggregates

formed were smaller, more numerous, loosely organized and

distributed inside the CSA/CMC capsules (Figure 7(A, B)). The

collagen matrix did not appear to affect the invasiveness of the

HTBs, and overall capsule integrity remained unaltered. The

looser organization of HTBs in the presence of collagen was likely

due to integrin-mediated cell-matrix adhesion which competed

with cadherin-mediated cell-cell adhesion. This modification may

be particularly useful for reducing the effective sizes of cell

aggregates in larger capsules, and thereby reducing intra-

aggregate diffusion limitations.

To further modulate the intracapsule environment, we inves-

tigated the effect of gelatin coated dextran microcarriers (Cytodex-

3, Sigma) encapsulated in HA and CSA/CMC capsules, on aortic

smooth muscle cell proliferation and viability. The inclusion of

microcarriers in the capsules reduced the formation of large

aggregates and dispersed the cells more evenly across the capsule.

Interestingly, the inclusion of the microcarriers in the polyanionic

solution resulted in greatly reduced swelling and smaller sized

capsules (Figure 7C) compared to capsules formed without

microcarriers. Calcein AM and Ethidium Homodimer fluores-
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cence imaging after 12–14 days of encapsulated culture showed

that encapsulation of microcarriers along with the cells promoted

microcarrier adhesion and proliferation of SMCs as shown in

Figure 7(C, D, E). Similar adhesion and growth results were not

observed in capsules without microcarriers or with microcarriers

made of dextran alone (Cytodex-1, Sigma).

Cell-contractable capsules for higher density cultures
Some cell types may not grow well in a GAG-only ECM

environment and hence attaining high cell densities could be a

challenge. To address this, we developed a capsule formulation

that promoted the cell-mediated contraction of capsules and the

rapid elimination of excess capsule volume. We investigated the

ability of collagen to promote contraction of the capsules by

encapsulating smooth muscle cells with varying volume ratios of

collagen gelling solution to GAG solution. Initially when collagen

was encapsulated along with HTBs in CSA/CMC capsules at a

final concentration of 1.5 mg/ml, the growing cells formed

aggregates which were loosely packed as discussed earlier

(Figure 7 A–B). When collagen of the same concentration was

encapsulated along with SMCs at a similar cell density in CSA/

CMC capsules, the cells were initially uniformly dispersed within

the collagen gel inside the capsules. However, within 24 hrs the

SMCs contracted the collagen matrix and formed a denser mass of

cells and matrix as shown in Figure 8 (A, B, C). Even though the

internal matrix was contracted, the walls of the CSA/CMC

capsules were unyielding and retained their spherical shape

(Figure 8B). Similar experiments were conducted with SMCs in

HA capsules using various concentrations of HA and collagen-I to

examine the collagen-mediated contraction effect. HA capsules

containing SMCs suspended in a collagen gel were found to

Figure 3. Histology of microencapsulated cultures of human trophoblasts (HTBs) in various GAG-chitosan capsule formulations.
HTBs in CSA/CMC capsules on days (A) 5, (B) 10, (C) 15, (D) 20, (E) 25, (F) 30. (G) Hyaluronan/CMC capsules. (H) HA capsules. (I) Dextran sulfate/CMC
capsules quickly ruptured due to osmotic swelling.
doi:10.1371/journal.pone.0084287.g003
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support cell-mediated contraction and crumpling of the entire

capsule wall simultaneously with contraction of the interior gel

(Figure 8 D, E, F). Sectioning and staining (H&E and Trichrome)

revealed a structure with cells embedded within a dense collagen

matrix inside the capsule and also large amount of collagen

integrated into the capsule walls (Figure 8(G, H, I)). Maximal

contraction with ,75% reduction in volume (,37% reduction in

diameter) was achieved using a polyanion solution containing

0.33 wt% HA and 1.3–1.4 mg/ml of collagen-I (Figure 9). The

capsule contraction was confirmed to be cell mediated based on

the insignificant reduction in capsule diameter of cell-free capsules

(Figure 9). This collapsible capsule formulation may be a useful

tool for preparing reduced diameter capsules with higher density

cell content, for use with cells that do not proliferate well in-vitro.

The technology may also be utilized to improve diffusional

transport performance in encapsulated culture by reducing the

excess capsule volume and effectively increasing the surface to

volume ratio.

Cocultures of smooth muscle and endothelial cells
Many studies have demonstrated functional relationships

between endothelium and adjacent cell types [45–49,50,51].

Designing tissue assembly approaches that allow critical paracrine

interactions is mandatory for achieving in vivo-like performance of

engineered tissues. Towards this end, we sought to characterize

the growth of encapsulated smooth muscle cells with and without

capsule surface-seeded endothelial cells in HA capsules. Phase

contrast imaging showed that encapsulated SMCs co-cultured

with AECs on the external capsules surfaces exhibited greater

proliferation than SMC-only capsules, as indicated by the larger

SMC aggregates seen in Figure 10B. This result suggests that the

HA chitosan membrane possessed enough permeability to allow

stimulatory paracrine signaling between AECs and SMCs.

Assembly and perfusion bioreactor culture of capsule
modules

Assembly of capsules into three-dimensional modular constructs

is fabrication critical step in our modular tissue engineering

approach to generating vascularized tissue. We investigated

various methods for assembling larger 3D constructs from pre-

cultured individual capsules. The most successful method involved

reloading cultured capsules with a polyanion, followed by

perfusion with a diluted polycation solution. Outward diffusion

of reloaded GAG during the polycation perfusion step deposited a

polyelectrolyte complex that effectively fused capsules together

around points of contact. This method yielded self-supporting

structures with interconnecting, perfusable spaces as shown in

Figures 11 and 12.

Figure 4. HUVECs seeded on CSA/CMC capsules after surface coating with collagen. (A) Phase contrast image of a capsule coated with a
monolayer of HUVECs, 24 hours after cell seeding. (B,C) CellTracker Green fluorescence images of HUVECs seeded on the outer surface shown in A.
(D,E) SEM images of HUVEC seeded capsule surfaces after 1 hour (E) and 24 hours (D). (F) Non-seeded capsule surface.
doi:10.1371/journal.pone.0084287.g004

Figure 5. Specific growth rates of aortic smooth muscle cells in
HA and CSA/CMC capsules. Specific growth rates were calculated
using DNA measurements. Error bars represent standard deviations of
3–5 independent measurements. Significant differences are denoted by
single or double asterix (* = p,0.05; ** = p,0.10).
doi:10.1371/journal.pone.0084287.g005
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Capsules that were surface-seeded with HUVECs and subse-

quently fused showed well endothelialized, interconnected chan-

nels as seen in phase contrast (Figure 12A) and confocal images

(Figure 12B). SEM imaging of an axial section through a fused

construct shows the interconnected channels more clearly

(Figure 12C).

In a modified procedure, fusion-based assembly of high cell

density capsules was explored by encapsulating primary rat

hepatocytes in HA-collagen capsules at a density of

106106 cells/ml of the HA/collagen solution, followed by heparin

reloading, and centrifugation for 10 seconds at 50G to expel excess

intracapsular liquid. H&E stained sections of the resulting

construct showed a dense cell mass (,56107 cells/cm3, estimated

via image analysis) with reduced, but still significant intercapsule

spaces (Figure 13 A–B). Encapsulated hepatocyte constructs

assembled without centrifugation showed a much less dense

cellular construct (estimated at 96106 cells/cm3 via image

analysis) with more and larger intercapsule spaces (Figure 13 C–

Figure 6. Albumin permeability measurements and mass transfer characteristics of HA and CSA/CMC capsules. (A) Representative
plots of the concentration factor ln(Q) vs. time for three replicate runs with the CSA/CMC capsule formulation. (B) Plots of permeability coefficient (P),
overall mass transfer coefficient (K) and wall thickness (d) for the HA and CSA/CMC capsule formulations. Error bars represent the standard deviation
of three replicate measurements.
doi:10.1371/journal.pone.0084287.g006

Figure 7. Tuning the inner capsule microenvironment with a collagen gel matrix and microcarriers. (A–B) HTBs in CSA/CMC capsules
with a collagen type-I gel after one week of static culture. (A) H&E histology. (B) Phase contrast image. (C–E) SMCs co-encapsulated with gelatin
coated dextran (Cytodex-3) microcarriers in HA capsules. (C) 60 min after encapsulation. (D) Day 14 of culture. (E) Calcein-AM stained fluorescence
images on day 14 (green = live cells, red = microcarriers).
doi:10.1371/journal.pone.0084287.g007
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D). These results demonstrate that additional physical processing

methods can be used to further adjust the effective cell density and

perfusable void space within these modular constructs.

The metabolic performance of encapsulated primary rat

hepatocytes maintained in perfusion culture conditions (Figure 14

C–D) was evaluated by measuring urea and albumin synthesis

rates and comparing to rates of identical cells in standard collagen

sandwich dish cultures (Figure 14A). Perfusion cultures maintained

the functionality of encapsulated hepatocytes and healthy spher-

oids were seen in most capsules (Figure 14B). Albumin and urea

synthesis rates in both types of perfusion cultures (Figure 14 G,H)

approached those of the collagen sandwich cultures (Figure 14 E–

F).

Discussion

Modularity is a phenomenon widely observed in nature, which

enables biological systems to achieve precise control over

organization and function in very compact spaces. The modularity

of the kidney and its component nephrons are excellent examples

of this concept. Adopting a similar approach in engineered organs

Figure 8. Vascular smooth muscle cells in collagen-containing capsules. (A–C) SMCs in CSA/CMC capsules with a 1 mg/ml collagen gel. (A)
60 min after encapsulation, SMCs are well dispersed in the internal collagen matrix. (B) After 24 hours of culture, the cells had contracted the internal
collagen gel and formed a dense cell-matrix mass. (C) Calcein-AM fluorescence of contracted cell mass. Inset shows phase contrast image. (D–F) SMC
encapsulated in HA capsules with 1 mg/ml collagen-I gel. (D) 60 min after encapsulation, cells are well dispersed in the internal collagen matrix. (E)
After 24 hours of culture, the cells contracted the internal collagen gel, simultaneously collapsing the entire capsule structure to form a denser
module with a convoluted surface membrane. (F) Calcein-AM fluorescence of contracted cell mass. Inset shows phase contrast image. (G–I) Histology
of contracted capsules. H&E (G,H) staining showing compacted capsule structure with minimal void volume. (I) Masson’s Trichrome staining of
contracted capsule, showing the distribution of collagen (blue) within the structure.
doi:10.1371/journal.pone.0084287.g008

Figure 9. Effects of HA and collagen concentrations on cell-
mediated capsule contraction. Maximal cell-mediated contraction
was seen in the formulation with a final concentration of 0.33 wt% HA/
1.33 mg/ml collagen-I. Capsules without cells exhibited an insignificant
reduction in capsule diameter. Error bars represent standard deviation
from at least 10 capsule measurements. Asterix denote statistically
significant differences (p,0.05).
doi:10.1371/journal.pone.0084287.g009
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has a number of advantages. The scalability of the modular

strategy enables rapid fabrication of tissue constructs with greater

control over their architecture. The major design challenges of a

modular tissue construct include: limiting mass transfer distances,

achieving high, tissue-like cell densities, and the ability to form

interconnected, vascularizable channels. The GAG-based micro-

capsules described here allow efficient mass transfer, which is

evident from the tissue-density cultures that were maintained for

up to 45 days under static culture conditions. The diameter of the

capsules can be easily controlled between 0.3 and 2.0 mm, and

smaller diameters are achievable using more sophisticated droplet

formation methods such as microfluidics. Capsule diameter

imposes a natural upper limit on the maximum diffusion distances.

The capsule system, in particular the hyaluronan-based capsules,

supports direct encapsulation of cells at high, in vivo-like densities.

In addition, the cell-contractable capsule formulations provide an

additional mechanism for modulating cell density within either the

capsules or the fused construct. Under random packing conditions,

capsule fusion produced 3D structures with significant void space

available for direct perfusion, accessory cell culture, or vascular-

ization. The dimensions and architecture of the intercapsular voids

can also be modulated by incorporating additional biomaterial

components into fused capsule structures. Such accessory compo-

nents include fibers, beads, films, tubes, etc. made from chitosan,

chitosan-GAG complexes, or other degradable materials. The

materials used in our modules are fully degradable, and previous

implantation results with similar materials indicate that in contrast

to pure chitosan [52], chitosan-GAG complexes [53] degrade

rapidly in vivo and stimulate rapid and extensive neovasculariza-

tion due to GAG-mediated effects [54–58]. The high density

trophoblast cultures were primarily intended to demonstrate the

potential of the microcapsules with a highly proliferative human

cell type. However, these cultures also provided direct evidence of

both the degradability of the GAG-chitosan materials, and the

ability of cells to invade the capsule wall. The trophoblast cell line

maintains some characteristics of human trophoblasts, in partic-

ular the ability to tolerate hypoxic conditions and to invade tissue

rapidly. Both characteristics are presumably related to its original,

placenta-formation function [59] and may be mediated by focal

expression of MMPs, GAG lyases or other matrix degrading

enzymes. Wall invasion and cell escape in these trophoblast

cultures was evident after week 2 of culture and was clearly

captured in histological sections (Figure 3C). This phenomenon

strongly suggests that implanted capsules would present only a

temporary barrier to integration of encapsulated cells with

adjacent tissues. Coupled with the known pro-angiogenic effects

of GAG-based materials [60–62], these results further suggest that

rapid vascularization is a likely outcome after transplantation of

capsule-based constructs

Beyond modular assembly, the ability to incorporate clinically

significant cell numbers into an implantable construct of feasible

size is an additional challenge. We have shown that cells and

Figure 10. Cell growth in encapsulated cocultures of SMC and AEC. Cocultures of encapsulated SMCs with AECs on the external surfaces of
HA/Collagen capsules exhibited increased SMC proliferation compared to encapsulated SMC monocultures. (A) Encapsulated SMCs only, day 7. (B)
Encapsulated SMC with AECs, day 7.
doi:10.1371/journal.pone.0084287.g010

Figure 11. Modular assembly of GAG based microcapsules by fusion. Modular constructs were fabricated by perfusing packed capsules in a
chamber of desired dimensions with diluted polymer solutions. This method yielded self-supporting constructs with uniform porosity. (A) Individual
capsules in buffer solution before fusion. (B) Capsules being perfused with polymer solution in a perfusion chamber. Arrow indicates direction of flow.
(C) Fused construct after removal from perfusion chamber.
doi:10.1371/journal.pone.0084287.g011
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matrix can be efficiently packed inside capsules of a non-diffusion

limited size (Figures 8, 13). Our liver organoid prototype had a cell

density of 506106 cells/cm3 (Figure 13A). This is 40-60% of the

hepatocyte cell density of liver tissue. From a practical standpoint,

the cell densities achieved in our systems are adequate for liver

tissue engineering, as it has been demonstrated that with good

blood chemistry, ,10% of total liver mass can support survival in

rats [63,64] and humans [65]. It should be noted that maintaining

high cell densities inside capsules presents particular diffusion

challenges in the case of highly metabolic cells such as primary

hepatocytes. Thus, we have also shown that the cell density can be

scaled down to compensate for such high metabolic requirements

(Figure 13 C–D). In principle, diffusion challenges can be

minimized by limiting the maximum capsule diameter to ensure

an adequate supply of nutrients and oxygen to all regions of the

cell mass. Diffusion inside capsules can be further modulated by

controlling the extent of cell distribution and aggregation. In

particular, co-encapsulating hydrogel components (e.g. collagen

gels) or microcarriers provides a mechanism for tuning the interior

microenvironment as well as the architecture of the cell mass. Such

hydrogel materials can benignly interfere or directly compete with

large scale cell aggregation, and thus serve to promote formation

of multiple smaller or looser cell aggregates.

The encapsulation method also allows incorporation of

microcarriers of various biomaterials. As with hydrogels, these

microcarriers can produce additional adhesion ligand signaling,

organizational barriers or mechanical enhancement. Our results

show that gelatin coated dextran microcarriers significantly

enhanced the growth and viability of encapsulated smooth muscle

cells. These and other cell-adhesive microparticles can also be used

to alter the physical properties of the fused capsule construct. It

should also be noted that inclusion of microcarriers resulted in

capsules with reduced osmotic swelling and substantially reduced

internal volumes. This was particularly noteworthy in the case of

CSA/CMC capsules which swelled more than HA capsules. We

postulate that the increased swelling in the CSA/CMC system was

due to higher interior osmotic pressures resulting from combined

effects of a higher mass concentration, and lower molecular mass

of the interior polymer solution compared to HA capsules.

Inclusion of a high volume fraction of microcarriers within a

Figure 12. Endothelialized, interconnected channels in a fused modular construct. (A) Phase contrast image of CSA/CMC capsules, seeded
externally with HUVECs and fused 48 hours after seeding. (B) Combined confocal image stack of the modular construct shown in A with HUVECS
visualized via CellTracker Green staining. (C) SEM image of an axially sectioned, modular construct assembled from fused empty capsules showing
interconnected channels.
doi:10.1371/journal.pone.0084287.g012

Figure 13. H&E staining of modular constructs based on hepatocytes in HA/collagen capsules. (A, B). Fused construct with reduced fluid
volume and porosity due to centrifugation of capsules during the fusion process. (C, D) Construct formed by fusion of capsules settled under unit
gravity, resulting in significantly greater fuid volume inside capsules and larger intercapsular spaces suitable for perfusion culture.
doi:10.1371/journal.pone.0084287.g013
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capsule-forming CSA/CMC droplet reduced both the volume of

CSA/CMC solution inside the capsule and also the residual

concentration of this solution after capsule membrane formation.

This lower final concentration (caused by incorporation of

polymer into the capsule membrane) produced a lower osmotic

pressure and resulted in contraction of the capsule membrane

around the cell+microcarrier mass. In general, the inclusion of

microparticles provides a wide range of options for tuning the

cellular organization and overall mechanical properties of modular

constructs.

Fused capsule modules yielded 3D constructs with inter-

capsular spaces that are perfusable in vitro and potentially

vascularizable in vivo. The urea and albumin synthesis rates of

the perfused cultures indicate that mass transfer rates were

sufficient to maintain the encapsulated hepatocytes in our modular

constructs. In addition, the interconnected endothelilized channels

may provide a foundation for a vascular network and thereby

accelerate the process of neovascularization by anastomosing with

the host vasculature post-implantation. At the very least,

intercapsular endothelial cells are likely to participate in vessel

formation between fused capsules. However, the kinetics of this

process, and the relative degrees of transplanted vs. host cell

organization in the final structure remain to be characterized

through animal studies.

Our results also suggest that the capsule membrane can

facilitate paracrine signaling as seen by the increase in SMC

proliferation during coculture with endothelial cells. This suggests

that various other interacting cell types can be cultured in this

modular system with a degree of material-based control over cell

organization while still allowing substantial paracrine signaling.

Several coculture systems have previously been shown to improve

morphology and function of engineered tissues including liver [66–

70], bone [71,72,73] and cartilage [74–76]. Our results suggest

that similar trophic effects can be achieved with ease in capsule-

based modular scaffolds, with added the added benefit of control

over cell arrangement and distribution.

Unlike traditional scaffolds, porosity can be either maintained

evenly throughout the modular capsule scaffolds or different layers

with different capsule sizes and hence different porosity can be

easily implemented. GAG-chitosan surfaces can support cell

adhesion and proliferation, partly due to GAG-mediated binding

of matrix proteins and growth factors [53,77]. External cell

adhesion can further be enhanced by directly incorporating cell-

adhesive proteins such as collagen into the capsule wall by either

blending with the polycationic solution or direct application to

external capsule surfaces.

In conclusion, we have demonstrated the formation and use of

GAG-based microcapsules to generate a variety of tunable,

intracapsular microenvironments. These capsules have been

shown suitable for fabrication of porous, 3D constructs that have

the potential to mimic native tissue architecture with high cell

densities, vascular and parenchymal cell types, and perfusable,

endothelium-lined channels. This capsule-based modular tissue

assembly approach is a promising strategy that provides a wide

range of options for the efficient assembly of three-dimensional,

engineered tissues.

Author Contributions

Conceived and designed the experiments: HWTM RTA. Performed the

experiments: RTA. Analyzed the data: RTA HWTM. Contributed

reagents/materials/analysis tools: DRA HWTM. Wrote the paper: RTA

HWTM.

Figure 14. Albumin and urea synthesis rates of hepatocytes in encapsulated perfusion cultures. Primary rat hepatocytes were
encapsulated in CSA/CMC capsules with a with 1 mg/ml collagen gel, at a density of 26107 cells/ml of CSA/CMC/collagen solution. (A) Control
collagen sandwich dish culture. (B) Encapsulated hepatocytes aggregated into spheroids during culture as either (C) individual capsules in a fluidized
bed bioreactor, or as a (D) fused modular construct in a packed bed bioreactor. (E–H) Albumin and urea synthesis rates by the hepatocytes in the
three culture conditions. (E,F) Control collagen sandwich cultures. (G, H) Perfusion cultures. Error bars denote standard deviations from 3 replicate
measurements.
doi:10.1371/journal.pone.0084287.g014
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