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Accurate segmentation is an essential task when working with medical images.

Recently, deep convolutional neural networks achieved a state-of-the-art performance

for many segmentation benchmarks. Regardless of the network architecture, the deep

learning-based segmentation methods view the segmentation problem as a supervised

task that requires a relatively large number of annotated images. Acquiring a large

number of annotated medical images is time consuming, and high-quality segmented

images (i.e., strong labels) crafted by human experts are expensive. In this paper, we

have proposed a method that achieves competitive accuracy from a “weakly annotated”

image where the weak annotation is obtained via a 3D bounding box denoting an object

of interest. Our method, called “3D-BoxSup,” employs a positive-unlabeled learning

framework to learn segmentation masks from 3D bounding boxes. Specially, we consider

the pixels outside of the bounding box as positively labeled data and the pixels inside

the bounding box as unlabeled data. Our method can suppress the negative effects

of pixels residing between the true segmentation mask and the 3D bounding box and

produce accurate segmentation masks. We applied our method to segment a brain

tumor. The experimental results on the BraTS 2017 dataset (Menze et al., 2015; Bakas

et al., 2017a,b,c) have demonstrated the effectiveness of our method.

Keywords: brain tumor segmentation, deep learning, weakly-supervised, 3D bounding box, positive-unlabeled

learning

1. INTRODUCTION

Gliomas are one of the most common brain tumors in adults. They can be categorized into
different levels of aggressiveness, including High-Grade Gliomas (HGG) and Lower Grade Gliomas
(LGG) (Louis et al., 2016). Gliomas consist of heterogeneous histological sub-regions, including
peritumoral edema, the necrotic core, as well as the enhancing and non-enhancing tumor core
(Menze et al., 2015). Magnetic Resonance Imaging (MRI) of brain tumors is commonly used
to evaluate tumor progression and plan treatments. An MRI usually contains multi-modal data,
such as T1-weighted, T2-weighted, contrast enhanced T1-weighted (T1ce), and Fluid Attenuation
Inversion Recovery (FLAIR) images, which provide complementary information for analysis of
brain tumors.
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The automatic segmentation of brain tumors and subregions
is a crucial pre-treatment step for the characterization and sub-
typing ofgliomas. This is a challenging problem because tumors
vary in shape and size across patients and may have low contrast
in some modalities. Recently, deep convolutional neural network
(CNN)-basedmethods have achieved new records in brain tumor
segmentation. Most of these methods are extensions of the U-Net
structure (Ronneberger et al., 2015; Çiçek et al., 2016) in various
ways (Isensee et al., 2017, 2018; Kamnitsas et al., 2017a,b; Wang
et al., 2017; Li et al., 2018). For example, some works focus on the
design of new convolutional network structures, such as using
a mix between convolutional kernels and modifying the down-
sampling strategy (Havaei et al., 2015; Kamnitsas et al., 2017b).
Other works have aimed to improve the method of fusing multi-
modal information. For example, Wang et al. (2017) suggested
a patch-based framework combined with multi-view fusion
techniques to reduce false positive segmentation. Kamnitsas et al.
(2017a) proposed another fusion method through aggregation
of predictions from a wide range of methods. The overall
approach is more robust and reduces the risk of over-fitting to
a particular dataset.

A key problem of CNN-based segmentation methods is the
requirement of accurate pixel/voxel-level annotations. However,
annotating a 3D image at the voxel level requires human expertise
and is expensive and time consuming. Motivated by a recent
work in weakly supervised segmentation in natural 2D images
(Dai et al., 2015), we proposed to learn the segmentation network
from 3D bounding box annotations. As pointed out in Dai et al.
(2015), boxing out the object location is about 15 times faster
than drawing the segmented mask (Dai et al., 2015). In 3D MRI
images, the burden of annotating voxels is much higher than that
of annotating 2D images because the number of voxels increases
exponentially with image dimension. However, the cost of 3D
bounding box annotations is comparable to that of 2D bounding
boxes. Therefore, learning from 3D bounding boxes is valuable
for brain tumor segmentation.

In this paper, we have investigated how to train a segmentation
network from coarse but easily accessible 3D bounding box
annotation. The main difficulty comes from the inaccurate
annotations inside the bounding box. More specifically, the
region bounded by a 3D bounding box contains tumor voxels
as well background voxels. If one simply considers the voxels
inside and outside of the bounding box as two classes,
i.e., tumor and non-tumor; the non-tumor voxels inside the
bounding box will have the wrong labels, and the learned
network tends to classify the voxels outside but close to the
tumor boundaries as tumor voxels. To solve this problem,
we considered segmentation from 3D bounding boxes as a
positive-unlabeled (PU) learning problem (Denis, 1998; Elkan
and Noto, 2008) in which we consider the voxels outside of
the bounding boxes as a positive class and the voxels inside
the bounding box as unlabeled data. We have proposed the
“3D-BoxSup” method to train a deep convolutional neural
network reliably from 3D bounding box annotations with a
non-negative risk estimator that is robust against overfitting
(Kiryo et al., 2017). We conducted experiments on the BraTS
2017 dataset, and the results show that our method can obtain

competitive accuracy by just learning from coarse bounding
box annotations.

2. METHODS

Our 3D-BoxSup method is inspired by the BoxSup method
(Dai et al., 2015), which aims to segment objects from 2D
bounding box annotations. BoxSup is a straightforward method
to train deep CNNs from coarse box annotations. It provides
a biased objective function and utilizes the updated network
in turn to improve the estimated segmentation masks used
for training, which means the estimated segmentation masks
in the previous training epoch are used as the ground truth
mask for the next epoch. However, this iterative method is not
practical for the 3D patch-based method because re-calculating
the segmentation mask for each volume for each epoch has a
high time-cost. In addition, it is unclear whether the iterative
method will finally converge to the optimal solution. To achieve
a considerable performance without iteratively updating the
segmentation masks, we have cast the segmentation problem
as a PU learning problem and applied a non-negative PU risk
estimator (Kiryo et al., 2017) as the train objective to learn the
segmentation network, where we viewed the 3D box annotated
region as the unlabeled data and the area outside the box as
positive data. In the following section, we have outlined the base
model with a biased box-learning estimator as our baseline and
the unbiased-box learning method as our proposed method.

In this section, we have first introduced the basic problem
setup with precise mathematical definitions. Second, we
have introduced our baseline convolutional neural network
architecture, used for predicting the segmentation masks. Third,
we have presented how the network is usually trained if the
ground truth segmentation mask is available. Last, we have
described our PU learning-based 3D-BoxSup method and the
corresponding algorithm.

2.1. Problem Setup
In the real application, the accurate segmentationmask is difficult
to acquire. Thus, in this paper, we only considered the cases
where we only had access to box-labeled segmentation data.

Let S1 denote the annotated 3D box region where gliomas
reside and S0 denote the background area outside of the
bounding box. Assuming we extract 3D patches from S1 and S0
for training, which is shown in Figure 1, the label of each voxel
in S1 and S0 is assigned to 1 and 0, respectively. The proportion
of non-tumor voxels is denoted as πp = n0

n0+n1
, where n1 is the

number of voxels inside the box and n0 is the number of voxels
outside of the box.

2.2. Training Data Generation
First, for each volume of a patient, we generated a 3D bounding
box to roughly cover the whole tumor (WT) area (S1), and the
uncovered region was considered to be the background area S0.
We show an example of the box-labeled data in Figure 1B. For
convenience, we only showed the box label with a 2D yellow
rectangle. It should be noted that the training label in our case is
actually a 3D bounding box for each volume. In our experiment,
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we generated this 3D bounding box from the accurate ground
truth segmentation mask, and we assumed that we did not have
access to this accurate segmentation data during the training
time, which was available in our testing.

We then followed the standard preprocessing step to process
the original 3D input images (Bakas et al., 2018). To reduce the
sensitivity to absolute pixel intensities variations, an intensity
normalization step is applied to each volume of all subjects by
subtracting the mean and dividing by the standard deviation so
that each MR volume will have a zero mean and unit variance,
which is operated to each volume dependently. In practice, as
only the central region that contains the brain is used, the mean
and standard deviation are estimated using this brain area; where
we exclude the black area outside the brain with voxel value
0. Finally, we extract 200 patches per patient with patch size
48 × 48 × 48 in S1 and S0. If the extracted patch of S1 is partial
beyond the boxed area, we pad 0 value to the exceeded part for
the segmentation mask. In our experiment, we randomly selected
3D patches from area S1 and S0 with a proportion of 0.8 and
0.2, respectively. In all of the following settings, we allocated
patches from S1 with the label 1 and patches from S0 with the
label 0.

2.3. Network Structure
To build a deep network for 3D patch segmentation, we applied
the 3D U-Net (Çiçek et al., 2016), consisting of an encoder and
a decoder network with skip connections similar to our base
model. In contrast to (Çiçek et al., 2016), we removed the last
down-sampling layer and the first up-sampling layer for the LHS

and RHS of the 3DU-Net, respectively. This is because the down-
sampling structure would eliminate edge features of brain tumor.
Our modified 3D U-Net is shown in Figure 1A.

2.4. Learning With Ground Truth Mask
In the fully supervised brain tumor segmentation task, accurately
annotated masks were provided for training. Assuming the mask
prediction function modeled by a CNN is ŷ = f (x; θ) ∈ x ∈

R
d×d×d, where x ∈ R

d×d×d is a randomly chosen 3D patch
U from a patient V , and θ is the global trainable parameter.
The ground truth patch tumor mask is y ∈ R

d×d×d. To learn
the network parameters, we can apply the sigmoid function to
generate probability values and cross-entropy loss function to
evaluate voxel-wise prediction error. The objective function for
a single value in the predicted mask can be written:

Lmask(y, ŷ) = (1− y) · log(
1

1+ e−ŷ
)+ y · log(

1

1+ eŷ
), (1)

where y is a single value in the ground truth mask, and ŷ is the
corresponding value in the predicted mask. The overall empirical
risk R̂mask is a summation of Lmask(y, ŷ) on all voxels in all the
3D patches and can be efficiently minimized by using stochastic
gradient descent (SGD) methods.

2.5. Positive-Unlabeled Learning With Box
Labeled Data
When the images are only provided with bounding box
annotations, it is much more difficult to learn the segmentation
network f (x; θ) because the voxels inside the box can be classified

FIGURE 1 | This figure shows the training model with box labeled data. The network structure is shown in sub-figure (A), which is a typical 3D U-Net. The general

training process is shown in sub-figure (B). To be intuitive, we applied a 2D slice as our example in (B) in the training process, and we fed 3D patches with a 3D

bounding box label to optimize our model.

Frontiers in Neuroscience | www.frontiersin.org 3 April 2020 | Volume 14 | Article 350

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Xu et al. PU Box

FIGURE 2 | In this figure, we show the example of how to reconstruct our training data in the 2D aspect for better comprehensive as it is easy to implement in 3D

level as well. We concatenated the Flair, T2, T1, and T1ce models in the channel dimension and combined extra scale information to enhance the model training.

as either tumor or non-tumor. A straightforward solution would
be assigning all the voxels in patches coming from S1 with label 1
and labeling all the voxels in patches coming from S0 with label 0.
We could then train the segmentation network using the cross-
entropy loss (1), which we call the “Naive-BoxSup” method. The
problem with the naive method is that some non-tumor voxels
inside the box are wrongly assigned with tumor class label 1. As
a result, the learned network tends to classify the voxels outside
but close to the tumor boundaries as tumor voxels.

To alleviate this problem of the Naive-BoxSup, we proposed
to consider segmentation from boxes as a positive-unlabeled
learning problem. We can ensure that patches extracted from
S0 only contains positively-labeled voxels (0 is considered the
positive label), which are far away from tumor area. In the
bounding box area S1, voxels in S1 can be considered as an
unlabeled object. Thus, segmentation network learning from
bounding box annotations is a typical positive-unlabeled learning
problem, which tries to learn a classifier to model the distribution
of positive data pp and negative data pn by using only positive
labeled data and unlabeled data. In the following, we have
described how we applied a recently proposed non-negative PU-
Learning loss (Kiryo et al., 2017) to train our segmentation
network. We chose to use this loss because the non-negative
constraint on the loss makes it less prone to overfitting when a
deep network is being learned.

Let p(x) denote the marginal distribution of input features
corresponding to a single output y in the predicted segmentation
mask. By stacking all the 3D patches together, we can get a sample
{(xi, yi)}

n
i=1. Let pp(x) = p(x|y = 0) and pn(x) = p(x|y = 1)

denote the positive and negative class conditional distributions,
respectively. We have

p(x) = πppp(x)+ (1− πp)pn(x). (2)

Equivalently, (1 − πp)pn(x) = p(x) − πppp(x). Let L(y, ŷ) be a
general loss function evaluating the distance between output and
ground truth labels, which is cross-entropy loss in our case. This

is denoted by

R+p (θ) = Ex∼pp(x)L(f (x, θ), y = 0), (3)

R−n (θ) = Ex∼pn(x)L(f (x, θ), y = 1), (4)

R−p (θ) = Ex∼pp(x)L(f (x, θ), y = 1), and (5)

R−u (θ) = Ex∼p(x)L(f (x, θ), y = 1). (6)

By using (), we can have an approximation of the risk on the
true distribution R(f ) = E(x,y)∼p(x,y)L(f (x, θ), y) = πpR

+
p (f ) +

πnR
−
n (f ) by

RPU = πpR
+
p (θ)+ R−u (θ)− πpR

−
p (θ). (7)

Theoretically, we can minimize RPU to learn the optimal theta
for our segmentation network. However, as pointed out in Kiryo
et al. (2017), if the model is very flexible, empirical risks on
training data will go negative, and we will suffer from serious
over-fitting. Since our model is a very complicated convolutional
neural network, we applied a non-negative risk estimator (Kiryo
et al., 2017), as with the objective function:

RPUB = πpR
+
p (θ)+max{0,R−u (θ)− πpR

−
p (θ)}. (8)

In practice, we need to replace the risk terms by their empirical
estimates from data:

πpR̂
+
p (θ) = −πp

1

n

n∑

i=1

(1− yi) · log(1−
1

1+ e−f (xi;θ)
)

R̂−u (θ) =
1

n

n∑

i=1

yi · log(
1

1+ e−f (xi;θ)
)

πpR̂
−
p (θ) = −πp

1

n

n∑

i=1

yi · log(1−
1

1+ e−f (xi;θ)
).

The overall algorithm is shown in Algorithm 1. We used
the ADAM optimizer to optimize the empirical risk. In our
algorithm, we set πp = 0.75 and we set γ = 1, η = 0.5, which is
a very common choice for PU learning.
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3. EXPERIMENT

To demonstrate the effectiveness of our method, we presented
a number of experiments examining different aspects of our
method. After introducing the implementation details, we
evaluated our methods on BraTS (Wang et al., 2017) brain tumor
training dataset. We compared the segmentation performance
of our 3D-BoxSup method with the Naive-BoxSup segmentation
method and show advantages of our proposed method over the
baseline approach.

Algorithm 1: Optimization of Our 3D-BoxSup segmentation
algorithm

Input: training data (xi, yi);
hyperparameters 0 ≤ β ≤ πp and 0 ≤ γ ≤ 1

Output:model parameter θ for f (x; θ)

1: Let A be an external ADAM optimizer (Kingma and Ba,
2014)

2: while no stopping criterion has been met:
3: Shuffle (xi, yi) into N mini-batches
4: for i = 1 to N:
5: if R̂−u (θ)− πpR̂

−
p (θ) ≥ −β :

6: Set gradient ∇θ R̂pu(θ)
7: Update θ byA with its current step size η

8: else:
9: Set gradient ∇θ (πpR̂

−
p (θ)− R̂−u (θ))

10: Update θ byA with a discounted step size γ η

3.1. Training Setting
We got all our training data from BraTS web1 to evaluate our
method. The training data consisted of 285 patients, including
segmented masks annotated by human experts. These training
data were separated into two categories, including HGG and
LGG, each containing 210 HGG and 75 LGG images. There is
an imbalance between HGG and LGG, and the data distributions
of HGG and LGG were also different, especially for TC and
ET. Each patient had four sequences, which are FLAIR, T2,
T1, and T1ce. In training time, we randomly split the whole
training set to 80% training set and 20% as our evaluation
set, and we carried out five folds testing in this manner. We
only use the ground truth segmented label during evaluation.
We fed all of the sequences into our network by combining
them in channel dimension. Thus, our input data are in 5D,
the dimensions of which are batch, sequences, width, length,
and depth. The training model structure is shown in Figure 1A.
To generate the training data, we followed the abovementioned
section 2.2 method, and the proportion of the non-tumor voxels
was πS2 = 0.75.

We set our training batch size to 64, and each training patch
voxel size is 48 × 48 × 48 for saving memory, which is sufficient
to train the model; another aspect to the design of such a parch
size is that a larger patch would contain more background voxel,
which means the model would over-fit the background and

1https://www.med.upenn.edu/sbia/brats2018/data.html

would not be able learn a pattern of Whole Tumor segmentation.
For the data training strategy, we randomly generated 40,000
locations as the center point of patches for each patient volume;
finally, only 200 locations were selected as our training patches.
To fully utilize the information from each model provided with
FLAIR, T2, T1, and T1ce, we reconstructed our multi-modal
data by stack theses modals in the channel dimension, which can
be directly fed to convolutional neural networks (CNNs). Also,
imitating the technique from (Bakas et al., 2018), we enabled the
network to capture the multiscale information from data. To do
so, we got the 96 × 96 × 96 patches for each modal, extracted in
the same way as the 48× 48× 48 patches, which were two times
bigger than the basic training patch; this bigger patch also belongs
to the same center location as the basic training patch. Then, we
resized the 96 × 96 × 96 patches to 48 × 48 × 48. Finally, we
concatenated all the different models and scaled patches, which
is shown in Figure 2. Thus, the input patch size of our model was
batchsize×8×48×48×48.We trained our whole network using
Pytorch (Paszke et al., 2017), which is a new hybrid front-end
seamlessly transitions between eager mode and graph mode to
provide both flexibility and speed. NVIDIA TITAN XP GPU was
applied to train our network, and the cost was about 11 gigabytes
GPU RAM. The whole training process was finished in 4 h with
5 epochs, and each epoch traversed the whole training dataset.
To optimize our model, we chose the common gradient descent
algorithm Adam.

3.2. Evaluation Metrics
3.2.1. Dice Coefficient

The Dice-Coefficient Score was calculated as the performance
metric. This measure states the similarity between clinical
Ground Truth annotations and the output segmentation of the
model which are A and B respectively. Afterwards, we calculated
the average of those results to obtain the overall dice coefficient
of the models.

D =
2|A

⋂
B|

|A| + |B|
(9)

3.2.2. Hausdorff Distance

The Hausdorff Distance is mathematically defined as the
maximum distance of a set to the nearest point in the other set, in
other words, how close the segmentation and the expected output
are. In most evaluations, we usually adopt the 95% Hausdorff
Distance, Hausdorff95, which means the chosen distance is
greater or equal to exactly 95% of the other distance in two
point sets.

−→
dH(A,B) = max

a∈A
max
b∈B

d(a, b) (10)

H(A,B) = max{
−→
dH(A,B),

−→
dH(B,A)} (11)

3.3. Experimental Results
To compare the model performance straightly, we gave the
segmented mask generated by the baseline Naive-BoxSup
method and our proposed method 3D-BoxSup, shown in
Figure 3. Corresponding to the evaluated metric in section 3.2,
the quantitative results are shown in Table 1. The chosen samples
were randomly picked fromHGG testing set and LGG testing set.
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FIGURE 3 | This figure shows that we randomly sampled two patients from HGG testing set and LGG testing set respectively. Each column represents the applied

method, and each row is the chosen patient. The A patient is from HGG samples, and the B patient is from LGG samples. The estimated segmentation result of WT is

shown by both the naive method and our proposed PU box method. To better visualize the segmented result, we provide three different views: axial, coronal, and

sagittal.

As can be seen from Figure 3, our proposed 3D-BoxSup method
obviously produced a more accurate segmentation mask than the
Naive-BoxSupmethod, which produced amuchmore noisymask
around the tumor boundary. It seems the Naive-BoxSup over-fits
the data from no-tumor area S0, which verifies that our method

is able to alleviate this over-fitting and learning better from box
area S1.

In terms of the quantitative metrics of the Dice Score
and Hausdorff Distance, our method performs better than the
baseline method in each aspect, especially the Dice Score.
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FIGURE 4 | We randomly choose six patients from testing set as more example displaying and for simplicity we only show the view of axial plane.

TABLE 1 | Mean values of Dice and Hausdorff measurements of the proposed

method on the BraTS 2018 validation set.

Dice Hausdorff (mm) Hausdorff95 (mm)

WT WT WT

Naive-BoxSup (baseline) 0.49 ± 0.04 31.213 ± 2.316 20.857 ± 1.503

3D-BoxSup (ours) 0.62 ± 0.02 28.641 ± 1.395 15.476 ± 1.132

Region Grow 0.50 39.920 29.151

WT denotes whole tumor.

Visually, as shown in Figure 4, out method also generates finer
segmentation mask than the baseline method. The variance of
our 5-folds evaluation results is also smaller than the baseline
model, which means our model is more robust. Also, due to
the fact that we only applied a simple post-process for fill in
the hole of segmented mask, the Hausdorff Distance could be
influenced by the wrong segmentation area, which is beyond
the tumor area. Compared with the hand-crafted region grow

method (watershed clustering Ng et al., 2006), we set the
threshold of discontinuities in gray-scale to be 0.5, and the result
of the region grow is shown as below. To evaluate the region
grow method, we tested it on both training data and testing
data as tge region grow does not need to be trained. Overall,
our proposed method shows a superiority when given a weak
box annotation.

4. CONCLUSION

Precisely labeled data is limited in real world, especially for
medical data; it would cost a significant amount time and labor
to annotate the data, and it would also require a highly qualified
doctor as the annotator. Thus, we need to refer to some easily
labeled data, saving time, and also explore the information
derived from these weakly labeled data. In this paper, we explored
one of the possibilities of weakly supervised approach on medical
image segmentation. Our method is called the “3D-BoxSup,”
which only acquired a 3D bounding box label for brain tumor.
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Compared to the traditional supervised labeled data, which needs
a fine boundary for tumor annotation, our annotated data is
more accessible. However, training on the box labeled data would
lead to over-fitting of the background as well as a biased risk
function. Box labeled data is a typical positive-unlabeled task, and
we thus proposed to apply the non-negative PU risk function
(Kiryo et al., 2017) to boost the performance of our model. We
have shown the effectiveness of our proposed method on the
data provided by BRATS challenge (Menze et al., 2015). Since
our model is a general method when tackling such box labeled
data, our method can be further applied to mostly if not all of the
segmentation tasks.
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