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Background: Progressive subcortical changes are known to occur in Huntington's disease (HD), a hereditary neu-
rodegenerative disorder. Less is known about the occurrence and cohesion ofwhole brain greymatter changes in
HD.
Objectives:We aimed to detect network integrity changes in greymatter structural covariance networks and ex-
amined relationships with clinical assessments.
Methods: Structural magnetic resonance imaging data of premanifest HD (n = 30), HD patients (n = 30) and
controls (n = 30) was used to identify ten structural covariance networks based on a novel technique using
the co-variation of grey matter with independent component analysis in FSL. Group differences were studied
controlling for age and gender. To explore whether our approach is effective in examining grey matter changes,
regional voxel-based analysis was additionally performed.
Results: Premanifest HD andHDpatients showed decreased network integrity in two networks compared to con-
trols. One network included the caudate nucleus, precuneous and anterior cingulate cortex (in HD p b 0.001, in
pre-HD p=0.003). One other network contained the hippocampus, premotor, sensorimotor, and insular cortices
(in HD p b 0.001, in pre-HD p = 0.023). Additionally, in HD patients only, decreased network integrity was ob-
served in a network including the lingual gyrus, intracalcarine, cuneal, and lateral occipital cortices (p =
0.032). Changes in network integrity were significantly associated with scores of motor and neuropsychological
assessments. In premanifest HD, voxel-based analyses showed pronounced volume loss in the basal ganglia, but
less prominent in cortical regions.
Conclusion:Our results suggest that structural covariancemight be a sensitive approach to reveal early greymat-
ter changes, especially for premanifest HD.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Huntington's disease (HD) is an autosomal dominant inherited neu-
rodegenerative disorder, caused by a cytosine-adenine-guanine (CAG)
trinucleotide repeat expansion on chromosome four in the Huntingtin
(HTT) gene (The Huntington's Disease Collaborative Research Group,
tosine-adenine-guanine; HTT,
tington's Disease Rating Scale;
e Examination; SDMT, Symbol
eal Neurological Institute; ICA,
rphometry.
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1993). The clinically manifest phase of the disease is characterized by
motor disturbances, cognitive decline and psychiatric symptoms (such
as apathy, depression, irritability, and obsessive-compulsive behavior),
with a mean age at onset of 30 to 50 years (Roos, 2010).

HD gene carriers that have been tested positive for the CAG expan-
sion are diagnosed as manifest HD based on the presence of typical
motor disturbances that mainly involve chorea, dystonia, bradykinesia
and rigidity (Roos, 2010).

Recent neuroimaging studies revealed pronounced neuropathologi-
cal changes in subcortical structures, which primarily involve atrophy of
the caudate nucleus and putamen (Aylward, 2014). This decline in
striatal volume is already detectable in premanifest gene carriers,
years before onset of motor disturbances (Paulsen et al., 2008; Tabrizi
et al., 2009; van den Bogaard et al., 2011). Local subcortical grey matter
volume changes in HD are commonly examined using a voxel-based
approach (Douaud et al., 2006; Gómez-Ansón et al., 2009; Hobbs et al.,
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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2010; Kassubek et al., 2005; Peinemann et al., 2005; Ruocco et al., 2008;
Thieben et al., 2002), but only few neuroimaging studies have investi-
gated the occurrence of volume changes in the cerebral cortex. Still,
neuropathological studies onHD report the presence ofwidespread cor-
tical atrophy in addition to striatal atrophy (De la Monte et al., 1988).
Reported voxel-wise subcortical volume changes in HD are, however,
more prominent than cortical changes and the amount of cortical
changes varies across voxel-based studies (Dogan et al., 2013;
Whitwell and Josephs, 2007).

As voxel-based methods, such as voxel-based morphometry (VBM)
analysis, provide whole-brain results for individual regions by studying
voxels separately, a multivariate network-based analysis might give
more information about inter-regional dependencies between grey
matter voxels. As neurodegeneration is probably a network-based pro-
cess involving several brain regions and is not regional specific
(Rombouts et al., 2009), examining such approachmight be particularly
interesting in HD. Recently, a novel technique is developed to study dis-
ease-specific inter-regional network changes in grey matter by using
structural covariance networks independent of a-priori defined regions
(Hafkemeijer et al., 2014; Xu et al., 2009). Structural covariance net-
works are based on the observation that grey matter regions in the
brain co-vary in morphometric characteristics. Therefore, structural co-
variance networksmight be a valuable tool in investigating the topolog-
ical organization of the brain (Hafkemeijer et al., 2014).

Previous studies in premanifest HD showed that cognitive impair-
ment and psychiatric symptoms can present prior to motor distur-
bances (Lemiere et al., 2004; Paulsen et al., 2008). Additionally,
subcortical changes are already detectable in this stage of the disease
(Aylward et al., 2004; Tabrizi et al., 2013). Whether or not abnormal
grey matter changes are present in premanifest HD, we hypothesize
thatwemay be able to revealmorphological characteristics that vary re-
ciprocally between cortices or between the cortex and the subcortical
greymatter regions using structural covariance networks. Such changes
in a given patient population address for abnormality in the reciprocal
relationship that is due to disturbance in normal development or
aging. Using structural covariance networks in such an unrestricted ex-
ploratory way can give more insight into the pathophysiological pro-
cesses underlying HD.

Network integrity scores can be defined as the strength of an indi-
viduals' expression in each identified anatomical network and can
therefore indirectly provide information about grey matter changes.
Network integrity scores can change as covariance can diminish when
the existing correlation drops due to the variation within a normal
range. Therefore, network integrity can change regardless of atrophy
and might provide a more sensitive biomarker for tracking disease pro-
gression than direct measurement of volume changes in HD.

Thus, the aim of this study is to investigate network integrity chang-
es in greymatter structural covariance networks in HD and examine the
relationship between the identified networks and clinical assessments.
Furthermore, we compared our inter-regional findings with regional
volumetric voxel-based analysis on the same data, as this approach is
most often used to examine volume loss in HD (Dogan et al., 2013).

2. Materials

2.1. Participants

Thirty premanifest gene carriers (pre-HD), 30 HD patients and 30
healthy controls who participated in the TRACK-HD study at the Leiden
University Medical Center study site, were included. Both pre-HD and
HD patients required a positive genetic test with 40 CAG repeats or
more. Participants were considered pre-HD with a total motor score
(TMS) of 5 or less on the motor assessment of the Unified Huntington's
Disease Rating Scale (UHDRS) (Huntington Study Group, 1996) and a
disease burden score (age × [CAG repeat length − 35.5]) of N250
(Penney et al., 1997). HD patients were included with an UHDRS-TMS
score N 5 and a Total Functional Capacity (TFC) score greater than or
equal to 7 points. Partners and gene-negative relatives were recruited
as healthy controls. The control group was age and gender matched to
the combined pre-HD and HD patients. The Medical Ethical Committee
of the LeidenUniversityMedical Center approved this study andwritten
informed consent was obtained from all participants. For additional de-
tails about the study design and exclusion criteria, (Tabrizi et al., 2009).

2.2. Clinical assessments

The UHDRS-TMS was used to measure the degree of motor distur-
bances, ranging from 0 to 124, with higher scores indicating more in-
creased motor impairment. The TFC assesses global impairments in
daily functioning, ranging from 0 to 13, with lower scores indicating
more impaired function. Cognitive scores included the total scores of
the Mini Mental State Examination (MMSE), Symbol Digit Modality
Test (SDMT), Stroop word reading test and Trail-Making Test (TMT) A
and B. The TMT score was derived by subtracting the completion time
of TMT-A from TMT-B, thus minimizing the potential effect of motor
speed and disturbances. For more details on all clinical assessments
(Tabrizi et al., 2009).

2.3. MRI image acquisition

From January until August 2008, all participants underwent struc-
tural magnetic resonance imaging (MRI) scanning. Quality control of
all images was performed by IXICO, London, United Kingdom. Imaging
was performed on a 3 Tesla MRI scanner (Philips Achieva, Best, the
Netherlands) using a standard 8-channel whole-head coil. Three-di-
mensional T1-weighted images were acquired with the following pa-
rameters: TR = 7.7 ms, TE = 3.5 ms, flip angle =8°, FOV 24 cm,
matrix size 224 × 224 cm and 164 sagittal slices to cover the entire
brain with a slice thickness of 1.0 mm with no gap between slices.
This resulted in a voxel size of 1,07 mm × 1,07 mm × 1,0 mm.

2.4. Data analysis

2.4.1. Image post-processing
All T1-weighted images were analyzed using the software provided

by FMRIB's software library (FSL, version 5.0.8, Oxford, United King-
dom) (Smith et al., 2004).

First, all non-brain tissue was removed from structural T1-weighted
images using a semi-automated brain extraction tool implemented in
FSL (Smith, 2002). Before being aligned to the 2 mm MNI (Montreal
Neurological Institute)-152 standard space image (Jenkinson et al.,
2002) using non-linear registration (Andersson et al., 2007), voxel-
based morphometry (VBM) analysis was used as implemented in FSL
(Ashburner and Friston, 2000). First, tissue-type segmentation was per-
formed. The segmented images have values that indicate the probability
of a given tissue type (i.e. grey matter, white matter or cerebrospinal
fluid). To correct for the partial volume effect (i.e. voxels containing
more than one tissue type), the tissue type segmentation was carried
out with partial volume estimation. The segmented images have values
that indicate the probability of a given tissue type. The resulting grey
matter segmented images were averaged to create a study-specific
grey matter template and ‘modulated’ to correct for local enlargements
and contractions due to the non-linear component of the spatial trans-
formation (Good et al., 2001). During the modulation step, each voxel
of every registered grey matter image was multiplied by the Jacobian
of the warp field. This defines the direction (larger or smaller) and the
amount of modulation. The modulated grey matter images were finally
smoothed with an isotropic Gaussian kernel with a sigma of 3 mm.

For the network-based data-driven analysis, Multivariate Explorato-
ry Linear Optimized Decomposition into Independent Components
(MELODIC) (Beckmann et al., 2005; Beckmann and Smith, 2004) was
used with the modulated grey matter images of all participants as a
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four-dimensional dataset. This statistical technique with independent
component analysis (ICA) defines fully automated spatial component
maps of maximal statistical independence, which is commonly used to
study functional network integrity. When applied on structural grey
matter images, this method defines spatial components based on the
co-variation of grey matter patterns among all participants
(Hafkemeijer et al., 2014; Segall et al., 2012; Xu et al., 2009). Then, ICA
provides for each participant a score (‘network integrity score’), which
can be negative or positive, describing the strength of the individual
expression in each network (Beckmann and Smith, 2004; Segall et al.,
2012), with high scores indicating strong individual expression of the
identified network.

In general, there is no consensus on the optimal number of compo-
nents, whichmay be depending on the data size and the research ques-
tion (Cole et al., 2010). In our study, choosing less than ten components
caused loss of spatial information due to merging of components,
whereas selecting more components created additional components
consisting of considerable noise. Therefore,we choose to set thenumber
of independent components in our study to ten components. This num-
ber is consistentwith previous studies of brain networks, inwhich eight
to ten components are most often applied (Cole et al., 2010;
Hafkemeijer et al., 2014). A standard threshold level of 0.5 was used to
describe significance of individual voxelswithin a spatialmap. This indi-
cates that the probability of a voxel being a signal component is greater
than the probability of a voxel being noise.

To investigate voxel-wise group differences in grey matter volume,
VBM analysis was performed. Here, the modulated grey matter images
were analyzed using a general linear model in FSL for statistical
inference.

Voxel-wise non-parametric permutation testing with 5000 permu-
tations was performed using FSL randomise (Winkler et al., 2014). Fur-
ther, the Threshold-Free Cluster Enhancement (TFCE) technique was
used (Smith and Nichols, 2009), to correct for multiple comparisons
with a p-value b0.05 as significant threshold.

Brain structureswere identified using theHarvard-Oxford atlas inte-
grated in FSL.

For each participant, themean voxels' greymatter density valuewas
calculated using the identified anatomical regions that showed signifi-
cant grey matter volume changes as a mask.

2.4.2. Statistics
Statistical analyses were performed using the Statistical Package for

Social Sciences (SPSS for Mac, version 23, SPSS Inc.). Differences in de-
mographic and clinical variables between groups were assessed using
analysis of variance (ANOVA), χ2 and Kruskall-Wallis tests for continu-
ous, categorical and skewed data respectively.

For group comparisons, separate linear regression analysis was per-
formed in each network with correction for age and gender using the
network integrity scores as dependent variable. The analysis was per-
formed to compare controls with gene carriers (i.e. pre-HD and HD pa-
tients separately). All independent variables were entered in one block.
Furthermore, correlations between clinical assessments and genetic
markers (i.e. CAG repeat length and disease burden) with the anatomi-
cal networks were assessed using linear regression analysis in pre-HD
and HD patients.

For the VBM analysis, a designmatrix for a general linear model was
constructed in FSL to compare greymatter differences between controls
and pre-HD and HD patients separately using two-tailed t-statistics,
with age and gender as covariates to correct for confounding effects.
To correct for multiple comparisons with family wise error, the Thresh-
old-Free Cluster Enhancement (TFCE) technique was used (Smith and
Nichols, 2009), with a p-value b0.05 as significant threshold.

Linear regression analysis in HD gene carriers was performed to as-
sess the relationship between clinical assessments and genetic markers
with grey matter density values based on the mean value of the signif-
icant voxels of the VBM analysis.
In this observational study, the identified anatomical networks, grey
matter density values, and cognitive tasks that were assessed share a
mutual dependency. Considering it is not clear for which dependency
to correct, we therefore present our correlational findings with clinical
assessments uncorrected for multiple comparisons. As a result, to pre-
vent type 2 errors, the interpretation of slight significant findings will
be with caution. The significance threshold was set at a p value b0.05.

3. Results

3.1. Demographic characteristics

Demographic and clinical data of all participants are shown in
Table 1. Therewas a significant difference between groups for all clinical
measures. Age, gender, handedness and education level did not differ
between groups. There was no difference in CAG repeat length in both
pre-HD and HD patients.

3.2. Voxel-based morphometry analysis

Regional volumetric voxel-based analysis was performed to assess
voxel-wise differences between HD gene carriers and controls. In pre-
HD, significant local greymatter volume reductions in the basal ganglia,
mainly in the putamen, nucleus accumbens and caudate nucleus
(Fig. 1A and Table 2) was found compared to controls. Cortical volume
changes in pre-HD were limited to the insular cortex (p = 0.018) and
a small region containing the planum temporale, parietal operculum
cortex and posterior supramarginal gyrus (p = 0.045).

In HD patients, greymatter volume reductions were more distribut-
ed across the brain (Fig. 1B and Table 2). VBM analysis showed subcor-
tical volume loss in the caudate nucleus, putamen and pallidum.
Significant cortical grey matter changes were primarily located in the
pre- and postcentral gyrus, the supplementarymotor cortex and the lat-
eral occipital cortex.

3.3. Anatomical networks and group comparisons

Ten grey matter anatomical networks were identified in all partici-
pants (Fig. 2 and Table 3). Two structural covariance networks, the cau-
date nucleus network (network B) and the hippocampal network
(network D), revealed a significant association in both pre-HD and HD
patients compared to controls, meaning network integrity is reduced
in both gene carrier groups compared to controls (Fig. 2B, D and
Table 4). The caudate nucleus network includes the nucleus accumbens,
pallidum, putamen, and precuneous. The hippocampal network is fur-
ther comprised of the parahippocampal gyrus, cerebellum, pallidum,
and planum polare. One other network, the intracalcarine network
(network E), showed only a significant change in network integrity in
HD patients compared to controls, but not in pre-HD (Fig. 2E and
Table 4). This network includes the precuneous, cuneal and lateral oc-
cipital cortices and lingual gyrus. Therewere no significant group differ-
ences in network integrity in the 7 other identified networks (Fig. 2A,C,
F–J and Table 4). These networks include: anterior cingulate gyrus (net-
work C), temporal gyrus (network F), lateral occipital cortex (network
H), precuneous (network I), lingual gyrus (network J) and two cerebel-
lar networks (networks A and G).

3.4. Correlations of structural changes with clinical assessments

The caudate nucleus network, hippocampal network and
intracalcarine network were selected to further assess the relationship
with clinical scores, as these anatomical networks showed significant
differences between controls and HD gene carriers. Six clinical assess-
ments were analyzed in the HD gene carrier group and consisted of
motor, functional and cognitive scores. CAG repeat length and disease
burden score were used as a measurement of genetic burden in HD



Table 1
Demographic and clinical characteristics.

Controls Pre-HD HD p-value

Number of
participants

30 30 30

Gender (male/female) 14/16 12/18 9/21 0.411
Age (years) 48.9

(8.4, 35–65)
43.7
(7.9, 26–62)

47.9
(10.3, 31–64)

0.060

Handedness—right (%) 25
(83.3%)

26
(86.7%)

25
(83.3%)

0.339

Education level (1–6) 3.43
(1.1)

3.83
(1.1)

3.2 (1.4) 0.229

CAG repeat length N/A 43.4
(2.4, 40–51)

44.1
(2.4, 40–49)

0.217

Disease burden * N/A 331.3
(65.5)

396.1
(73.1)

0.001

Disease duration (years) N/A N/A 4.0
(3.6, 0–13)

N/A

UHDRS—TMS (0–124) 2.5
(0–7)

2.4
(0–4)

21.9
(6–45)

b 0.001

TFC score (0−13) 12.9
(10−13)

12.6
(10–13)

10.3
(7–13)

b 0.001

SDMT
(number correct)

48.0
(17–71)

50.0
(20–72)

38.1
(16–57)

b 0.001

Stroop
(number correct)

98.3
(69–129)

92.7
(58–120)

81.2
(47–111)

b 0.001

TMT (seconds) 38
(12–81)

55.7
(7–108)

88.1
(16–252)

0.006

MMSE 29.1
(26–30)

28.9
(25–30)

27.2
(20−30)

0.002

Data are mean (SD, range) or number (%). ANOVA was used for age, CAG repeat length,
disease burden, UHDRS-TMS, SDMT and Stroop. χ2-test was used for gender, handedness
and education level. Kruskal-Wallis test was used for TFC score, MMSE and TMT.
Abbreviations: HD = Huntington disease; N/A = Not applicable; CAG = cytosine, ade-
nine, guanine; UHDRS-TMS = Unified Huntington's Disease Rating Scale-Total Motor
Score; TFC = Total Functional Capacity score; SDMT= Symbol Digit Modality Test; TMT
= Trail Making Test; MMSE = Mini Mental State Examination. * Disease burden
score = age × (CAG length − 35.5) by Penney et al. (1997).

809E.M. Coppen et al. / NeuroImage: Clinical 12 (2016) 806–814
gene carriers. The caudate nucleus network showed a significant corre-
lation with the TFC score and the UHDRS total motor score (Table 5).
This means that a higher motor score is associated with a reduction in
network integrity for this specific network. Significant correlations
were also foundwith the caudate nucleus network and both CAG repeat
Fig. 1. Regional grey matter volume changes in HD. Voxel-based morphometric analysis showe
disease patients (B) compared to controls. The greymatter changes are overlaid on sagittal, trans
y- and z-coordinates are displayed. The threshold for display is p b 0.05 (corrected using famil
length and disease burden score, meaning that a larger CAG repeat
length and higher disease burden score are associated with a reduction
in network integrity scores. Furthermore, all cognitive assessments
showed a significant correlation with this network, i.e. the SDMT
score, Stroopword reading test, TMT score andMMSE. The hippocampal
network revealed no significant correlations with any of the clinical as-
sessments or the measures of genetic burden. Two clinical assessments
showed significant correlationswith the intracalcarinenetwork, the TFC
score and the TMT score (Table 5). Furthermore, the disease burden
score also showed a significant correlation with this network.

The identified voxel-based anatomical regions of grey matter vol-
ume changes in HD were additionally used to assess relationships
with clinical assessments in HD gene carriers. Overall, grey matter den-
sity values were significantly lower in manifest HD compared to con-
trols and pre-HD (F(2,87) = 24.1, p b 0.001). For all clinical motor,
functional and cognitive assessments, therewas a significant correlation
with grey matter density values in HD gene carriers (Table 5).
4. Discussion

In this study, we showed that identification of structural covariance
networks revealed early grey matter changes in premanifest gene car-
riers and HD patients. In total, ten anatomical networks were identified
in all participants. The regions of grey matter changes were located in
two specific structural covariance networks, in which we found net-
work integrity changes in both pre-HD and HD patients. One of these
networks contained the basal ganglia, precuneous and anterior cingu-
late cortex, whereas the other network comprised of the hippocampus,
parahippocampal gyrus, cingulate, insular, and sensorimotor cortices,
superior parietal lobule, angular gyrus and frontal orbital cortex. One
other network, the intracalcarine network, only showed a significant
change in network integrity in HD patients, not in pre-HD, compared
to controls. The other seven networks involving the cerebellum, tempo-
ral and frontal lobes showed no significant differences in network integ-
rity between controls and pre-HD or HD patients.

The mean network integrity score describes the strength of group
expression in each network with higher scores indicating strong group
expression of the identified network.
d regional grey matter volume changes in premanifest gene carriers (A) and Huntington's
versal and coronal slices ofMNI-152 standard T1-weigthed images. CorrespondingMNI x-,
ywise error). The color scale bar represents T-scores.



Table 2
Results of voxel-based morphometry analysis.

Cluster size Anatomical region

MNI coordinates

T-score p-valuex y z

Premanifest gene carriers
1126 Left putamen −32 −16 −6 5.39 0.005

Left caudate nucleus −20 14 8 4.25 0.013
Left accumbens −6 12 2 4.14 0.015
Insular cortex −28 6 10 4.49 0.018

1018 Right caudate nucleus 14 8 6 5.78 0.001
Right thalamus 14 −8 18 4.92 0.003
Right putamen, right pallidum 28 −16 8 3.99 0.025

10 Planum temporale −46 −36 16 4.47 0.045
Parietal operculum cortex
Posterior supramarginal gyrus

HD patients
61,398 Caudate nucleus 16 10 8 12.29 0.001

Putamen, pallidum 24 −4 8 5.17 0.001
Postcentral gyrus −18 −36 70 3.28 0.001
Precentral gyrus −14 −22 60 2.98 0.001
Supplementary motor cortex 10 −22 58 3.22 0.001
Lateral occipital cortex −46 −72 4 3.96 0.001

11 Frontal pole 22 44 18 4.24 0.041

Anatomical regions that showed significant grey matter volume changes in Huntington's
disease compared to controls using voxel-based morphometry analysis. Regions were
identifiedusing the cluster tool and theHarvard-Oxford Subcortical and Cortical Structural
Atlases in FSL. The most significant local maxima are presented with T-statistics and a
Threshold-Free Cluster Enhancement (TFCE) family-wise error corrected p-value.

Fig. 2. Overview of structural covariance networks. The ten identified anatomical networks are
based on the structural covariance of grey matter among all participants. The networks are
overlaid on sagittal, transversal and coronal slices of MNI-152 standard T1-weigthed images.
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Our findings suggest that there is a progressive increasing change of
network integrity in greymatter structures from the premanifest phase,
when motor symptoms are not yet present, to the manifest stage of the
disease.

Network integrity changes found in both pre-HD and HD patients
were located in a network containing the precuneous and anterior cin-
gulate cortex. These structures are involved in motor planning, visuo-
spatial processing, and cognitive attention and control (Cavanna,
2006; Wenderoth et al., 2005). As these motor and cognitive functions
are known to be affected in HD (Lemiere et al., 2004; Tabrizi et al.,
2013), this can explain the strong associationswe found in HDgene car-
riers between this network and performances on motor and cognitive
tasks. The identified hippocampal network comprised of cortical struc-
tures involved in working memory performance, emotion processing
and motor control. Although we showed evidence for change in net-
work integrity in this network in pre-HD and HD patients, there were
no significant correlations with clinical assessments. One possible ex-
planation might be that we assessed cognitive tasks that are not de-
signed to measure the domains of working memory and emotion
processing. Another possible explanation could be that changes in net-
work integrity precede the clinical decline.

In HD, network-based analysis has been applied in one other recent
study that investigated structural covariance networks in brain regions
that are functionally related (Minkova et al., 2016). Here, in all pre-spec-
ified motor, working memory, cognitive flexibility, and social-affective
networks there were no differences between controls and pre-HD ob-
served (Minkova et al., 2016). In our study, however, we found evidence
for early grey matter volume changes in two structural covariance net-
works in pre-HD compared to controls. This difference might be ex-
plained by the fact that we used patterns of co-variation in whole
brain grey matter of the participants and were not restricted to pre-de-
fined brain regions.

Further, we assessed correlations with our identified anatomical
networks and genetic markers, such as CAG repeat length and disease
burden. We found that a larger CAG repeat length and higher disease
burden score in HD gene carriers were associated with a reduction in
network integrity scores of the caudate nucleus network, suggesting
that geneticmarkersmight have an effect on the rate of disease progres-
sion. This is consistent with previous studies showing a larger CAG



Table 3
Identified anatomical brain networks.

Brain cluster Voxel size Max T

MNI coordinates

x y z

Network A Cerebellum 12,110 16 −28 −76 −46
Right putamen, right pallidum, right hippocampus and right amygdala 233 4.66 28 −24 −4
Postcentral gyrus and precentral gyrus 50 4.08 16 −32 80

Network B Caudate nucleus, nucleus accumbens, pallidum, putamen and Precuneous 37,999 7.55 −10 10 −4
Anterior cingulate cortex 349 3.4 16 44 4
Cerebellum 189 2.25 22 −56 −60

Network C Anterior cingulate cortex, supplementary motor cortex and middle and inferior frontal gyrus 19,616 4.24 10 −4 44
Precuneous, superior parietal lobule, lateral occipital cortex, posterior cingulate cortex, postcentral gyrus 4747 4.06 −10 −62 48
Cerebellum 2156 3.97 2 −58 −22
Superior and middle temporal gyrus 649 2.93 42 −28 0

Network D Hippocampus, parahippocampal gyrus, cerebellum, pallidum and planum polare 16,112 6.66 −22 −24 −14
Postcentral gyrus and precentral gyrus, superior parietal lobule, angular gyrus and supramarginal gyrus 1012 3.91 −30 −28 50
Posterior and anterior cingulate gyrus, supplementary motor cortex 881 3.46 4 −26 38
Insular cortex, caudate nucleus, frontal orbital cortex 504 3.88 32 24 −4

Network E Intracalcarine cortex, precuneous, cuneal cortex, lateral occipital cortex and lingual gyrus 11,288 6.76 12 −64 8
Frontal medial cortex, paracingulate cortex and subcallosal cortex 833 3.26 10 52 −6
Frontal operculum cortex 595 3.34 −38 26 8
Postcentral gyrus and precentral gyrus 439 3.42 −10 −34 80
Cerebellum 438 3.37 26 −48 −42
Thalamus 196 3.2 −14 −28 −4

Network F Middle and inferior temporal gyrus, temporal fusiform cortex 7272 5.48 54 −10 −22
Lingual gyrus, posterior cingulate gyrus, intracalcarine cortex and occipital fusiform gyrus 3391 4.4 −14 −50 0
Frontal operculum cortex, precentral gyrus, parietal operculum cortex and frontal orbital cortex 2432 3.86 −30 22 14
Superior frontal gyrus and paracingulate gyrus 662 4.08 16 32 62
Cerebellum 145 2.54 36 −62 −38

Network G Cerebellum 4555 9.34 −40 −66 −36
Postcentral gyrus 182 3.33 70 −4 12

Network H Lateral occipital cortex, central opercular cortex, planum polare, inferior frontal gyrus, and supramarginal gyrus 10,329 4.18 −54 −66 24
Superior and middle temporal gyrus and angular gyrus 8011 4.57 44 −26 0
Frontal medial cortex, paracingulate gyrus, frontal operculum cortex and insular cortex 7214 5.32 −14 48 −16
Precuneous and cingulate cortex 1721 3.62 −10 −40 44
Cerebellum 885 2.91 4 −90 −34

Network I Precuneous 3337 3.58 −10 −52 56
Precentral gyrus, Herschl's gyrus and central opercular cortex 2608 3.87 52 0 30
Frontal orbital cortex 2593 5.87 32 28 −26
Postcentral gyrus 2518 3.99 −46 −34 50
Superior parietal lobule 2289 4.65 40 −38 52
Cerebellum 620 3.59 −26 −54 −42

Network J Lingual gyrus, cerebellum, parahippocampal gyrus, and occipital fusiform gyrus 5661 5.88 2 −78 −18
Supramarginal gyrus, opercular cortex and postcentral gyrus 4074 4.13 68 −36 38
Middle and inferior temporal gyrus 2459 4.28 −48 −20 −10
Superior and middle frontal gyrus 1629 4.29 44 38 32
Paracingulate gyrus 591 3.59 −14 42 16

Each anatomical network is divided into brain clusters, using a cluster tool integrated in FSL. Voxel size and MNI (Montreal Neurological Institute)-152 standard space image x-, y- and z-
coordinates of each cluster are presented. Max T is the maximum T statistic of each local maximum. Structures displayed in bold are the largest structures identified in each anatomical
network. Anatomical brain structures were identified using the Harvard-Oxford Atlas implemented in FSL.
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repeat length is associated more widespread atrophy (Gómez-Ansón et
al., 2009; Penney et al., 1997; Ruocco et al., 2008).

In general, grey matter structural covariance networks showed to
spatially overlap with resting-state functional connectivity networks
(Seeley et al., 2009; Segall et al., 2012). It is suggested that the topolog-
ical organization of anatomical networks reflect the pattern of function-
al organization of different networks, thus, regions that co-vary in grey
matter volume may also be part of the same functional network
(Montembeault et al., 2012; Seeley et al., 2009). The identified anatom-
ical networks in our study also show similarity with resting state func-
tional connectivity networks found in early HD patients in previous
studies (Dumas et al., 2013; Poudel et al., 2014; Wolf et al., 2014).

Visual comparison of our identified networks with results from pre-
vious functional neuroimaging studies in HD show spatial overlap be-
tween the caudate nucleus network (B) and the functional striatal
network, the anterior cingulate cortex network (C) and the executive
control network, the hippocampal network (D) and the frontoparietal
network, the intracalcarine network (E) and the functional visuomotor
network, the temporal gyrus network and the functionalmedial tempo-
ral network, the lateral occipital network (H) and the default mode net-
work, the precuneous network (I) and the sensorimotor network, the
lingual gyrus network (J) and the auditory network, and the structural
cerebellar networks (A and G) and the functional cerebellar network.
Yet, more studies are needed to gain more knowledge about the rela-
tionship between structural networks and functional connectivity in
HD.

To investigate whether identifying structural covariance networks is
an effective approach to examine grey matter changes in HD, regional
voxel-based analysis was additionally performed on the same data.

In pre-HD, previous voxel-based analysis studies revealed volume
loss in the prefrontal cortex (Hobbs et al., 2010), insular cortex and pa-
rietal lobe (Gómez-Ansón et al., 2009). This is consistent with our re-
gional analysis that showed limited cortical volume loss in pre-HD,
located in the insular cortex, planum temporale, parietal operculum cor-
tex and posterior supramarginal gyrus. However, our network-based
analysis revealed that changes were also located in other brain regions
like the precuneous, cingulate and sensorimotor cortices, and the
parahippocampal gyrus. These results are consistent with previous
studies on cortical thinning in early clinical disease stages (Rosas et al.,
2005, 2008). For the voxel-based regions that showed volume loss in
HD gene carriers, mean grey matter density values were calculated
and correlated with scores of clinical assessments. We found significant
correlations between grey matter density values and motor, functional
and cognitive assessments, as well as CAG repeat length and disease



Table 4
Differences per anatomical network between controls compared to premanifest gene carriers and HD patients.

Network Unstandardized B (95% CI) Standardized β R2 p-value

A—Cerebellum Premanifest
Manifest

−0.003 (−0.010 to 0.003)
−0.005 (−0.011 to 0.001)

−0.148
−0.227

0.141
0.153

0.269
0.079

B—Caudate nucleus Premanifest
Manifest

−0.009 (−0.015 to −0.003)
−0.023 (−0.029 to −0.018)

−0.402
−0.718

0.174
0.551

0.003
b0.001

C—Anterior cingulate cortex Premanifest
Manifest

−0.001 (−0.009 to 0.007)
−0.001 (−0.008 to 0.006)

−0.028
−0.035

0.274
0.185

0.816
0.778

D—Hippocampus Premanifest
Manifest

−0.008 (−0.014 to −0.001)
−0.009 (−0.014 to −0.004)

−0.300
−0.376

0.168
0.330

0.023
0.001

E—Intracalcarine cortex Premanifest
Manifest

−0.004 (−0.011 to 0.002)
−0.007 (−0.013 to −0.001)

−0.177
−0.281

0.143
0.118

0.180
0.032

F—Temporal gyrus Premanifest
Manifest

−0.001 (−0.007 to 0.004)
−0.002 (−0.008 to 0.005)

−0.066
−0.068

0.130
0.077

0.616
0.604

G—Cerebellum Premanifest
Manifest

0.002 (−0.004 to 0.009)
0.003 (−0.003 to 0.009)

0.094
0.121

0.072
0.085

0.492
0.357

H—Lateral occipital cortex Premanifest
Manifest

0.000 (−0.007 to 0.007)
−0.001 (−0.008 to 0.006)

−0.017
−0.044

0.034
0.015

0.902
0.745

I—Precuneous Premanifest
Manifest

0.003 (−0.004 to 0.010)
−0.005 (−0.011 to 0.001)

0.127
−0.216

0.033
0.057

0.361
0.110

J—Lingual gyrus Premanifest
Manifest

−0.003 (−0.010 to 0.005)
−0.004 (−0.010 to 0.002)

−0.105
−0.181

0.078
0.145

0.446
0.155

β = standardized Beta coefficient. Controls were compared to pre-HD and HD patients with adjustment for age and gender influences. Significant p-values (uncorrected p b 0.05) are
displayed in bold.
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burden. Comparable significant correlations with these clinical assess-
ments were also found in the caudate nucleus network, suggesting
that network-based analysis is also sensitive in detecting correlations
with clinical measures. Using univariate VBM, however, these correla-
tions are based on voxel-wise differences in greymatter density. There-
fore, it is difficult to directly compare the sensitivity of the univariate
VBMapproachwith amultivariate network approach, based on the cor-
relation with clinical assessments.

Nevertheless, based on the current results and previous reports, net-
work-based analyses using structural covariance networkwith spatially
independent regions might be a sensitive method in detecting early
grey matter changes in HD as network integrity can change regardless
of atrophy. Also, cognitive dysfunctions might not only be caused by lo-
calized brain damage, but of a impaired brain network as well
(Hafkemeijer et al., 2016).

Still, more studies are needed to determine if structural covariance
networks are reliable to be used as a standardizedmethod for greymat-
ter changes in HD.
4.1. Strengths and limitations

The strength of this current study lies in detecting whole brain
networks by using the anatomical relationship between spatially
Table 5
Correlations between changes in structural covariance networks and clinical assessments.

Network B
Caudate nucleus network

Network D Hippoc
network

β p-value β

UHDRS-TMS −0.519 b0.001 0.057
TFC 0.329 0.002 0.019
SDMT 0.544 b0.001 0.152
Stroop word reading 0.410 0.001 0.171
TMT −0.420 0.001 −0.109
MMSE 0.341 0.008 0.036
CAG repeat length −0.578 b0.001 −0.012
Disease burden −0.474 b0.001 −0.034

Significant correlations of motor, functional and cognitive assessments and genetic burdenwith
carriers are presented.
Abbreviations: ns = not significant; β = standardized Beta coefficient; UHDRS-TMS = Unifie
score; SDMT = Symbol Digit Modality Test; TMT = Trail Making Test; MMSE = Mini Me
age × (CAG length − 35.5) by Penney et al. (1997).
distributed brain regions as covariance networks without using pre-de-
fined regions of interest or analyzing voxels separately.

However, this study has a cross-sectional design, so a longitudinal
follow-up study is preferred to further assess the relationship with dis-
ease progression. Additionally, larger sample sizes might provide more
information about associations with clinical assessments. Another limi-
tation of this study is the number of components or networks used in
our analysis, which was chosen arbitrary (Cole et al., 2010). When
choosing the number of components it is important to take into account
that the sensitivity to detect regional effects can be affected and thus
might influence outcomes (Hafkemeijer et al., 2014).
5. Conclusions

This study identified spatially independent grey matter regions that
form different structural networks based on the co-variance of grey
matter in healthy controls, pre-HD and HD patients. Our findings sug-
gest that changes in greymatter volume arewidespread, involve several
brain regions, and are already detectable in the premanifest stage of the
disease. Potentially, structural covariance networks might develop into
an early biomarker for identifying grey matter changes in HD that
could be used in future clinical trials. Additionally, it is important to un-
derstand large-scale anatomical networks in a neurodegenerative
ampus Network E
Visuomotor network

Voxel-based grey matter
volume changes

p-value β p-value β p-value

ns −0.160 ns −0.525 b0.001
ns 0.272 0.037 0.437 b0.001
ns 0.151 ns −0.520 b0.001
ns 0.047 ns 0.330 0.003
ns −0.258 0.049 −0.520 b0.001
ns −0.025 ns 0.348 0.002
ns −0.294 ns −0.564 b0.001
ns −0.263 0.046 −0.452 b0.001

structural covariance networks and voxel-based greymatter volume changes in HD gene

d Huntington's Disease Rating Scale-Total Motor Score; TFC = Total Functional Capacity
ntal State Examination; CAG = cytosine, adenine, guanine; disease burden score =
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disorder like HD, as thismight provide new insights into underlying cor-
tical pathophysiological processes, which are still poorly understood.
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