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Abstract There is now general agreement that osteoarthritis
(OA) involves all structures in the affected joint, culminating
in the degradation of the articular cartilage. It is appropriate to
focus particularly on the subchondral bone because character-
istic changes occur in this tissue with disease progression,
either in parallel, or contributing to, the loss of cartilage
volume and quality. Changes in both the articular cartilage
and the subchondral bone are mediated by the cells in these
two compartments, chondrocytes and cells of the osteoblast
lineage, respectively, whose primary roles are to maintain the
integrity and function of these tissues. In addition, altered rates
of bone remodeling across the disease process are due to
increased or decreased osteoclastic bone resorption. In the
altered mechanical and biochemical environment of a progres-
sively diseased joint, the cells function differently and show a
different profile of gene expression, suggesting direct effects
of these external influences. There is also ex vivo and in vitro
evidence of chemical crosstalk between the cells in cartilage
and subchondral bone, suggesting an interdependence of
events in the two compartments and therefore indirect effects
of, for example, altered loading of the joint. It is ultimately
these cellular changes that explain the altered morphology of
the cartilage and subchondral bone. With respect to crosstalk
between the cells in cartilage and bone, there is evidence that
small molecules can transit between these tissues. For larger
molecules, such as inflammatory mediators, this is an intrigu-
ing possibility but remains to be demonstrated. The cellular
changes during the progression of OA almost certainly need to
be considered in a temporal and spatial manner, since it is
important when and where observations are made in either

human disease or animal models of OA. Until recently, com-
parisons have been made with the assumption, for example,
that the subchondral bone is behaviorally uniform, but this is
not the case in OA, where regional differences of the bone are
evident using magnetic resonance imaging (MRI).
Nevertheless, an appreciation of the altered cell function dur-
ing the progression of OAwill identify new disease modifying
targets. If, indeed, the cartilage and subchondral bone behave
as an interconnected functional unit, normalization of cell
behavior in one compartment may have benefits in both
tissues.
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Introduction

There is now general agreement that osteoarthritis (OA) in-
volves all structures in the affected joint, culminating in the
degradation of the articular cartilage. This review focuses on
cartilage and the underlying (subchondral) bone, since these
compartments are intimately located (Fig. 1) and characteristic
changes occur in parallel in these tissues across disease pro-
gression. Changes in both the articular cartilage and the
subchondral bone are mediated by the cells in these two
compartments: chondrocytes in the cartilage and osteoclasts,
osteoblasts and osteocytes in the bone, whose primary roles
are to maintain the integrity and function of these tissues. In
response to the altered mechanical and biochemical environ-
ment of a progressively diseased joint, these cells function
differently and show a different profile of gene expression,
suggesting direct effects of these external influences. There is
also ex vivo and in vitro evidence of chemical crosstalk
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between the cells in cartilage and subchondral bone, suggest-
ing an interdependence of events in the two compartments. It
is ultimately these cellular changes that explain the altered
morphology of the cartilage and subchondral bone. An appre-
ciation of the altered cell function during the progression of
OA is likely to identify new targets for disease modification.
If, indeed, the cartilage and subchondral bone behave as a
functional unit, normalization of cell behavior in one com-
partment may have benefits in both tissues.

Chondrocytes in OA

Articular cartilage and the disease processes that lead to its
degeneration in OA have been intensively studied and exten-
sively reviewed [1]. Articular chondrocytes are the only cell
type resident in articular cartilage, and comprise a mere 2 %–
5 % of its volume, which otherwise consists of a hydrated
extracellular matrix of collagens (predominantly type II) and
proteoglycans (importantly aggrecan). The role of the
chondrocytes is to maintain the integrity of the cartilage by

repairing damage due to minor or acute insults to the matrix.
However, in the progression of OA, in which the biomechan-
ical and biochemical environment of the cartilage is changed,
characteristic changes also occur in the behavior of the
chondrocytes. As recently reviewed [2], OA chondrocytes
appear to resume the default differentiation pathway that is
somehow blocked in articular cartilage, which leads to prolif-
eration, hypertrophy, and apoptosis, as seen in the growth
plate [3]. This more catabolic phenotype is characterized by
decreased synthesis of the extracellular matrix and increased
production of degradative enzymes, such as the matrix metal-
loproteinases (MMPs) and the aggrecanases. The repertoire of
proteins produced by the cells changes toward that of hyper-
trophic chondrocytes, with prominent expression of type X
collagen and MMP13, in turn driven by a reprogramming of
the transcriptional machinery of the cell [2].

Although the initiating factors in OA have not been iden-
tified, mechanical damage is thought to interact with the
effects of aging, in a genotype-dependent manner, to trigger
local inflammation in the joint. Microarray analysis of adult
human articular cartilage explants found that mechanical in-
jury significantly regulated the expression of a large number
of genes, collectively consistent with a reactivation of mor-
phogenic pathways [4]. Foremost among the genes upregulat-
ed by injury was WNT16, which was barely detectable in
preserved areas of cartilage in OA joints but was highly
upregulated in areas of cartilage with moderate to severe
cartilage damage. Interestingly, the wingless MMTV integra-
tion (Wnt) antagonist, sclerostin, was highly expressed only in
focal areas of cartilage damage in sheep and murine models of
OA, as well as in end-stage human OA cartilage [5]. In the
same study, the gene encoding sclerostin, SOST, was also
upregulated by interleukin (IL)-1 in articular chondrocytes.
The addition of recombinant sclerostin protein to explant
cultures inhibited the aggrecanase-inducing effects of IL-1,
suggesting an anticatabolic role for sclerostin in OA cartilage
[5].

Also suggesting an important role for the Wnt pathway in
OA cartilage, over-expression of the Wnt antagonist, dikkopf
(DKK)-1, protected against cartilage destruction in an animal
model of OA [6•]. Further, Wnt-3A, which activates the Wnt
pathway, induced the expression of MMP13 and a disintegrin
and metalloproteinase with thrombospondin motifs
(ADAMTS)-4 in primary chondrocyte cultures. IL-1 and tu-
mor necrosis factor (TNF)-α have long been known to pro-
duce a catabolic phenotype in articular chondrocytes
(reviewed in [7]) and may do so via the Wnt pathway. In an
analogous tissue to articular cartilage, the intervertebral
disc, TNF-α increased the expression of β-catenin and
MMP13, and significantly inhibited the synthesis of
type II collagen and proteoglycan, an effect that could
be reversed by DKK1 [8]. While inflammatory cyto-
kines have an essential role in the repair of all tissues,

Fig. 1 Schematic representation of an articular joint and the spatial
relationship between chondrocytes in the hyaline and calcified cartilage
and cells in the subchondral bone and bone marrow. Also depicted is the
influence of repeated mechanical load and the response of chondrocytes
with respect to production of matrix modifying factors such as MMPs
(curved arrows), the response of load-sensing osteocytes with respect to
the production of mediators such as prostaglandins and nitric oxide [12]
(curved arrows), and the possibility of bidirectional communication be-
tween the cartilage and bone by the production of soluble mediators
(double headed arrow). Not depicted are the possible additional influ-
ences of osteoblasts and osteoclasts involved in remodeling the
subchondral spongiosa
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chronic exposure seems to compromise repair. In carti-
lage, persistent inflammation increases the remodeling rate of
the extracellular matrix, leading to deficient matrix and poor
quality cartilage. The links between biomechanical disruption,
inflammation, and protease production by chondrocytes was
demonstrated in a surgical model of mouse OA, in which
genes such as IL-1, IL-6, MMP3, and ADAMTS 1, 4, and 5
were all upregulated after surgery. The expression of these
genes was shown to be highly mechanosensitive because it
was prevented by immobilization of the joint at the time of
surgery [9].

Thus, although mechanical load is necessary for
healthy cartilage, and limb immobilization leads to car-
tilage loss [10], load induced injury or chronic
overloading of the joint can lead to changes in chon-
drocyte behavior that have long term consequences for
matrix integrity. The question posed below is whether the
chondrocyte reprogramming is at least partly due to signals
from the subchondral bone, or vice versa, whether chondro-
cyte signals can influence cells in the bone.

Osteoblasts in OA

Evidence from animal models of OA and from human bone
samples obtained at surgery indicates altered bone remodeling
in this disease. At the cellular level, remodeling is achieved by
the actions of osteoclasts, which resorb bone, and osteoblasts,
which are the bone forming cells. The activities of both of
these cell types is regulated by osteocytes, embedded within
the bone matrix [11, 12]. Overloading of the joints in OA
seems to correspond with increased microdamage and
microfracture in subchondral bone in the overloaded areas
[13–15]. While it has been proposed that microdamage of
bone protects articular cartilage due to enhanced energy ab-
sorption [14], it also promotes bone remodeling. Osteocytes
detect damage of the mineralized bone matrix and direct its
repair by initiating targeted osteoclastic resorption of the
affected bone [16].

Recent evidence suggests that osteocytes produce the os-
teoclast differentiating cytokine, receptor activator of nuclear
factor κB ligand (RANKL), in mature bone [17]. As recently
discussed by Burr and Gallant [18••] the rate of bone remod-
eling changes across the course of the disease. Thus, increased
remodeling, accompanied with increased vascularity, occurs
in the subchondral bone in early OA, while late stage disease
is characterized by reduced bone resorption with a bias toward
bone formation. The changes in bone remodeling also vary
spatially within the joint, for example medial versus lateral in
the knee, but also more distally to the affected joint [19, 20].
Altered remodeling leads to altered bone structure, with in-
creased BV/TV in cancellous bone and the formation of
osteophytes [19, 21].

An increased trabecular number, decreased trabecular spac-
ing, and reduced hardness of the bone in OA [22], due to
decreased mineralization [23], characterize the subchondral
bone, especially in zones underlying cartilage degeneration.
Discrete zones of subchondral bone that can be imaged using
magnetic resonance (MR), termed bone marrow lesions
(BML), are frequently observed in both established OA and
in early OA, but rarely in symptom free individuals [24, 25].
BMLs arise in regions of predicted high loading and contain
abnormal bone, with areas of osteocyte death, areas of bone
sclerosis with reduced mineral density [26]. Longitudinal
studies have shown that BMLs occur adjacent to sites of
current or future cartilage degeneration and are predictive of
structural deterioration in knee OA [26–29] and future joint
replacement [30].

The temporal and spatial changes in bone structure in OA
are the result of altered cellular activity. The causes of this
altered behavior are not yet known but are likely to be several.
As stated, overloading of the joint can lead to an accumulation
of damage in the bone matrix [31], which the cells attempt to
resolve, and which is observed as increased remodeling in the
bone. There is also some evidence for changes in perfusion of
the bone, perhaps with episodes of ischemia [32], which could
lead to osteocyte death followed by increased or decreased
remodeling depending on whether blood supply is restored.
What has been shown is that osteoblasts derived from OA
bone display an altered phenotype and that gene expression in
OA bone is different from that in either osteoporotic or normal
bone.

For example, alkaline phosphatase and osteocalcin levels
were found to be elevated in OA osteoblasts compared with
normal osteoblasts, whereas osteopontin levels were similar
[33]. In addition, osteoblasts from OA bone showed disturbed
mineralization compared with control cells, with dramatically
variable calcium: phosphate ratios compared with the value of
approximately 1.6 for control osteoblasts and normal bone
[34].

In addition, Couchourel et al [33] reported reduced miner-
alization by OA osteoblasts, accompanied by an elevated
COL1A1:COL1A2 mRNA ratio, similar to the differential
expression of these genes in OA bone [35]. Interestingly,
OA osteoblasts produce more TGFβ1 than normal osteo-
blasts, and inhibiting TGFβ1 in OA osteoblasts corrected
the abnormal COL1A1:COL1A2 ratio and increased cell min-
eralization [35]. The increased production of transforming
growth factor (TGF) β1 by OA cells induced increased levels
of DKK-2 and silencing of either TGFβ or DKK2 in these
cells was found to normalize the OA mineralization pheno-
type [36]. Massicotte et al [37] reported two subgroups of
osteoblasts derived from OA subchondral bone, based on
production of IL-6 and prostaglandin E2, while TGFβ1 levels
were increased in all osteoarthritic osteoblasts compared with
normal. Kumarasinghe et al [38] performed analysis of gene
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expression in primary osteoblasts derived from OA and con-
trol femoral bone across differentiation. These studies showed
that the dysregulated expression of TWIST1, TGFβ1, and
SMAD3 mRNA observed previously in OA bone is also
present in OA osteoblasts when these cells are cultured
ex vivo, and proposed that at least part of the etiology of OA
is due to altered intrinsic properties of the osteoblasts [34]. A
recent report confirmed the high concentrations of TGFβ1 in
subchondral bone in human and mouse OA, and went on to
show that transgenic overexpression of TGFβ1 in the
subchondral bone actually induced OA [39••]. Significantly,
inhibition of TGFβ specifically in the subchondral bone im-
proved the bone architecture in the anterior cruciate ligament
transection mouse model of OA and attenuated the degenera-
tion of articular cartilage and the percentage of chondrocytes
in the cartilage expressing MMP13 and type X collagen.
These positive effects of TGFβ1 inhibition were not seen with
systemic approaches to inhibit TGFβ activity, since TGFβ is
required for cartilage homeostasis and the systemic, but not
targeted, TGFβ inhibition blocked TGFβ signaling in articu-
lar cartilage. The authors therefore concluded that high con-
centrations of TGFβ in the subchondral bone induced abnor-
mal bone formation and the development of OA [39••]. The
above comments are generalities because no data are available
regarding the behavior of osteoblast-lineage across the course
of OA or, in any systematic way, from different zones in a
diseased joint.

Crosstalk Between Chondrocytes and Osteoblasts in OA

It is possible that chondrocytes and cells of the bone are
responding independently to the same environmental cues,
which is exhibited in an altered cell phenotype in OA.
Alternatively, cellular changes in one or both compartments
may influence cells in the other compartment. There is mount-
ing evidence, both ex vivo and in vivo, that chondrocytes and
osteoblasts are able to influence each other. For example, in
the well-established rat model of OA, in which monosodium
iodoacetate (MIA) is injected intra-articularly, it is the carti-
lage that is initially exposed to the drug. However, the model
shows significant bone loss after only 2 weeks, followed later
by increased trabecular thickness and the presence of
subchondral bone sclerosis, cysts, and osteophytes, in parallel
with cartilage degradation [40•]. Conversely, over-expression
of the EPHB4 receptor specifically in osteoblasts and, there-
fore, subchondral bone, exerted a protective effect against OA
in mice, induced by medial meniscus destabilization [41•].
Since the subchondral bone was also preserved in the trans-
genic animals, there are potentially mechanical as well as
biochemical explanations for this finding, which nonetheless
demonstrates the interdependence of the two tissue
compartments.

There is good evidence that cartilage loss occurs in the
same regions of the joint as the changes in the subchondral
bone [42]. It is, therefore, perhaps not surprising that in animal
models of OA, applying treatments that are thought to specif-
ically target the subchondral bone can ameliorate or prevent
disease progression. For example, in rat models of knee OA,
the bisphosphonate, alendronate, suppressed both
subchondral bone resorption and the development of OA in
the knee joint [43]. Similarly, calcitonin reduced the levels of
circulating bone turnover markers and the severity of OA
lesions dog models of OA [44, 45]. Systemic injection of
osteoprotegerin (OPG), to block RANKL-mediated bone re-
modeling in a mouse menisectomy model of OA, increased
bone volume in the operated and nonoperated knee bones, as
would be expected, but also dramatically protected from the
meniscectomy-related OA [46]. OPG also significantly re-
duced ADAMTS-4 and ADAMTS-5 expression in the artic-
ular chondrocytes following meniscectomy, although not to
control levels. In a similar mouse model, pamidronate dramat-
ically preserved the bone mass and reduced the OARSI score,
at the same time almost normalizing the expression of
ADAMTS-4 and ADAMTS-5 in the overlying joint cartilage
[47]. In a human study, strontium ranelate, which is thought to
act on bone to reduce turnover, significantly reduced CTX-II,
a marker of cartilage degradation, in subjects with a history of
OA [48].

There is accumulating ex vivo and in vitro evidence that
events in the subchondral bone have a direct effect on the
overlying cartilage. Amin et al [49] reported on chondrocyte
survival in bovine cartilage explants in culture, which includ-
ed or excluded the underlying subchondral bone. It was found
that excision of subchondral bone from articular cartilage
resulted in an increase in chondrocyte death at 7 days, mainly
in the superficial zone of the cartilage. However, the presence
of the excised subchondral bone in the culture medium abro-
gated this increase in chondrocyte death, most likely due to
soluble mediator(s) released from the subchondral bone.
Sanchez et al [50] described a coculture system, in which
osteoblasts derived, respectively, from ‘sclerotic’ or
‘nonsclerotic’ regions of human subchondral bone in OAwere
separated by a membrane from chondrocytes in alginate
beads. Clear evidence was presented for cross-talk between
the cells, with chondrocytes cultured in the presence of ‘scle-
rotic’ osteoblasts, but not ‘nonsclerotic’ osteoblasts,
exhibiting reduced production of aggrecan and increased ex-
pression of MMP3 and MMP13. This influence was magni-
fied when the osteoblasts were pretreated with inflammatory
mediators IL-1, IL-6, or oncostatin M (OSM). These data
suggest the possibility at least of disease exacerbating changes
in chondrocytes proximal to phenotypically OA osteoblasts.
The authors further speculate that the IL-1, IL-6, or OSM,
which are overproduced by OA chondrocytes, could create a
feedback loop by acting on nearby osteoblasts. Although
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osteocytes are the most abundant cell type in bone and are the
primary mechanosensing cell type [11, 12], and interactions
between chondrocytes and osteocytes are therefore likely of
primary importance, very little has been reported concerning
this interaction. In one such study, however, Priam et al [51••]
conducted experiments in which mouse calvarial osteoblast/
osteocytes were subjected to cyclic compression and mouse
articular chondrocytes were exposed to the osteoblast condi-
tioned medium. Conditioned medium from the compressed
cells caused a dramatic up-regulation of MMP3 and MMP13
expression in the chondrocytes and down-regulated expres-
sion of aggrecan and type II collagen. The study identified 14-
3-3ε as a soluble mediator for communication between the
osteoblasts/osteocytes and chondrocytes [51••].

The above experiments demonstrate the potential for mo-
lecular crosstalk between osteoblasts/osteocytes and
chondrocytes in vivo but it has long been thought that there
was little possibility of communication between subchondral
bone and articular cartilage. However, Imhof et al [52] de-
scribed the dense subchondral vasculature in close proximity
to the cartilage and the micro-channels that penetrate the
subchondral mineralization zone and permit communication
between the bone and the cartilage. Imhof et al [52] have
further claimed that more than 50 % of the glucose, oxygen,
and water requirements of cartilage are provided by perfusion
from the subchondral vessels. In support of this, experimen-
tally induced hypoxia of the femoral head led to cell death in
the bony epiphysis and in the deep layer of the overlying
cartilage [53]. Indeed, perfusion abnormalities have been
identified in OA, in particular in zones of the subchondral
bone identified by MR imaging as bone marrow ‘edema’ or
bone marrow lesions [54].

As discussed above, these zones underlie regions of de-
graded cartilage or predict cartilage degradation [27–29]. In
elegant experiments using fluorescent dyes, Pan et al [55]
showed the diffusion of these small molecules between the
bone marrow and the articular space. These observations
suggest the possibility of direct signaling between
subchondral bone and articular cartilage, at least for small
molecules. The authors further suggested that the two com-
partments form a functional unit both mechanically and bio-
chemically, which may play a role in the maintenance and
degeneration of the joint. These results were consistent with
several other observations. The ultrastructure of the interface
between the subchondral bone and calcified cartilage provides
numerous vascular (Haversian) canals, by which these tissues
could communicate [56].

A more recent study of the human chondro-osseous junc-
tion revealed a hitherto unappreciated complexity [57]. For
example, uncalcified cartilage was sometimes seen dipping
through the calcified cartilage into bone and marrow spaces.
The authors commented that this proximity of hyaline carti-
lage and marrow spaces could provide a molecular diffusion

pathway, which may have nutritional, metabolic, and biome-
chanical roles. In addition, since this interface is profoundly
affected by OA, these areas could enable trafficking of hu-
moral mediators between these tissues (Fig. 1). Finally, a large
increase in subchondral plate porosity was recently shown
during disease development in a mouse model of OA [58],
and it was again suggested that this may enhance mutual
interaction between the bone and cartilage compartments. It
remains to be formally demonstrated that cytokine-sized mol-
ecules can traverse between bone and cartilage in either
healthy or diseased joints. However, larger molecules than
previously thought are able to traverse osteocyte canaliculi,
and this transport is increased by bone loading [59]. Similar
principles may apply to transport through the porosity linking
these compartments, which potentially includes the vascula-
ture, the canalicular porosity and the pores in the subchondral
bone plate and the calcified cartilage. With respect to the
cartilage, diffusion of cell mediators has been well demon-
strated. For example, insulin-like growth factor (IGF) has
important roles in cartilage but is produced in low amounts
only and is largely transported into cartilage from the circula-
tion [60•]. This transport occurs partly by diffusion across a
concentration gradient but, in addition, cyclic loading has
been shown to enhance the transport of this relatively large
molecule by advection [61].

Conclusions

OA is caused by factors, some known and some unknown,
which result in an altered phenotype of osteoblasts and oste-
ocytes in bone and chondrocytes in cartilage. There is much
interest as to whether there is crosstalk between cells in these
compartments, since there is now good evidence that these
cells can signal in vitro in ways that can promote chondrocyte
catabolism. There is also good evidence that small molecules
can traverse between these tissue compartments in situ but this
evidence is lacking for larger cell mediators. The importance
of this issue is that directing treatment to either compartment
may provide a circuit breaker in OA to prevent or slow the
progression of this condition.
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