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A set of composite, non‑redundant 
EEG measures of NREM sleep 
based on the power law scaling 
of the Fourier spectrum
Róbert Bódizs1,2*, Orsolya Szalárdy1,3, Csenge Horváth1, Péter P. Ujma1,2, Ferenc Gombos4,5, 
Péter Simor1,6,7, Adrián Pótári5,8, Marcel Zeising9,10, Axel Steiger9 & Martin Dresler11

Features of sleep were shown to reflect aging, typical sex differences and cognitive abilities of 
humans. However, these measures are characterized by redundancy and arbitrariness. Our present 
approach relies on the assumptions that the spontaneous human brain activity as reflected by 
the scalp-derived electroencephalogram (EEG) during non-rapid eye movement (NREM) sleep is 
characterized by arrhythmic, scale-free properties and is based on the power law scaling of the Fourier 
spectra with the additional consideration of the rhythmic, oscillatory waves at specific frequencies, 
including sleep spindles. Measures derived are the spectral intercept and slope, as well as the maximal 
spectral peak amplitude and frequency in the sleep spindle range, effectively reducing 191 spectral 
measures to 4, which were efficient in characterizing known age-effects, sex-differences and cognitive 
correlates of sleep EEG. Future clinical and basic studies are supposed to be significantly empowered 
by the efficient data reduction provided by our approach.

The frequency characteristics of sleep-dependent neuronal oscillations as recorded by scalp EEG are increasingly 
recognized as potent markers of aging1–3, health and disease4, typical and atypical development and maturation5,6, 
as well as of neurocognitive features of high practical relevance7–9. However, many of these studies are suffering 
from increased susceptibility to Type I error as a result of an inherently increased level of “researcher degrees 
of freedom”. That is, EEG data can be analysed in almost infinite different ways, by focusing on one or another 
specific electrophysiological phenomenon9,10. Instead of focusing on multiple frequencies or phenomena, our 
aim is to provide an overall characterization of the broadband NREM sleep EEG. Our data-driven approach is 
based on the statistical properties of the signal, in order to assess the intercept and the slope, as well as the most 
prominent/important spectral peak of the Fourier spectrum.

Evidence suggests the linear relationship between the logarithmic amplitude or power of EEG and the loga-
rithm of frequency11–13. Such power law scaling is a general, state-independent feature of cortical EEG, suggest-
ing that the Fourier spectrum can be reliably described by an approximation of the parameters of the following 
function:

where P is power (P ≥ 0) as a function of frequency (0 ≤ f ≤ fNyquist), C is the constant (or the intercept) expressing 
the overall, frequency-independent EEG amplitude (C > 0), whereas α is the spectral exponent indicating the 
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decay rate (slope) of power as a function of frequency. Reported values for the spectral exponent are − 4 < α <  − 1, 
with lower values indicating lower arousal/(deeper) sleep14,15,18. That is, instead of providing 191 values for the 
power spectra of 0.5–48 Hz activity in bins of 0.25 Hz, the background slope of the spectrum of scale-free activ-
ity can be characterized just by two parameters (C and α). Most notably, if reliable, this function suggests that 
classical bandwise or binwise spectral analyses are not considering the frequency-determined nature of power 
values when applying statistical tests focusing on specific oscillatory phenomena. Similar views were expressed 
and successfully implemented for the analysis of various time series characterizing the power law scaling of brain 
activity in humans, some of them emphasizing the conceptual and methodological aspects12–14,19–23, while others 
focusing on sleep cycle effects, arousal and consciousness15,16,24, but none of them specifically targeting the issue 
of interindividual differences. In addition, available reports do not consider the constant (C) or the intercept as 
a variable of interest in describing sleep–wake EEG features.

Besides the spectral slope and the constant, there are further specific features of the EEG spectrum, known 
as spectral peaks12,19, which are upward deflections in the decreasing power law trend described by function (1) 
above. Peaks reflect oscillatory activities of specific frequencies25, which might prevent the reliable estimation of 
α if they are not considered24,26. In order to deliberately describe the power spectrum by taking into account its 
prominent peaks, we suggest the inclusion of a peak power function in the formula as follows:

Peak power (PPeak) at frequency f equals 1 if there is no peak and is larger than 1 if there is a spectral peak 
at that frequency. Thus, the number of parameters is increased by considering spectral peaks, but is still lower 
than the values included in the original spectra, as putative “no peak regions” can be compressed in series of all 
ones. It has to be noted, that PPeak(f) is a whitened power measure, because it is characterized by roughly equal 
power along the frequency axis and is thus statistically independent from the spectral slope (α) and intercept 
(C), which constitute the colored-noise or power-law noise part of the spectrum, characterized by an exponen-
tial decrease of power with increasing frequencies (Fig. 1). Although it is known that most subjects might have 
several peaks in their NREM sleep EEG spectra and the peak that is greatest can vary between individuals and 
recording locations, in the following we only consider the maximal peak in the 9–18 Hz range, emerging at a 
specific fmaxPeak frequency, with an amplitude exceeding all other potential peak amplitudes (PPeak(fmaxPeak) > PPeak(f) 
for any 9 < f < 18). No multiple peaks are analysed in this report.

As a proof of concept, we apply these measures on a large sleep EEG dataset with previously demonstrated 
effects of age, sex, and general intelligence. The issue of individual differences in NREM sleep was not explicitly 
addressed in former reports on spectral parameters of power law scaled sleep EEG15,16, with the exception of a 
report focusing exclusively on whitened spectral peak sizes in the spindle range27. Our intention is to fill this gap 
and broaden the validity of the power law scaling-type of spectral EEG parameters, as well as to provide a set of 
non-redundant measures of individual differences in NREM sleep EEG.

Age was reported to correlate negatively with NREM sleep EEG slow wave activity, but positively with high 
frequency activity in healthy adult subjects28. In addition, steeper spectral slopes of wakefulness and NREM 
sleep-derived EEG were found in young as compared to older subjects11,22.

Thus, we hypothesize (H1) that the slope of the Fast Fourier Transformation (FFT)-based spectrum of NREM 
sleep EEG is characterized by age-dependent flattening (α closer to 0). In addition, aging was shown to be asso-
ciated with decreased sleep spindle activity29,30, thus we hypothesize (H2) a negative correlation between age 
and spectral peak amplitude as measured by PPeak(fmaxPeak) value. In addition to decreased spindle activity, the 
increase in intra-spindle oscillatory frequency (Hz) was shown to be a characteristic feature of aging according 
to some29,31, but not all30 reports. As a consequence, we hypothesize (H3) that maximal spectral peak amplitudes 
in the spindle range emerge at higher fmaxPeak values in aged, as compared to young subjects.

Reported sex differences in NREM and REM sleep EEG indicate higher spectral power in several frequency 
bands in women, as compared to men28,32. Such broad band and state-independent differences suggest a general 
tendency for a higher EEG amplitude in women, due to a contamination with non-neuronal factors, like skull 
thickness and bone mineral density32,33. As a consequence, we hypothesize (H4) that women are characterized by 
higher spectral intercepts, than men (C♀> C♂). Furthermore, we will reanalyze some of the reported sex differ-
ences in sleep spindle density/power, indicating increased sleep spindling in women as compared to men28,32,34,36, 
by relying on whitened spectral peak amplitudes of the spindle range (PPeak(fmaxPeak)), the latter being a measure 
which is independent of overall EEG-amplitude (C).

Based on a largely overlapping dataset, formerly we reported another sex difference in terms of sleep spindle 
frequency: women were shown to be characterized by higher oscillatory frequencies as compared to men36. Thus, 
our explicit intention is to provide convergent validity of the present method, by testing the following hypothesis 
(H5): maximal spectral peaks occur at higher frequencies in women as compared to men (fmaxPeak♀ > fmaxPeak♂).

Intelligence was shown to correlate positively with NREM sleep EEG sleep spindle activity7. Although, a recent 
metaanalysis casts doubt on the sexual dimorphism of this relationship9, the dataset we analyse in our current 
report is characterized by a clear difference among women and men: women were characterized by positive cor-
relation between sleep spindle amplitude/power and IQ, whereas null correlations were reported for men8,36. As 
our current analyses are based on the same dataset, we aim to provide convergent validity of our current method 
by testing the hypothesis (H6): PPeak(fmaxPeak) values of the sleep spindle range (9–18 Hz) correlate positively with 
IQ in women, but not in men. Intelligence was also reported to modulate the relationship between the decrease 
in NREM sleep EEG slow activity associated with aging: participants showing average IQ (AIQ) scores were 
characterized by significant negative correlations regarding age vs. slow wave activity, whereas no such correla-
tions were found in individuals with high IQ (HIQ) in an overlapping sample1. As the original report provided 
overwhelming evidence for an age vs relative delta power correlation as being modulated by IQ range, whereas 
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Figure 1.   The parametrization of non-rapid eye movement (NREM) sleep electroencephalogram (EEG) spectra. (A) 
Hypnogram and steps of the spectral EEG analyses as exemplified in a representative record of a young male volunteer. Grey 
shaded areas represent NREM sleep, which is analysed in the present report. Blue-shaded EEG segments are magnified 4 s long 
epochs, with 2 s overlap and modified with a Hanning window before power spectral analysis via mixed-radix Fast Fourier 
Transformation (FFT). (B) Average spectral power (P) is characterized by a frequency (f)-dependent exponential decay (α), 
as well as by an overall, frequency-independent amplitude multiplier (C) and a peak power multiplier at critical frequencies 
[PPeak(f)]. (C) The natural logarithm of spectral power (P) is a linear function of the natural logarithm of frequency (f), 
characterized by a linear slope α (which is equal with α in panel B) and an intercept (the latter being the natural logarithm of the 
amplitude multiplier, C in panel B). In addition, this linear function has to be summed with the natural logarithm of the peak 
power multiplier [PPeak(f), equal to the same frequency-dependent function in panel B]. Please note that “no peak regions” can 
be compressed in series of all ones, resulting in reduced number of variables as compared to the bins in the original spectra.
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weaker evidence was found for absolute power1, we do not know if this finding reflects the age-dependency of 
slow wave activity per se, or the combined age-dependency of slow wave activity and slow/high activity ratio. 
The former scenario would fit with a null effect for IQ-modulation of age vs spectral slope correlation, whereas 
the latter would lead to an IQ-dependence of age vs spectral slope relationship (H7).

Results
Goodness of fit: Is the logarithm of spectral power a linear function of the logarithm of fre‑
quency?  NREM sleep EEG spectra of 175 healthy subjects (81 females, age range 17–60  years), with a 
maximum of 18 available (artefact-free) common recording locations were included in our analyses. Linears 
were fitted to the equidistant log–log plots of the EEG power spectra below 48 Hz, excluding the 0–2 and the 
6–18 Hz range, both known to be characterized by spectral peaks (slow oscillation and spindles) in NREM sleep 
(Fig. 1, see details in section “Methods”). The sample mean of fitted slopes ( α ) varied between − 2.73 (SD = 0.22) 
and − 2.33 (SD = 0.22) for the frontocentral (Fz) and left posterior temporal (T5) region, respectively. In turn, 
the sample mean of the intercepts ( ln C ) varied between 3.74 (SD = 0.73) and 5.76 (SD = 0.69) for recording 
locations T5 and Fz, respectively (Suppl. table 1). Goodness of fit (R2) of the linear model of the equidistant 2–6 
and 18–48 Hz spectral data varied in the range of 0.8955–0.9997 across subjects and EEG recording locatios. 
The square of the Fisher Z-transformed, averaged and back-transformed Pearson correlations between the fitted 
linear and the spectral data is R2 = 0.9952 (SD = 0.1578).

Here we claim that the spectral slope (α) and the intercept (ln C) carry meaningful information. In order to 
demonstrate that the present method of determining slope and intercept is comparable with existing methods, we 
tested these parameters against the respective outputs of a recently published method termed fitting oscillations 
& one over f (FOOOF)23. Our spectral slopes and intercepts correlated significantly with FOOOF slopes and 
intercepts, respectively. Mean correlation (Fisher-transformed, averaged and back-transformed) over recording 
locations was r = 0.90 for spectral slopes and r = 0.92 for intercepts (see Suppl. Figure 1).

Spectral peaks in the 9–18 Hz range.  Spectral peaks in the alpha/sigma range were determined by a 
combination of the first and the second derivative tests indicating local maxima in mathematical terms (see 
details in section “Methods”). Detected peaks were ranked according to their whitened amplitude (coloured 
noise characterized by the spectral slope (α) and intercept (C) was removed before ranking). At least one peak 
was detected in 81.16–100% of the subjects, depending on recording location (relatively lower values were found 
in the temporal locations T3, and T4, whereas above 90% was the rule for other regions, see details in Suppl. 
Table 2). Spectral peaks with maximal amplitudes in the 9–18 Hz range were found to conform the overall topog-
raphy vs frequency relationship of sleep spindles. That is, anterior spectral peaks were slower than the posterior 
ones (Suppl. Figure 2). The total antero-posterior frequency increase of maximal spectral peaks in the 9–18 Hz 
range (fmaxPeak) equalled 1.99 Hz (sample mean). However, the above change was largely non-continuous along 
the antero-posterior cortical axis, as more than 83% (1.67 Hz) of the upward shift in spectral peak frequency 
emerged in a single, maximal value characterizing the frontal to central (54.77% of the subjects), frontopolar 
to frontal (36.94%), central to parietal (6.36%) or parietal to occipital (1.91%) shifts. Spectral peak frequencies 
(fmaxPeak) which were detected rostral to the maximal antero-posterior upward frequency shift are hypothesized 
to reflect slow sleep spindles (100% of frontopolar, 63.05% of frontal, 8.28% of central, 1.91% of parietal and 0% 
of occipital recording sites), whereas the caudal ones are reflections of putative fast sleep spindles (0, 36.95, 91.72, 
98.09, and 100% of frontopolar, frontal, central, parietal and occipital regions, respectively) (Fig. 2).

A second spectral peak with roughly half of the amplitude of the first was detected in a subgroup of subjects/
EEG recording locations (6.29–50.64%) (Suppl. Table 2). However, in most of the cases the second peaks were 
roughly 1.5 Hz slower than the reported slow sleep spindle frequencies in an overlapping sample36, thus it seems 
that these peaks reflected rather alpha activity (~ 10 Hz) instead of true slow or fast sleep spindles (see also Suppl. 
Figure 2). That is the method used in the present study was robust enough in terms of the reliable detection of 
the dominant spectral peak of sleep spindling in the given location, but not sufficiently sensitive in testing the 
non-dominant sleep spindle peaks (fast spindles in the anterior and slow spindles in the posterior locations, see 
Suppl. Table 2 for details). A third peak was only detected in a few instances (between 1 and 6 cases, depending on 
recording locations, data not shown). Given the fact that we only focus on the maximal spectral peak parameters 
in the following parts of our paper, we can conclude that these parameters reflect the prevailing anterior slow 
and the posterior fast spindles, depending on recording location. However, the anatomical boundary between 
prevailing anterior slow and posterior fast sleep spindles varies among subjects, leading to some uncertainty 
in the frontal leads, which can express both slow and fast sleep spindles (in 63.05% and 36.95% of the cases, 
respectively).

H1: Age‑associated flattening of spectral slope.  Positive association between age (years) and NREM 
sleep EEG spectral exponents (α), indicating age-associated flattening of slopes were found at all recording loca-
tions (Suppl. Table 3a). The Rüger’s area (consisting of spatially contingent recording locations characterized by 
uncorrected significances) including all recording locations in this specific case, proved to be significant at both 
of the new critical probability (p) levels (0.025 and 0.017). Thus, based on the Descriptive Data Analysis (DDA, 
see details in section “Methods”) procedure37,38, this area can be considered as a significant one (see also Fig. 3A).

H2: Age‑dependent decrease in spectral peak amplitude.  Maximal whitened spectral peak ampli-
tudes of NREM sleep EEG spindle frequencies (PPeak(fmaxPeak)) and age correlated negatively at 10 recording 
locations covering the frontocentral, parietal and posterior temporal areas (F3, F4, Fz, C3, Cz, C4, T5, T6, P3, 
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Figure 2.   Examples for spectral peaks over the antero-posterior cortical axis in one of the subjects. Upper 
part: periodograms in the double natural logarithmic plane characterized by a combination of linear trends 
and spectral peaks. Middle panel: whitened power by subtracting the fitted linears: ln P − (ln C + α ln f); note 
the uniform baseline power (~ 1) and the spectral peaks. Lower panel: enlarged spectral peaks in the spindle 
frequency range, characterized by lower frequency maxima in the anterior as compared to the posterior 
recording locations (see colour-coded arrows); maximal antero-posterior shifts in peak frequency emerged 
between the frontal and central recording sites, demarcating slow-anterior and fast-posterior sleep spindle-
related spectral peaks.
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and P4). The above region remained significant after the control of multiple testing (see a representative example 
in Fig. 3B).

H3: No age‑related increase in spectral peak frequency was found.  Maximal sleep spindle spec-
tral peak emerge at lower fmaxPeak values in the frontal region of aged, as compared to young subjects. This finding 
evidently contrasts our prediction. Peak frequency and age correlated negatively at 8 recording locations cover-
ing the frontal and the right temporal areas (Fp1, Fp2, F3, F4, Fz, F7, F8 and T4). This Rüger’s area was signifi-
cant, as all correlations conformed to both of the new critical probabilities (Fig. 3D; Suppl. Table 3c).

In order to test if changes in slow/fast spindle peak sizes could underlie these effects, that is if the maximal 
spindle peak “jumps” from the fast to the slow spindle peak more frequently in frontal recording sites of aged 
individuals, we compared the age of the following groups of subjects. Group F-Fp was characterized by a maximal 
antero-posterior frequency increase of fmaxPeak between the frontopolar and frontal recording sites, whereas for 
the C-F group this frequency shift was measured between the frontal and the central region. Mann–Whitney 
U-test revealed higher age in the C-F, as compared to the F-Fp group (U =  − 2.41; η2 = 0.713; p = 0.015). That is 
the age-associated dampening of fmaxPeak might indicate a decrease in the emergence of fast sleep spindles in the 
frontal region in aged subjects.

H4: Spectral intercepts, but not peak amplitudes are higher in women as compared to 
men.  The spectral intercept is the power value at which the spectral slope crosses the y-axis. Women are 
characterized by significantly higher spectral intercepts [the natural logarithm of C values in formula (1) and (2)] 
compared to men at all recording locations (see an example at location C4 as an example: Fig. 4).

Figure 3.   Representative scatterplots of the correlations between age and measures of the NREM sleep EEG 
spectra at the left prefrontal region (F3). (A) Correlation of age with the spectral exponent (α) indicating the 
flattening of the spectral slope in the aged subjects. (B) Correlations of age with the whitened maximal spectral 
peak amplitude in the sleep spindle frequency range (PPeak(fmaxPeak). Note the decrease in whitened spectral peak 
amplitude in the aged. (C) Correlation of age with the NREM sleep EEG spectral exponent (α) as categorized 
by intelligence (HIQ high intelligence quotient, AIQ average intelligence quotient). Note the lack of an IQ effect. 
(D) Correlation of age with NREM sleep EEG maximal spectral peak frequency (fmaxPeak) in the spindle range. 
Note the age-dependent decline in frequency. Color codes are consistent with Fig. 1: red—spectral slopes, blue—
spectral peaks.
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After correction for multiple testing the Rüger-area remained significant (Suppl. table 4). As predicted women 
and men did not differ in NREM sleep EEG maximal spectral peak amplitudes of the spindle range (PPeak(fmaxPeak)) 
at any of the recording locations (Fig. 4; Suppl. table 4b).

H5: Women are characterized by faster sleep spindles.  Women were characterized by significantly 
higher fmaxPeak values as compared to men (Fig. 4), except temporal recording locations T3 and T4. The area 
remained significant after the correction for multiple testing (Table 1).

These findings might be confounded by the factor spindle type in the case if fast spindles are dominant in 
more anterior leads in females as compared to males. However, the analysis of the localization of the major 
antero-posterior frequency shift in fmaxPeak of women and men did not reveal a significant difference (χ2 = 0.42; 
p = 0.51).

H6: IQ correlates positively with spectral peak amplitude in women.  Pearson correlations 
revealed significant associations of whitened maximal spectral peak amplitudes (PPeak(fmaxPeak)) pertaining to 
NREM sleep EEG spindle activity with IQ at recording locations C3 (N = 67, r = 0.33, p = 0.007), C4 (N = 66, 
r = 0.34, p = 0.005), Cz (N = 55, r = 0.34, p = 0.010), P3 (N = 68, r = 0.26, p = 0.031), P4 (N = 68, r = 0.28, p = 0.020), 
and T3 (N = 45, r = 0.32, p = 0.031) in women (Fig. 5; Suppl. table 5). The Rüger area at this centroparietal-left 
temporal region remained significant after the control for multiple testing (4/6 correlations are significant at 
0.05/2 and 3/6 correlations at 0.05/3). No significant correlations of whitened spectral peak amplitude and IQ 
were found in men.

H7: Do age‑related flattenings of spectral slopes differ among subjects with average and high 
IQ?  As already presented in the former subheadings (H1) an age-associated flattening of spectral slopes char-
acterizes the NREM sleep EEG of adult volunteers. This effect was separately assessed in subjects with average 
and high IQ, and results were compared. Age and slopes of the NREM sleep EEG spectra (α) were significantly 
associated in both subgroups (AIQ and HIQ). We found no significant difference between these correlations, 
however (Table 2). That is, age-associated flattening of the slopes of the NREM sleep EEG spectra are independ-
ent of the subjects’ IQ (Fig. 3C).

Overcoming model redundancy by determining the alternative intercept of the spec‑
tra.  Although our model resulted in good fit with empirical data in terms of background (scale-free) activ-
ity and the majority of our hypotheses (including the ones regarding peak power features) were supported by 
parameters derived from Eq. (2), the spectral slope and the intercept are far from being independent in statistical 

Figure 4.   Women vs men differences in measured and parametrized mean NREM sleep EEG spectral power 
at electrode location C4. The natural logarithm of pectral power was averaged in women and men (continuous 
lines), as where individual fits (dotted lines) acoording to our current method (see details in section “Methods”). 
Note the overall amplitude differences (women > men), as well as the higher spectral peak frequencies (fmaxPeak) 
in women and the lack of differences in spectral peak amplitudes (PPeak(fmaxPeak)). IQR interquartile range.
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terms. That is, although women vs men differences emerged in our spectral intercepts (ln C♀ > ln C♂) as pre-
dicted in H4 (see Suppl. table 4), and no sex differences in NREM sleep EEG spectral slopes (α) were observed 
(Suppl. table 6a), the intercepts and the slopes are negatively correlated in our database (Suppl. table 6b): subjects 
with steeper spectral slopes (lower α exponents) are characterized by higher intercepts (apparently higher EEG 
amplitudes). This might reflect the position of the intercept, which is at ln f = 0 (f = 1 Hz). The interpolated 1 Hz 
power (based on the fitted line in the double logarithmic plots) partially reflects the steepness of the slope of the 
spectrum.

In order to overcome the above issue of parameter-interdependency, we derived alternative intercepts with 
the aim of determining parts of the interpolated scale-free spectrum at which our parameter do not reflects 
the steepness of the slope (α). We based our search for this alternative intercept on two assumptions: (1) the 
alternative (“slope-free”) intercept is situated at the border of low and high frequency activities, delineated by 
the reported sleep deprivation-induced increases and decreases of spectral power, respectively; (2) intercepts 
below the border mentioned in point 1. correlate negatively with the spectral slopes, whereas intercepts above 
this border correlate positively with slopes. Extended wakefulness of human adults is known to increase the 
NREM sleep EEG spectral power below the sleep spindle frequencies, that is the power of 1–9, 1–12 or 1–13 Hz 
according to different studies39–43, whereas power above 10 or 13 Hz was shown to be decreased during recovery 
sleep40,42,43. Thus, we used our fitted model parameters α and ln C, as well as the modified version of formula (3), 
with the last term (ln PPeak(f)) omitted (see “Methods”) to determine the interpolated scale-free natural logarithm 
power ln P(f) at frequencies of f = 7.4, 10, 12.2, 13.5, 15 and 20 Hz corresponding to natural logarithm values 
of ln f = 2, 2.3, 2.5, 2.6, 2.7, and 3, respectively. These alternative intercepts representing different scenarios of 
y-axis crosses (changing the position of the y-axis) were tested for their independence from the slopes (α) by 

Table 1.   Women vs men differences in NREM sleep EEG spindle spectral peak frequencies. Mann–Whitney 
U test indicates that women as compared to men are characterized by higher fmaxPeak values at which spindle 
range PPeak(f) maxima emerge. The Rüger area containes 16 nominally significant effects. 15 of these women vs 
men differences were significant at both of the more stringent criteria (p < .025 and p < .017), which supports 
the significance of the area.  Italic and bold italic values indicate statistical significance at p < .05, and  p < .017, 
respectively. Md median.

Recording location
U
(η2) p N♀

Md♀
(Q1–Q3)♀ N♂

Md♂
(Q1–Q3) ♂ Md♀–Md♂

Fp1 1888
(.076) .001 67 11.97

(11.36–12.45) 83 11.32
(10.87–11.93) 0.65

Fp2 1864
(.100)  < .001 68 12.00

(11.33–12.44) 87 11.29
(10.83–11.81) 0.71

F3 2191
(.095)  < .001 75 12.80

(12.10–13.25) 91 11.86
(11.14–12.86) 0.94

F4 2217
(.088)  < .001 76 12.98

(12.06–13.35) 89 11.80
(11.04–12.97) 1.18

Fz 2259
(.028) .041 66 13.06

(11.75–13.41) 85 12.51
(11.10–13.13) 0.55

F7 1492
(.090)  < .001 59 12.23

(11.60–12.66) 78 11.59
(11.19–12.04) 0.64

F8 1608
(.088)  < .000 63 12.14

(11.53–12.59) 78 11.49
(11.13–12.14) 0.65

C3 2651
(.058) .002 80 13.53

(13.20–13.96) 92 13.26
(12.86–13.59) 0.27

C4 2502
(.075)  < .001 79 13.60

(13.33–14.04) 93 13.28
(12.96–13.61) 0.32

Cz 1830
(.107)  < .001 68 13.68

(13.39–14.13) 87 13.33
(13.05–13.64) 0.35

P3 2290
(.118)  < .001 81 13.71

(13.38–14.12) 94 13.36
(13.03–13.68) 0.35

P4 2368
(.102)  < .001 81 13.70

(13.37–14.12) 93 13.38
(13.06–13.68) 0.32

T3 1829
(.002) .635 55 12.80

(12.19–13.42) 70 12.91
(11.79–13.37)  − 0.11

T4 1942
(.005) .440 57 12.94

(12.14–13.39) 74 12.93
(11.65–13.29) 0.01

T5 1893
(.084)  < .001 68 13.62

(13.27–14.06) 84 13.32
(13.00–13.63) 0.27

T6 1730
(.108)  < .001 66 13.63

(13.35–14.11) 85 13.33
(12.97–13.62) 0.30

O1 2282
(.111)  < .001 80 13.65

(13.34–14.10) 93 13.33
(12.96–13.64) 0.32

O2 2253
(.112)  < .001 80 13.65

(13.33–14.12) 92 13.35
(12.99–13.64) 0.30
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Figure 5.   Correlations between NREM sleep EEG spindle frequency whitened spectral peak amplitudes and 
IQ in females and males. (A) Categorized scatterplot representing the correlation between whitened spectral 
peak amplitude of the NREM sleep EEG spindle frequency range (recording site: F4) and IQ in women and 
men. (B Pearson r-values were transformed to Z-values and represented on topographical maps. C. Significance 
probability maps of the correlations presented in B.
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Pearson correlations (Fig. 6). The pattern of correlations supported our assumptions: alternative intercepts below 
12.2 Hz were found to correlate negatively with spectral slopes, whereas above 12.2 or 13.5 Hz (depending on 
electrode location) positive correlations were found. That is the best “slope-free” intercepts in the scale-free part 
of the parametrized NREM sleep EEG spectra are emerging at 12.2 Hz and the 13.5 Hz for anterior and posterior 
recording locations, respectively (ln C2.5 and ln C2.6). The original intercept derived at ln f = 0 could be termed as 
ln C0, according to this terminology. We reanalyzed our hypothesis based on the assumption of higher intercepts 
in women as compared to men, which is the only hypothesis involving term C of the formula (H4). Substituting 
ln C0 with ln C2.5 and ln C2.6 resulted in increased mean effects sizes (larger intercepts in women) from η2 = 0.084 
to η2 = 0.118 (both averaged over recording locations).

Discussion
When analyzing the Fourier spectra of EEG records performed for long periods of sleep, researchers and clini-
cians rely on statistics. That is, the periodograms of short modified EEG segments are averaged in order to obtain 
the averaged spectra44. As a consequence, the spectral profiles are inherently statistical in nature. In coherence 
with former reports focusing on sleep stages and arousal15,16 our current approach provides a characterization 
of the NREM sleep EEG Fourier spectra by taking into account their inherent electrophysiological and statisti-
cal regularities based on its power law scaling properties. Our focus is on individual differences in NREM sleep 
and we assume that the approach we follow results in an integrated characterization of NREM sleep EEG, which 
is superior in terms of construct validity and accuracy. First of all, a frequency-independent amplitude meas-
ure potentially reflecting a contamination of neuronal and non-neuronal factors, like brain activity and skull 
anatomy, can be reliably separated and is not mixed up in power spectral values focusing on specific oscillatory 
phenomena. Although the natural logarithm of term C derived from formula (1) and (2) (ln C0) reliably reflects 
the hypothesized sex differences, the model could be refined by using alternative intercepts, which were inde-
pendent from the slopes (ln C2.5 and ln C2.6) (Fig. 6). Thus, we were able to determine the slope free intercepts, 
which—according to our best knowledge – is a first explicit and successful attempt to build a non-redundant, 
power law scaling-based mathematical model of sleep EEG spectra. The slope free intercept might constitute an 
ideal normalization value for NREM sleep EEG (spectra) in future basic and clinical studies.

In addition to the spectral intercepts, the power law functions describing the sleep EEG spectra appropriately 
address the issue of the ratio of EEG power at different frequencies, providing a single measure (α), instead of 
several ones scattered redundantly in all frequency bins and bands. This approach was found to be effective in 
deriving measures of consciousness24, sleep stages15 and arousal16 from sleep EEG records, as well as to index 
aging as a function of scale free wake EEG features22. Here we complete these studies with the individual dif-
ferences approach of NREM sleep EEG, which was suggested to be a seminal perspective of all sleep studies45.

Last, but not least, spectral peak amplitudes (PPeak(f)) are whitened in our approach, that is, the scale-free 
part of the spectrum is effectively controlled, which might enable researchers to differentiate background and 
oscillatory activities at specific frequencies.

The findings derived from our approach of parametrizing the NREM sleep EEG spectra clearly supports the 
robustness and validity of the method presented in this paper, which was inspired by studies aiming to whiten 

Table 2.   Comparison of the correlations between age and the slope of the NREM sleep EEG spectra in 
subjects with average and high intelligence (AIQ vs HIQ). Spearman rank correlations (ρ) were significant in 
both intelligence groups, however, the differences between the higher (HIQ) and average (AIQ) intelligence 
groups was not significant (pdifference). Bold italic values indicate statistical significance at p < .017.

Recording location ρAIQ pAIQ NAIQ ρHIQ pHIQ NHIQ pdifference

Fp1 .44  < .001 79 .40 .001 60 .787

Fp2 .44  < .001 85 .45  < .001 63 .901

F3 .48  < .001 84 .41 .001 64 .622

F4 .52  < .001 83 .42 .001 64 .476

Fz .57  < .001 70 .45  < .001 60 .370

F7 .39 .001 70 .45  < .001 58 .660

F8 .45  < .001 69 .43 .001 59 .900

C3 .44  < .001 84 .45  < .001 64 .956

C4 .45  < .001 85 .43  < .001 64 .896

Cz .47  < .001 70 .37 .004 60 .507

P3 .39  < .001 85 .42 .001 64 .801

P4 .42  < .001 85 .41 .001 64 .927

T3 .43  < .001 70 .49  < .001 59 .640

T4 .51  < .001 70 .42 .001 60 .507

T5 .32 .007 70 .45  < .001 58 .412

T6 .40 .001 70 .42 .001 60 .896

O1 .31 .004 85 .40 .001 64 .549

O2 .34 .002 84 .41 .001 64 .610
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the spectral power in the sleep spindle frequency27,46. As predicted (H1), age correlates positively with NREM 
sleep EEG spectral exponents (Suppl. Table 3a), indicating that aging is associated with flattening of the Fourier 
spectra (i.e. exponents closer to 0) (Fig. 3). This finding coheres with reports of bandwise power spectral analyses 
of NREM sleep EEG, indicating decreased low and increased high frequency activity in the NREM sleep EEG of 
healthy aged subjects28. Moreover, the steepness of the slope of the linear describing the relationship between the 
log-amplitude and the log-frequency of NREM sleep EEG revealed the same age-dependency11. Thus, our method 
is capable of extracting spectral slope information with sufficient precision and is a valid and simple approach 
to be used in future (translational) studies. The slope of the spectrum is basically a measure of the constant ratio 
between low and high frequency activities, which was hypothesized to reflect the ratio between inhibition and 
excitation, the depth of sleep and/or the level of conscious awareness15,24,47,48. Findings might indicate that aged 
subjects have lower sleep depth, but might also open new avenues beyond the exclusive focus on sleep slow 
waves/oscillation when studying the relationship between aging and sleep. The latter point is supported by our 
finding on the lack of a difference in the age-dependency of the NREM sleep EEG spectral slopes in subjects with 
average and high intelligence (Table 2). This finding apparently contrasts the outcomes of our previous report 

Figure 6.   Determining the optimal alternative intercept for the NREM sleep EEG spectra. (A) Linear fitted to 
the double logarithmic plot of an average NREM sleep EEG spectral power (P) derived from right frontopolar 
location (Fp2) in a young female volunteer. Beside the original, violet-coloured intercept at ln f = 0 (f = 1 Hz), 
alternative intercepts are depicted at 7.4, 10, 12.2, 13.5, 15 and 20 Hz. (B) Between-subject correlations of the 
potential intercepts (ln C) with the slopes of the spectra (α) in a location-dependent manner. Note the negative 
correlations for low and the positive correlation for high frequencies, respectively. Zero-correlations are seen in 
the middle of the sleep spindle frequency range (at 12.2 and 13.5 Hz), although occipital recording locations are 
characterized by a slightly different pattern.
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on the significant differences in age-dependent declines in NREM sleep EEG slow wave/oscillation of average 
and high IQ subjects. That is in terms of NREM sleep EEG slow waves high IQ subjects tend to age at a slower 
pace than average IQ subjects1. In spite of the fact that the database we used in the two studies are the same, the 
methods (band-limited spectral analysis focusing on specific frequencies vs. spectral exponent extraction) yield 
different results. Besides trivial methodological differences (spectral power vs exponent), our current approach 
of excluding the 0–2 Hz range from slope-fitting might contribute to this difference. That is, our present findings 
indicate that average and high IQ subjects tend to age at a same pace, at least in terms of their NREM sleep EEG 
spectral exponents. These contrasting results indicate that our former findings are preferentially reflecting the 
age- and IQ-dependency of the NREM sleep EEG slow oscillatory mechanism per se, but not the scale-free activ-
ity and/or the constant ratio of slow and high frequency activities. The latter could be a subject of aging which 
is at least partially independent from the well characterized age-dependent decreases in slow oscillations49 and 
is equally present in average and high IQ subjects. Recent findings and considerations suggest that the spectral 
slope derived from an electrophysiological signal indicates the ratio of excitation and inhibition in the underly-
ing neural tissue47. Thus, according to our current findings and previously published modeling data47 aging is 
characterized by a relative increase in excitation over inhibition during the state of night time NREM sleep, and 
this effect seems to be relatively independent from the decreased slow oscillation reported in former studies1,49.

Aging was also shown to be associated with decreased sleep spindle frequency activity and decreased phasic 
sleep spindles in former studies30. These findings cohere with our current report of an age-associated decrease 
in whitened spectral peak amplitudes of NREM sleep EEG spindle frequency range (Suppl. Table 3b). Reports 
suggest that the age-dependent decrease in sleep spindles recorded over the prefrontal regions mediates the cog-
nitive decline in later ages50. Moreover, it was suggested that this effect reflects the disruption of thalamocortical 
regulatory mechanisms involved in sleep spindle rhythmogenesis51. Thus, our index of whitened NREM sleep 
EEG spectral peak amplitude in the spindle frequency range could serve as a potential biomarker of the above 
mentioned50,51 neurocognitive aspects of aging.

The age-associated increases in the frequency of sleep spindle oscillations (also known as intraspindle fre-
quencies) were reported in several former reports31, although the largest study did not reveal such changes in 
adulthood30. Our present findings reveal a non-predicted decrease in maximal frontal spectral peak amplitude 
in the spindle frequency range of NREM sleep EEG. The range of the spindle frequency changes clearly indicate 
a change from the predominant fast (~ 14 Hz) to predominant slow (~ 12 Hz) sleep spindle spectral peaks during 
aging. That is, our finding indicates a decrease in relative frontal emergence of fast sleep spindles during aging, 
rather than a deceleration of sleep spindles at a rate of 0.5 Hz/decade (Fig. 3). This post-hoc assumption is sup-
ported by our additional empirical findings indicating the increasing rates of frontal slow sleep spindle domi-
nance in the aged. In addition, the parietal recording locations, which are almost uniformly characterized by fast 
sleep spindle types of spectral peaks over the whole sample, do not provide any evidence for an age-dependent 
acceleration of intraspindle oscillatory frequencies. That is, our findings clearly do not support this hypothesis.

Women were shown to be characterized by significantly higher NREM sleep EEG spectral intercepts as 
compared to men. This difference is not seen in the spectral slopes and is sharpened when using the alternative 
(“slope-free”) intercepts (ln C2.5 and ln C2.6 instead of ln C0). To the best of our knowledge this is the first report 
explicitly targeting these issues. We based our hypothesis on findings suggesting that women vs men differences 
in EEG power are largely frequency-independent28, thus indicating an overall amplitude effect captured by the 
term C in formula (1) and (2). That is, previous reports focusing on specific frequency ranges and oscillatory 
phenomena are confounded by overall amplitude differences in the EEG of women and men. Examples for such 
potentially confounded findings are reports on women vs men differences in sleep spindle densities/occur-
rences. Spindles detected by fixed thresholds34,35 or raw (non-whitened) spectral power values of the spindle 
frequency range28,32 indicate sex differences (increased sleep spindle density/activity in women), but are not 
controlled for overall amplitude differences. It has to be noted however, that one of the early publications cited 
above hypothesized that women vs men differences in sleep EEG spectral power might reflect sex differences in 
skull thickness32, but—at least to our best knowledge—this hypothesis remained largely unexplored from the 
electrophysiological point of view. Our current approach considers this issue and provides a reliable and poten-
tially useful method for controlling non-specific effects, potentially contaminated with non-neuronal issues in 
EEG amplitude. The estimation of the spectral intercept provides a simple index which can be included in future 
biophysical, electrophysiological-modeling studies of the skull-thickness-EEG power issue. Our current findings 
clearly indicate the lack of sex differences in sleep spindle power when overall amplitude women vs men differ-
ences are controlled (Fig. 4; Suppl. table 4).

Women were shown to be characterized by higher frequency sleep spindle oscillations as compared to men 
according to our former study based on the individual adjustment of sleep spindle frequencies and amplitudes36. 
This finding was strengthened by our current report based on the detection of whitened spectral peak location 
with 0.0052 Hz resolution (Table 1). That is, our current finding strengthens the validity of our spectral para-
metrization approach. In addition, the hypotheses suggesting that sleep spindle frequency is accelerated by either 
progesterone and its neuroactive, indirect GABA-agonist metabolite allopregnanolone52 or the progesterone-
induced hyperthermia53 during the follicular phase of the menstrual cycle in women are indirectly supported 
by our present findings. Although our participants were not controlled for menstrual cycle phases and oral 
contraceptive use, we can assume that at least some of the female subjects were examined during the follicular 
phase of their menstrual cycle. Furthermore, oral contraceptive use involve the intake of progestagenic com-
pounds, which might induce some of the neural effects of endogenous progesterone in naturally cycling women.

Here we reveal a positive correlation between whitened spectral peak amplitude of sleep spindle frequency 
activity during NREM sleep and IQ in women, but not in men (Fig. 5; Suppl. table 5). Intelligence was shown 
to be reflected in the intensity (amplitude and/or density) of phasic sleep spindle events or alternatively in 
the spectral power of sleep spindle frequency activity during NREM sleep7–10,36. In the database we use in our 
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present study a marked sexual dimorphism of this effect was also revealed: women but not men were shown 
to be characterized by the sleep spindle amplitude/power vs IQ correlations8,36. Although this latter effect was 
not unequivocally reflected in a significant meta-regression between effect size and % female in the sample in a 
subsequent metaanalysis9, here we refer to it because convergent findings obtained by different methods used on 
the same dataset are an issue of validity of the methods. That is, we reproduced the positive sleep spindle vs. IQ 
correlation in women by using a linear fitting approach to the log–log spectra of NREM sleep and a concurrent 
whitening of spectral peaks, without assumptions on time-domain sleep spindle features. Again, this finding 
might strengthen our views on the reliability of the method of analyzing the constant, the slope and the (whit-
ened) peak attributes of the NREM sleep EEG in human subjects.

Among the shortcomings of our work we would emphasize the lack of slow vs fast sleep spindle differentia-
tion by the current version of our method, as well as the fact that we disregarded low frequency power (< 2 Hz) 
when fitting the slopes. Fitting of two slightly overlapping spectral peaks instead of just one, would increase 
considerably the complexity of the approach, whereas our intention was to keep the process as simple and intui-
tive as possible. Moreover, we intended to follow the already published method of finding the maximal peak 
in the spindle frequency range and correlating its amplitude/power with neurological-clinical and cognitive 
data27,46. Similarly, the potential and largely unpredictable contamination of low frequency power with sweating 
artefacts, as well as the high-pass filtering effects of gold-coated electrodes54 we used in our studies precluded us 
from a precise measurement of the power law scaling at low frequencies below 2 Hz. Our approach of excluding 
the alpha and spindle frequencies before fitting a linear to the equidistant double logarithmic NREM sleep EEG 
power spectra requires a priori knowledge on the position of the spectral peaks and, as a consequence, increases 
the researchers degrees of freedom. In addition, this approach inherently omits a wide range of frequencies when 
fitting the linear. Although, there are reported methods for handling the above issues14, here we focused on the 
current method because of our the explicit intention of comparability with former reports focusing on NREM 
sleep EEG power spectra and neurocognition27,46.

In sum, the parametrization of NREM sleep EEG of healthy adult subjects by relying on the power law scaling 
behavior of the electrical activity of the brain, as well as by completing this statistical property with the prominent 
spectral peak at the sleep spindle range, provides an integral method of describing and characterizing individual 
differences in sleep and cognition. Here we show, that most of the features of NREM sleep EEG can be efficiently 
compressed in the spectral intercepts, slopes and peaks, at least in terms of demographic (age, sex) and cognitive 
(IQ) correlates of sleep. It remains to be determined, if known arousal and sleep state-dependent changes15,16 
or overnight sleep dynamics48 can be efficiently completed with measures of sleep regulatory mechanisms (e.g. 
homeostatic and circadian factors) derived from our integrative parameters of NREM sleep EEG spectra. In addi-
tion, further studies are needed for an adequate handling of multiple spectral peaks and low frequency (< 2 Hz) 
oscillations in the non-full-band EEG.

Methods
Subjects/databases.  Data was combined from multiple databases (Max Planck Institute of Psychiatry, 
Munich, Germany; Institute of Behavioural Sciences of Semmelweis University, Budapest, Hungary) for this 
retrospective multicenter study3,8. Polysomnography data were recorded from 175 participants 81 females, 94 
males, mean age 29.57  years, age range 17–60  years) and IQ scores were measured for 149 participants (68 
females, 81 males, mean age 29.23 years, age range 17–60 years). Volunteers were recruited also via Mensa Ger-
many and Mensa Hungary to increase the number of highly intelligent individuals. As some of the participants 
have missing data of some electrodes and/or IQ scores the data numbers from which the statistical analysis was 
conducted are always reported in the results.

Based on self-reports, none of the participants had a history of psychiatric or neurological disorders. Alco-
hol consumption was restricted before recording, but a small amount of caffeine (max. 2 cups of coffee before 
noon) was allowed to the participants. Based on self reports 8 participants were light or moderate smokers. 
Data were combined from multiple databases (Max Planck Institute of Psychiatry, Munich, Germany; Institute 
of Behavioural Sciences of Semmelweis University, Budapest, Hungary). The experiment was conducted in full 
accordance with the World Medical Association Helsinki Declaration and all applicable national laws and it was 
approved by the institutional review board, the Ethical Committee of the Semmelweis University, Budapest, or 
the Ludwig Maximilian University, Munich. Written informed consent was obtained from adults participants 
and parents/guardians of the children (age: 17 years).

Psychometric intelligence.  Standardized nonverbal intelligence tests were recorded from 149 partici-
pants: 70 of them completed the Culture Fair Test (CFT)55,56 and 39 of them completed the Raven Advanced 
Progressive Matrices (Raven APM)57 test. 40 participants completed both tests. These tests have been shown 
to similarly measure abstract pattern completion and are particularly good measures of the general factor of 
intelligence58–60. A composite raw intelligence test score was calculated, expressed as a Raven equivalent score 
(RES)1. RES for Raven APM tests was equal to the actual raw test score, whereas RES of the CFT test raw scores 
were equal to the Raven APM score corresponding to the IQ percentile derived from CFT performance and the 
age of the participant. Scores were averaged for participants who completed both tests. Standardization of APM 
was applied according to 1993 Des Moines (Iowa). Based on their mean IQ score, the sample was split into an 
average (AIQ: 88 < IQ < 120; IQ = 106.9; N = 85) and a high intelligence (HIQ: 120 ≤ IQ < 156; IQ = 130.38; N = 64) 
subgroup1.

Polysomnography recordings.  Detailed data recording procedures and power spectral analysis are also 
reported in published studies2,8. Sleep data were recorded on two consecutive nights by standard polysomnog-
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raphy including EEG, electro-occulography (EOG), electrocardiography (ECG) and bipolar submental electro-
myography (EMG). EEG channels were placed according to the international 10–20 system (Fp1, Fp2, F3, F4, 
Fz, F7, F8, C3, C4, Cz, P3, P4, T3, T4, T5, T6, O1, O2 and left and right mastoids)61. Impedances for the EEG 
electrodes were kept below 8 kΩ. The sampling frequency was either 249 Hz, 250 Hz or 1024 Hz, depending on 
recording site (Suppl. table 7). Data were offline re-referenced to the average of the mastoid signals and notch 
filtered at 50 Hz. Electrodes excluded from the analysis due to artifacts and/or recording failures were treated as 
missing data. The number missing data for the total 175 participants is reported in Supplementary Table 8, sepa-
rately for each electrode. Recordings of the first night were used for habituation and therefore were not included 
in further analyses. Sleep data of the second night in the laboratory were scored for sleep-waking states and 
stages according to standard AASM criteria on a 20-s basis62 by an expert. Furthermore, artefactual segments 
were marked on a 4-s basis and excluded from further analyses.

Power spectral analysis.  Power spectral densities were calculated for the NREM (N2 and N3) sleep, in 
0.25 Hz bins from 0 Hz to the Nyquist frequency (fNyquist) by relying on 4 s Hanning-tapered, non-artefactual 
windows. A 50% overlap was used for consecutive windows, whereas mixed-radix FFT for calculating power 
spectral densities. Power spectral densities from all 4  s windows were then averaged. As data were recorded 
with different EEG devices producing different analog filter characteristics, average power spectral densities 
were corrected as follows1: An analog waveform generator was connected to the C3 and C4 electrode positions 
of all EEG devices and sinusoid signals of various frequencies (0.05 Hz, every 0.1 Hz between 0.1–2 Hz, every 
1 Hz between 2–20 Hz, every 10 Hz between 10–100 Hz) were generated with 40 and 355 μV amplitudes. The 
amplitude reduction rate of each recording system at each frequency was determined by calculating the propor-
tion between digital (measured) and analog (generated) amplitudes of sinusoid signals at the corresponding fre-
quency. The amplitude reduction rate was averaged for the 40 and 355 μV at each frequency. The reduction rate 
at the intermediate frequencies were interpolated by spline interpolation. The measured power spectral density 
values were corrected with the device-specific amplitude reduction rate by dividing the original value with the 
squared amplitude reduction rate at the corresponding frequency according to previous suggestions63,64.

Estimation of the spectral intercepts and slopes.  Basically our approach is based on obtaining the 
power spectrum of the EEG signal (see above), fitting a line to the log–log power and performing a peak detec-
tion. In order to manage the second step the power law function (formula (2)) was transformed to one which fits 
in the double logarithmic plots as follows (Fig. 1C):

This means that the natural logarithm of spectral power (P) is expressed as a linear function of the natural 
logarithm of frequency (f). In addition, there are two terms in the equation: the natural logarithm of the constant 
(C) and the natural logarithm of peak power (PPeak, see Fig. 1). If the latter equals 1 (PPeak = 1), that is, there is no 
peak at a given frequency f, the value is 0 (ln 1 = 0). The logarithmic frequency scale inherently induces increasing 
data density at higher frequencies. Thus, a linear fit to this data would induce a strong bias against low frequency 
bins, which would contribute less to the determination of slopes compared to the higher frequency bins. In order 
to manage this problem and obtain an equal distribution of the data points, power values were interpolated up to 
the smallest frequency step (0.0052 Hz) by the piecewise cubic Hermite interpolation method. In the next step a 
linear was fitted to the 2–48 Hz frequency range of this equidistant log–log plot, excluding the 6.0052–17.9948 Hz 
frequency range corresponding to the alpha and spindle bands (in order to avoid those parts of the NREM sleep 
EEG spectra which are characterized by oscillatory activities as well). This part of our procedure was inspired 
by two former studies using a similar approach for whitening of the NREM sleep spindle spectra27,46. The slope 
of the linear is α, whereas its intercept is ln C.

Our intention to determine alternative, slope-free intercepts of the linear function in the double logarithmic 
plot was performed by using individually fitted α and C values in an alternative version of formula (3). In this 
case the term expressing spectral peak power PPeak(f) was omitted, and ln P(f) values were calculated for f values 
equalling 7.4, 10, 12.2, 13.5, 15 or 20 Hz. The goal of this step was the determination of the scale-free part of the 
spectrum at which the line cross of the y-axis is statistically independent from the slope of the line (α) across 
subjects.

Estimation of the spectral peak frequencies.  Spectral peak frequency was determined in the 9–18 Hz 
range, separately for each EEG recording location by automatically defining local maxima in mathematical 
terms. That is, we used the first derivative test in order to find the critical points, followed by the second deriva-
tive test to differentiate local maxima and minima. A spectral peak was accepted if the first order derivative was 
zero and the second order derivative was negative. Calculations were performed as follows: a second-degree 
polynomial curve fitting was performed using all sets of successive bin triplets (0.75 Hz), with an overlap of 2 
bins (0.5 Hz) in the 9–18 Hz range resulting in equations of the following type:

P: power; f: frequency (9–18 Hz); a, b, and c: fitted parameters.
The first derivative of these functions were calculated for each triplet, resulting in:

(3)lnP(f ) = lnC+ αlnf + lnPPeak(f )

(4)P
(

f
)

= af 2 + bf + c

(5)P
′(

f
)

= 2af + b
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The slope of the function described in formula (5) is 2a, which was considered as the derivative at the middle 
of the triplets, resulting in the first derivative function of the spectra. The procedure was repeated for calculating 
the second derivatives: in this case the first order derivative function served as an input for fitting the quadratic 
polynomials.

Zero-crossings of the first derivatives were determined by spline interpolation (interpolating the series 
between the bins of 0.25 Hz). In addition, the second derivative was interpolated by the spline method at each 
detected zero crossing of the first derivatives. The cases which were characterized by the co-ocurrences of the 
two criteria below were considered as spectral peak frequencies:

Estimation of the spectral peak amplitudes.  Spectral power at peak frequencies were estimated by 
spline interpolation of the double logarithmic plots of the power spectra. The spectral peak amplitude was then 
whitened by subtracting the estimated power based on the fitted linear function from the peak power containing 
both arrhythmic and rhythmic activity (Fig. 2):

In order to avoid negative amplitudes due to the logarithmic scale, the power values were shifted for being 
all positive before this subtraction by adding a constant. This latter step was applied for the calculation of the 
amplitude measures only. As multiple spectral peaks were detected for some of the participants/EEG recording 
locations, the one with the largest amplitude was determined and used in this study. If no spectral peak was found 
in the spindle frequency range, peak values were considered as missing data (see Suppl. table 8). Data analysis 
was performed by MATLAB 9.5 (Mathworks Inc., https​://www.mathw​orks.com).

Antero‑posterior changes in prevailing spectral peak frequency.  Frequency measures of spectral 
peaks with maximal amplitudes (PPeak(fmaxPeak)) were analyzed in terms of antero-posterior changes as follows. 
First, we formed (para)sagittal regions by averaging fmaxPeak values in frontopolar (Fp1, Fp2), frontal (F3, F4, Fz), 
central (C3, C4, Cz), parietal (P3, P4, Pz), as well as occipital (O1, O2) recording locations. In the following, the 
regional means of fmaxPeak values were serially subtracted in consecutive antero-posterior regions as follows: fron-
tal-frontopolar, central-frontal, parietal-central, occipital-parietal. Outputs express the antero-posterior shifts 
in fmaxPeak (Hz), with positive values indicating antero-posterior increases in frequency (Fig. 2). The successive 
frequency shifts were summed for each subject, whereas the results of this addition were averaged over the whole 
sample. In a separate analysis maximal frequency shifts were determined and localized in each subject, result-
ing a sample mean of maximal antero-posterior frequency shift and a topographical distribution of this shifts.

FOOOF analyses.  In order to test the convergent validity of our analyes we run separate analyses with a 
recently published method23. The same frequency range (2–48 Hz) was analyzed and the so-called knee-param-
eter, unique to the FOOOF-method was omitted, because the latter was specifically designed to describe the 
lowest frequency end of the spectrum (which we did not include in our analyses).

Statistical analyses.  Goodness of fit of the linear to the equidistant log–log spectral data was assessed by Pear-
son product moment correlations, which were Fisher Z-transformed, averaged and back-transformed according 
to Silver and Dunlap65. Last, but not least the resulting average R-value were squared in order to determine the 
shared variance. Standard deviation (SD) was assessed from the Fisher-Z-transformed dataset, and the resulting 
value was back-transformed as well.

We used parametric tests (Pearson correlation, independent sample t-test) on normally distributed data and 
non-parametric tests (Spearman’s rank correlation, Mann–Whitney U test) when the distribution of the data 
was not Gaussian. The normality of the distributions was analysed by Shapiro–Wilk tests. In order to control 
Type 1 statistical errors due to multiple electrodes/hypothesis, we used a version of the Descriptive Data Analysis 
(DDA) protocol37 adapted for neurophysiological data38,66. This procedure tests the global null hypothesis (“all 
individual null hypotheses in the respective region are true”) at level 0.05, against the alternative that at least 
one of the null hypotheses is wrong. DDA considers the intercorrelations between the different electrodes and is 
based on defining Rüger’s areas67, which are sets of spatially contingent conventionally (descriptively) significant 
(p < 0.05) results. The global significance of the Rüger area means that at least 1/3 of the descriptive significances 
are significant at a p = 0.05/3 = 0.017 and/or 1/2 of the descriptive significances are significant at p = 0.05/2 = 0.025. 
We used both criteria simultaneously (the “and” operator) in this study. In order to obtain a better localization 
of regions with significant correlations, associations between NREM sleep EEG spindle frequency whitened 
spectral peak amplitudes and IQ were represented by significant probability maps68.

Ethical statements.  We confirm that we have read the Journal’s position on issues involved in ethical pub-
lication and affirm that this report is consistent with those guidelines.
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Data availability
All corrected power spectral data, as well as the fitted parameters and the program code used are available at 
https​://osf.io/c487g​/.

Received: 25 September 2020; Accepted: 28 December 2020

References
	 1.	 Pótári, A. et al. Age-related changes in sleep EEG are attenuated in highly intelligent individuals. Neuroimage 146, 554–560. https​

://doi.org/10.1016/j.neuro​image​.2016.09.039 (2017).
	 2.	 Ujma, P. P., Simor, P., Steiger, A., Dresler, M. & Bódizs, R. Individual slow-wave morphology is a marker of aging. Neurobiol. Aging 

80, 71–82. https​://doi.org/10.1016/j.neuro​biola​ging.2019.04.002 (2019).
	 3.	 Ujma, P. P. et al. Sleep EEG functional connectivity varies with age and sex, but not general intelligence. Neurobiol. Aging 78, 87–97. 

https​://doi.org/10.1016/j.neuro​biola​ging.2019.02.007 (2019).
	 4.	 Kaskie, R. E. & Ferrarelli, F. Sleep disturbances in schizophrenia: what we know, what still needs to be done. Curr. Opin. Psychol. 

34, 68–71. https​://doi.org/10.1016/j.copsy​c.2019.09.011 (2019).
	 5.	 Campbell, I. G., Grimm, K. J., de Bie, E. & Feinberg, I. Sex, puberty, and the timing of sleep EEG measured adolescent brain 

maturation. Proc. Natl. Acad. Sci. USA 109, 5740–5743. https​://doi.org/10.1073/pnas.11208​60109​ (2012).
	 6.	 Bódizs, R., Gombos, F. & Kovács, I. Sleep EEG fingerprints reveal accelerated thalamocortical oscillatory dynamics in Williams 

syndrome. Res. Dev. Disabil. 33, 153–164. https​://doi.org/10.1016/j.ridd.2011.09.004 (2012).
	 7.	 Bódizs, R. et al. Prediction of general mental ability based on neural oscillation measures of sleep. J. Sleep Res. 14, 285–292. https​

://doi.org/10.1111/j.1365-2869.2005.00472​.x (2005).
	 8.	 Ujma, P. P. et al. The sleep EEG spectrum is a sexually dimorphic marker of general intelligence. Sci. Rep. 7, 1807. https​://doi.

org/10.1038/s4159​8-017-18124​-0 (2017).
	 9.	 Ujma, P. P. Sleep spindles and general cognitive ability—a meta-analysis. Sleep Spindles Cortical Up States https​://doi.

org/10.1556/2053.2.2018.01 (2018).
	10.	 Ujma, P. P., Bódizs, R. & Dresler, M. Sleep and intelligence: critical review and future directions. Curr. Opin. Behav. Sci. 33, 109–117. 

https​://doi.org/10.1016/j.cobeh​a.2020.01.009 (2020).
	11.	 Feinberg, I., March, J. D., Fein, G. & Aminoff, M. J. Log amplitude is a linear function of log frequency in NREM sleep EEG of young 

and elderly normal subjects. Electroencephalogr. Clin. Neurophysiol. 58, 158–160. https​://doi.org/10.1016/0013-4694(84)90029​-4 
(1984).

	12.	 Pritchard, W. S. The brain in fractal time: 1/f-like power spectrum scaling of the human electroecephalogram. Int. J. Neurosci. 66, 
119–129. https​://doi.org/10.3109/00207​45920​89997​96 (1992).

	13.	 Pereda, E., Gamundi, A., Rial, R. & Gonzalez, J. Non-linear behaviour of human EEG: fractal exponent versus correlation dimen-
sion in awake and sleep stages. Neurosci. Lett. 250, 91–94. https​://doi.org/10.1016/s0304​-3940(98)00435​-2 (1998).

	14.	 Wen, H. & Liu, Z. Separating fractal and oscillatory components in the power spectrum of neurophysiological signal. Brain Topogr. 
29, 13–26. https​://doi.org/10.1007/s1054​8-015-0448-0 (2016).

	15.	 Miskovic, V., MacDonald, K. J., Rhodes, L. J. & Cote, K. A. Changes in EEG multiscale entropy and power-law frequency scaling 
during the human sleep cycle. Hum. Brain Mapp. 40, 538–551. https​://doi.org/10.1002/hbm.24393​ (2019).

	16.	 Lendner, J. D. et al. An electrophysiological marker of arousal level in humans. eLife 9, e55092. https​://doi.org/10.7554/eLife​.55092​ 
(2020).

	17.	 Freeman, W. J., Holmes, M. D., West, G. A. & Vanhatalo, S. Fine spatiotemporal structure of phase in human intracranial EEG. 
Clin. Neurophysiol. 117, 1228–1243. https​://doi.org/10.1016/j.clinp​h.2006.03.012 (2006).

	18.	 Lázár, A. S., Lázár, Z. I. & Bódizs, R. Frequency characteristics of sleep. In Oxford Handbook of EEG frequency (in press)
	19.	 Dummermuth, G. et al. Studies on EEG activities in the beta band. Eur. Neurol. 16, 197–202. https​://doi.org/10.1159/00011​4900 

(1977).
	20.	 Miller, K. J., Sorensen, L. B., Ojemann, J. G. & den Nijs, M. Power-law scaling in the brain surface electric potential. PLoS Comput. 

Biol. 5, e1000609. https​://doi.org/10.1371/journ​al.pcbi.10006​09 (2009).
	21.	 He, B. J., Zempel, J. M., Snyder, A. Z. & Raichle, M. The temporal structures and functional significance of scale-free brain activity. 

Neuron 66, 353–369. https​://doi.org/10.1016/j.neuro​n.2010.04.020 (2010).
	22.	 Voytek, B. et al. Age-related changes in 1/f neural electrophysiological noise. J. Neurosci. 35, 13257–13265. https​://doi.org/10.1523/

JNEUR​OSCI.2332-14.2015 (2015).
	23.	 Donoghue, T. et al. Parameterizing neural power spectra into periodic and aperiodic components. Nat. Neurosci. 23, 1655–1665. 

https​://doi.org/10.1038/s4159​3-020-00744​-x (2020).
	24.	 Colombo, M. A. et al. The spectral exponent of the resting EEG indexes the presence of consciousness during unresponsiveness 

induced by propofol, xenon, and ketamine. Neuroimage 189, 631–644. https​://doi.org/10.1016/j.neuro​image​.2019.01.024 (2019).
	25.	 Gao, R. Interpreting the electrophysiological power spectrum. J. Neurophysiol. 115, 628–630. https​://doi.org/10.1152/jn.00722​

.2015 (2016).
	26.	 Freeman, W. J. & Zhai, J. Simulated power spectral density (PSD) of background electrocorticogram (ECoG). Cogn. Neurodyn. 3, 

97–103. https​://doi.org/10.1007/s1157​1-008-9064-y (2009).
	27.	 Geiger, A. et al. The sleep EEG as a marker of intellectual ability in school age children. Sleep 34, 181–189. https​://doi.org/10.1093/

sleep​/34.2.181 (2011).
	28.	 Carrier, J., Land, S., Buysse, D. J., Kupfer, D. J. & Monk, T. H. The effects of age and gender on sleep EEG power spectral density in 

the middle years of life (ages 20–60 years old). Psychophysiology 38, 232–242. https​://doi.org/10.1111/1469-8986.38202​32 (2001).
	29.	 Nicolas, A., Petit, D., Rompré, S. & Montplaisir, J. Sleep spindle characteristics in healthy subjects of different age groups. Clin. 

Neurophysiol. 112, 521–527. https​://doi.org/10.1016/s1388​-2457(00)00556​-3 (2001).
	30.	 Purcell, S. M. et al. Characterizing sleep spindles in 11,630 individuals from the national sleep research resource. Nat. Commun. 

8, 1593. https​://doi.org/10.1038/ncomm​s1593​ (2017).
	31.	 Principe, J. C. & Smith, J. R. Sleep spindle characteristics as a function of age. Sleep 5, 73–84. https​://doi.org/10.1093/sleep​/5.1.73 

(1982).
	32.	 Dijk, D. J., Beersma, D. G. & Bloem, G. M. Sex differences in the sleep EEG of young adults: visual scoring and spectral analysis. 

Sleep 12, 500–507. https​://doi.org/10.1093/sleep​/12.6.500 (1989).
	33.	 Looker, A. C. et al. Age, gender, and race/ethnic differences in total body and subregional bone density. Osteoporos. Int. 20, 

1141–1149. https​://doi.org/10.1007/s0019​8-008-0809-6 (2009).
	34.	 Crowley, K., Trinder, J., Kim, Y., Carrington, M. & Colrain, I. M. The effects of normal aging on sleep spindle and K-complex 

production. Clin. Neurophysiol. 113, 1615–1622. https​://doi.org/10.1016/s1388​-2457(02)00237​-7 (2002).
	35.	 Huupponen, E. et al. A study on gender and age differences in sleep spindles. Neuropsychobiology 45, 99–105. https​://doi.

org/10.1159/00004​8684 (2002).

https://osf.io/c487g/
https://doi.org/10.1016/j.neuroimage.2016.09.039
https://doi.org/10.1016/j.neuroimage.2016.09.039
https://doi.org/10.1016/j.neurobiolaging.2019.04.002
https://doi.org/10.1016/j.neurobiolaging.2019.02.007
https://doi.org/10.1016/j.copsyc.2019.09.011
https://doi.org/10.1073/pnas.1120860109
https://doi.org/10.1016/j.ridd.2011.09.004
https://doi.org/10.1111/j.1365-2869.2005.00472.x
https://doi.org/10.1111/j.1365-2869.2005.00472.x
https://doi.org/10.1038/s41598-017-18124-0
https://doi.org/10.1038/s41598-017-18124-0
https://doi.org/10.1556/2053.2.2018.01
https://doi.org/10.1556/2053.2.2018.01
https://doi.org/10.1016/j.cobeha.2020.01.009
https://doi.org/10.1016/0013-4694(84)90029-4
https://doi.org/10.3109/00207459208999796
https://doi.org/10.1016/s0304-3940(98)00435-2
https://doi.org/10.1007/s10548-015-0448-0
https://doi.org/10.1002/hbm.24393
https://doi.org/10.7554/eLife.55092
https://doi.org/10.1016/j.clinph.2006.03.012
https://doi.org/10.1159/000114900
https://doi.org/10.1371/journal.pcbi.1000609
https://doi.org/10.1016/j.neuron.2010.04.020
https://doi.org/10.1523/JNEUROSCI.2332-14.2015
https://doi.org/10.1523/JNEUROSCI.2332-14.2015
https://doi.org/10.1038/s41593-020-00744-x
https://doi.org/10.1016/j.neuroimage.2019.01.024
https://doi.org/10.1152/jn.00722.2015
https://doi.org/10.1152/jn.00722.2015
https://doi.org/10.1007/s11571-008-9064-y
https://doi.org/10.1093/sleep/34.2.181
https://doi.org/10.1093/sleep/34.2.181
https://doi.org/10.1111/1469-8986.3820232
https://doi.org/10.1016/s1388-2457(00)00556-3
https://doi.org/10.1038/ncomms1593
https://doi.org/10.1093/sleep/5.1.73
https://doi.org/10.1093/sleep/12.6.500
https://doi.org/10.1007/s00198-008-0809-6
https://doi.org/10.1016/s1388-2457(02)00237-7
https://doi.org/10.1159/000048684
https://doi.org/10.1159/000048684


17

Vol.:(0123456789)

Scientific Reports |         (2021) 11:2041  | https://doi.org/10.1038/s41598-021-81230-7

www.nature.com/scientificreports/

	36.	 Ujma, P. P. et al. Sleep spindles and intelligence: evidence for a sexual dimorphism. J. Neurosci. 34, 16358–16368. https​://doi.
org/10.1523/JNEUR​OSCI.1857-14.2014 (2014).

	37.	 Abt, K. Descriptive data analysis: a concept between confirmatory and exploratory data analysis. Methods Inf. Med. 26, 77–88. 
https​://doi.org/10.1055/s-0038-16354​88 (1987).

	38.	 Abt, K. Statistical aspects of neurophysiologic topography. J. Clin. Neurophysiol. 7, 519–534. https​://doi.org/10.1097/00004​691-
19901​0000-00007​ (1990).

	39.	 Borbély, A. A., Baumann, F., Brandeis, D., Strauch, I. & Lehmann, D. Sleep deprivation: effect on sleep stages and EEG power 
density in man. Electroencephalogr. Clin. Neurophysiol. 51, 483–495. https​://doi.org/10.1016/0013-4694(81)90225​-x (1981).

	40.	 Finelli, L. A., Achermann, P. & Borbély, A. A. Individual “fingerprints” in human sleep EEG topography. Neuropsychopharmacology 
25, S57–S62. https​://doi.org/10.1016/S0893​-133X(01)00320​-7 (2001).

	41.	 Olbrich, E., Landolt, H. P. & Achermann, P. Effect of prolonged wakefulness on electroencephalographic oscillatory activity during 
sleep. J. Sleep Res. 23, 253–260. https​://doi.org/10.1111/jsr.12123​ (2014).

	42.	 Tarokh, L., Rusterholz, T., Achermann, P. & Van Dongen, H. P. The spectrum of the non-rapid eye movement sleep electroen-
cephalogram following total sleep deprivation is trait-like. J. Sleep Res. 24, 360–363. https​://doi.org/10.1111/jsr.12279​ (2015).

	43.	 Tinguely, G., Finelli, L. A., Landolt, H. P., Borbély, A. A. & Achermann, P. Functional EEG topography in sleep and waking: state-
dependent and state-independent features. Neuroimage 32, 283–292. https​://doi.org/10.1016/j.neuro​image​.2006.03.017 (2006).

	44.	 Welch, P. D. The use of Fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, 
modified periodograms. IEEE Trans. Audio Electroacoust. 15, 70–73. https​://doi.org/10.1109/TAU.1967.11619​01 (1967).

	45.	 Tucker, A. M., Dinges, D. F. & Van Dongen, H. P. A. Trait interindividual differences in the sleep physiology of healthy young 
adults. J. Sleep Res. 16, 170–180. https​://doi.org/10.1111/j.1365-2869.2007.00594​.x (2007).

	46.	 Gottselig, J. M., Bassetti, C. L. & Achermann, P. Power and coherence of sleep spindle frequency activity following hemispheric 
stroke. Brain 125, 373–383. https​://doi.org/10.1093/brain​/awf02​1 (2002).

	47.	 Gao, R., Peterson, E. J. & Voytek, B. Inferring synaptic excitation/inhibition balance from field potentials. Neuroimage 158, 70–78. 
https​://doi.org/10.1016/j.neuro​image​.2017.06.078 (2017).

	48.	 Weiss, B., Clemens, Z., Bódizs, R. & Halász, P. Comparison of fractal and power spectral EEG features: effects of topography and 
sleep stages. Brain Res. Bull. 84, 359–375. https​://doi.org/10.1016/j.brain​resbu​ll.2010.12.005 (2011).

	49.	 Mander, B. A. et al. Prefrontal atrophy, disrupted NREM slow waves and impaired hippocampal-dependent memory in aging. 
Nat. Neurosci. 16, 357–364. https​://doi.org/10.1038/nn.3324 (2013).

	50.	 Mander, B. A. et al. Impaired prefrontal sleep spindle regulation of hippocampal-dependent learning in older adults. Cereb. Cortex 
24, 3301–3309. https​://doi.org/10.1093/cerco​r/bht18​8 (2014).

	51.	 Clawson, B. C., Durkin, J. & Aton, S. J. Form and function of sleep spindles across the lifespan. Neural Plast. 2016, 6936381. https​
://doi.org/10.1155/2016/69363​81 (2016).

	52.	 Driver, H. S., Dijk, D. J., Werth, E., Biedermann, K. & Borbély, A. A. Sleep and the sleep electroencephalogram across the menstrual 
cycle in young healthy women. J. Clin. Endocrinol. Metab. 81, 728–735. https​://doi.org/10.1210/jcem.81.2.86362​95 (1996).

	53.	 Deboer, T. Brain temperature dependent changes in the electroencephalogram power spectrum of humans and animals. J. Sleep 
Res. 7, 254–262. https​://doi.org/10.1046/j.1365-2869.1998.00125​.x (1998).

	54.	 Vanhatalo, S., Voipio, J. & Kaila, K. Full-band EEG (FbEEG): an emerging standard in electroencephalography. Clin. Neurophysiol. 
116, 1–8. https​://doi.org/10.1016/j.clinp​h.2004.09.015 (2005).

	55.	 Cattell, R. Culture Free Intelligence Test, Scale 1, Handbook (Institute of Personality and Ability Testing, Champaign, IL, 1949).
	56.	 Cattell, R. B., Krug, S. E. & Barton, K. Technical Supplement for the Culture Fair Intelligence Tests, Scales 2 and 3 (IPAT, Champaign, 

IL, 1973).
	57.	 Raven, J., Raven, J. C. & Court, J. H. Manual for Raven’s Progressive Matrices and Vocabulary Scales (Harcourt Assessment, San 

Antonio, TX, 2004).
	58.	 Cattell, R. B. & Cattell, A. K. S. Measuring Intelligence with the Culture Fair Tests (IPAT, Champaign, IL, 1973).
	59.	 Duncan, J. et al. A neural basis for general intelligence. Science 289, 457–460. https​://doi.org/10.1126/scien​ce.289.5478.457 (2000).
	60.	 Prokosch, M. D., Yeo, R. A. & Miller, G. F. Intelligence tests with higher g-loadings show higher correlations with body symmetry: 

evidence for a general fitness factor mediated by developmental stability. Intelligence 33, 203–213. https​://doi.org/10.1016/j.intel​
l.2004.07.007 (2005).

	61.	 Jasper, H. H. Report of the committee on methods of clinical examination in electroencephalography. Electroencephalogr. Clin. 
Neurophysiol. 10, 370–375. https​://doi.org/10.1016/0013-4694(58)90053​-1 (1958).

	62.	 Berry, R. B. et al. The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specification. 
Version 2.5 (American Academy of Sleep Medicine, Darien, IL, 2018).

	63.	 Achermann, P. & Borbély, A. A. Low-frequency (< 1 Hz) oscillations in the human sleep electroencephalogram. Neuroscience 81, 
213–222. https​://doi.org/10.1016/S0306​-4522(97)00186​-3 (1997).

	64.	 Vasko, R. C. Jr. et al. Power spectral analysis of EEG in a multiple-bedroom, multiple-polygraph sleep laboratory. Int. J. Med. Inform. 
46, 175–184. https​://doi.org/10.1016/s1386​-5056(97)00064​-6 (1997).

	65.	 Silver, N. C. & Dunlap, W. P. Averaging correlation coefficients: Should Fisher’s z transformation be used?. J. Appl. Psychol. 72, 
146–148. https​://doi.org/10.1037/0021-9010.72.1.146 (1987).

	66.	 Duffy, F. H. et al. Quantified neurophysiology with mapping: statistical inference, exploratory and confirmatory data analysis. 
Brain Topogr. 3, 3–12. https​://doi.org/10.1007/bf011​28856​ (1990).

	67.	 Rüger, B. Das maximale Signifikanziniveau des tests: “Lehne H0 ab, wenn k unter n gegebene Tests zur ablehnung führen”. Metrika 
25, 171–178. https​://doi.org/10.1007/bf022​04362​ (1978).

	68.	 Hassainia, F., Petit, D. & Montplaisir, J. Significance probability mapping: the final touch in t-statistic mapping. Brain Topogr. 7, 
3–8. https​://doi.org/10.1007/bf011​84832​ (1994).

Acknowledgements
We would like to thank Mensa Germany and Mensa Hungary for their help in volunteer recruitment and Bence 
Schneider for his help in FOOOF analyses. Research supported by the Hungarian Medical Research Council 
(ETT-162/2003; https​://ett.aeek.hu/en/secre​taria​t/), the Hungarian National Research, Development and Innova-
tion Office (K-128117; https​://nkfih​.gov.hu/about​-the-offic​e), the Bial Foundation (https​://www.bial.com/com/
bial-found​ation​/) the Higher Education Institutional Excellence Program of the Ministry of Human Capacities 
in Hungary, within the framework of the Neurology thematic program of the Semmelweis University (http://
semme​lweis​.hu/engli​sh/), the Netherlands Organization for Scientific Research (NWO; https​://www.nwo.nl/en), 
the European Cooperation in Science and Technology (COST Action CA18106; https​://www.cost.eu/), as well 
as the general budgets of the Institute of Behavioural Sciences, Semmelweis University (http://semme​lweis​.hu/
magtu​d/en/) and the Max Planck Institute of Psychiatry (https​://www.psych​.mpg.de/en). The funders had no role 
in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

https://doi.org/10.1523/JNEUROSCI.1857-14.2014
https://doi.org/10.1523/JNEUROSCI.1857-14.2014
https://doi.org/10.1055/s-0038-1635488
https://doi.org/10.1097/00004691-199010000-00007
https://doi.org/10.1097/00004691-199010000-00007
https://doi.org/10.1016/0013-4694(81)90225-x
https://doi.org/10.1016/S0893-133X(01)00320-7
https://doi.org/10.1111/jsr.12123
https://doi.org/10.1111/jsr.12279
https://doi.org/10.1016/j.neuroimage.2006.03.017
https://doi.org/10.1109/TAU.1967.1161901
https://doi.org/10.1111/j.1365-2869.2007.00594.x
https://doi.org/10.1093/brain/awf021
https://doi.org/10.1016/j.neuroimage.2017.06.078
https://doi.org/10.1016/j.brainresbull.2010.12.005
https://doi.org/10.1038/nn.3324
https://doi.org/10.1093/cercor/bht188
https://doi.org/10.1155/2016/6936381
https://doi.org/10.1155/2016/6936381
https://doi.org/10.1210/jcem.81.2.8636295
https://doi.org/10.1046/j.1365-2869.1998.00125.x
https://doi.org/10.1016/j.clinph.2004.09.015
https://doi.org/10.1126/science.289.5478.457
https://doi.org/10.1016/j.intell.2004.07.007
https://doi.org/10.1016/j.intell.2004.07.007
https://doi.org/10.1016/0013-4694(58)90053-1
https://doi.org/10.1016/S0306-4522(97)00186-3
https://doi.org/10.1016/s1386-5056(97)00064-6
https://doi.org/10.1037/0021-9010.72.1.146
https://doi.org/10.1007/bf01128856
https://doi.org/10.1007/bf02204362
https://doi.org/10.1007/bf01184832
https://ett.aeek.hu/en/secretariat/
https://nkfih.gov.hu/about-the-office
https://www.bial.com/com/bial-foundation/
https://www.bial.com/com/bial-foundation/
http://semmelweis.hu/english/
http://semmelweis.hu/english/
https://www.nwo.nl/en
https://www.cost.eu/
http://semmelweis.hu/magtud/en/
http://semmelweis.hu/magtud/en/
https://www.psych.mpg.de/en


18

Vol:.(1234567890)

Scientific Reports |         (2021) 11:2041  | https://doi.org/10.1038/s41598-021-81230-7

www.nature.com/scientificreports/

Author contributions
R.B. and O.S. conceived the study. R.B., P.S. M.Z., M.D. acquired data. R.B., O.S., C.H., P.P.U., F.G., A.P. analyzed 
data. All authors contributed to the interpretation of the findings as well as to the writing and revision of the 
manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https​://doi.
org/10.1038/s4159​8-021-81230​-7.

Correspondence and requests for materials should be addressed to R.B.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

© The Author(s) 2021

https://doi.org/10.1038/s41598-021-81230-7
https://doi.org/10.1038/s41598-021-81230-7
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	A set of composite, non-redundant EEG measures of NREM sleep based on the power law scaling of the Fourier spectrum
	Results
	Goodness of fit: Is the logarithm of spectral power a linear function of the logarithm of frequency? 
	Spectral peaks in the 9–18 Hz range. 
	H1: Age-associated flattening of spectral slope. 
	H2: Age-dependent decrease in spectral peak amplitude. 
	H3: No age-related increase in spectral peak frequency was found. 
	H4: Spectral intercepts, but not peak amplitudes are higher in women as compared to men. 
	H5: Women are characterized by faster sleep spindles. 
	H6: IQ correlates positively with spectral peak amplitude in women. 
	H7: Do age-related flattenings of spectral slopes differ among subjects with average and high IQ? 
	Overcoming model redundancy by determining the alternative intercept of the spectra. 

	Discussion
	Methods
	Subjectsdatabases. 
	Psychometric intelligence. 
	Polysomnography recordings. 
	Power spectral analysis. 
	Estimation of the spectral intercepts and slopes. 
	Estimation of the spectral peak frequencies. 
	Estimation of the spectral peak amplitudes. 
	Antero-posterior changes in prevailing spectral peak frequency. 
	FOOOF analyses. 
	Statistical analyses. 

	Ethical statements. 

	References
	Acknowledgements


