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a b s t r a c t 

Human epidermal growth factor receptor 3 (HER3) is a unique member of the human epidermal growth factor 

receptor (HER/EGFR) family, since it has negligible kinase activity. Therefore, HER3 must interact with a kinase- 

proficient receptor to form a heterodimer, leading to the activation of signaling cascades. Overexpression of HER3 

is observed in various human cancers, including non-small cell lung cancer (NSCLC), and correlates with poor 

clinical outcomes in patients. Studies on the underlying mechanism demonstrate that HER3-initiated signaling 

promotes tumor metastasis and causes treatment failure in human cancers. Upregulation of HER3 is frequently 

observed in EGFR -mutant NSCLC treated with EGFR-tyrosine kinase inhibitors (TKIs). Increased expression of 

HER3 triggers the so-called EGFR-independent mechanism via interactions with other receptors to activate “by- 

pass signaling pathways ”, thereby resulting in resistance to EGFR-TKIs. To date, no HER3-targeted therapy has 

been approved for cancer treatment. In both preclinical and clinical studies, targeting HER3 with a blocking an- 

tibody (Ab) is the only strategy being examined. Recent evaluations of an anti-HER3 Ab-drug conjugate (ADC) 

show promising results in patients with EGFR-TKI-resistant NSCLC. Herein, we summarize our understanding of 

the unique biology of HER3 in NSCLC refractory to EGFR-TKIs, with a focus on its dimerization partners and 

subsequent activation of signaling pathways. We also discuss the latest development of the therapeutic Abs and 

ADCs targeting HER3 to abrogate EGFR-TKI resistance in NSCLC. 
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Human epidermal growth factor receptor 3 (HER3 or erbB3) belongs

o the human epidermal growth factor receptor (HER) family, which also

ncludes the epidermal growth factor receptor (EGFR, HER1/erbB1),

ER2 (erbB2), and HER4 (erbB4). The HER receptors are arguably

he most characterized receptor tyrosine kinases (RTKs) contributing

o both normal cell development and tumorigenesis. 1 , 2 They are com-

only overexpressed in human cancers and play important roles in tu-

or initiation and progression. 3 , 4 Both EGFR and HER2 are excellent

argets and a number of targeted therapies against EGFR and/or HER2

ave been successfully used in the clinic to treat cancer patients. Un-

ike other family members, HER3 has negligible kinase activity. 5–7 Stud-

es on the biology of HER3 indicate that activation of HER3 signaling

romotes tumor progression via enhancement of metastatic potential

nd induction of treatment failure in human cancers. 8–10 Increasing ev-

dence supports HER3 as an attractive target and inhibition of HER3 is

hought to be required to overcome therapeutic resistance, enhance effi-

acy, and increase patient survival. 9 , 11–13 To date, there is no Food and

rug Administration (FDA)-approved HER3-targeted therapy for cancer
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reatment. Targeting HER3 with a blocking antibody (Ab) is the major

trategy currently being examined in both preclinical studies and clinical

valuations. 9 , 11 , 14 A recent report of phase I trial shows that the HER3

b-drug conjugate (ADC, patritumab deruxtecan, U3-1402, HER3-DXd)

xhibits a good safety profile and provides meaningful benefit in pa-

ients with EGFR-tyrosine kinase inhibitor (TKI)-resistant non-small cell

ung cancer (NSCLC). 15 In this review, we describe our current knowl-

dge of HER3 dimerization with a kinase-proficient receptor to activate

bypass signaling pathways ”, thereby resulting in resistance to EGFR-

KIs in NSCLC. We also discuss the latest development of HER3-targeted

herapy, including monoclonal and bispecific Abs as well as ADCs to ab-

ogate EGFR-TKI resistance. 

levated expression of HER3 causes EGFR-TKI resistance to 

romote NSCLC progression 

Immunohistochemistry analyses of clinical samples indicate that

verexpression of HER3 is associated with worse overall survival in

atients with various human cancers, including colorectal cancer, gas-

ric cancer, breast cancer, melanoma, ovarian cancer, head and neck
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ancer, pancreatic cancer, and cervical cancer. 16 Elevated expression

f HER3 is also frequently observed in NSCLC and has been corre-

ated with a poor prognosis and increased risk of metastasis in the

atients. 17–19 It is well-documented that HER3-initiated signaling pro-

otes cancer progression mainly through two mechanisms of action:

nhancement of metastatic potential of tumor cells and induction of

rug resistance in cancer treatment. 8–10 HER3 expression has been im-

licated as a major cause of treatment failure in cancer therapy. 10 , 20 Ac-

ivation of HER3 signaling contributes to the drug-resistant phenotypes

f HER2-positive breast cancer, 21 , 22 castration-resistant prostate can-

er, 23 and platinum-resistant/refractory ovarian cancer. 24 , 25 Accumu-

ating evidence supports a crucial role of HER3 in the development of re-

istance to EGFR-targeted therapy in NSCLC. 26–29 It has been shown that

GFR-TKIs, including the first-generation TKIs gefitinib and erlotinib

nd the third-generation TKI osimertinib, can induce HER3 expression

uring the treatment of EGFR -mutant NSCLC. The compensatory upreg-

lation of HER3 triggers the activation of “bypass signaling pathways ”

ia an EGFR-independent mechanism, 26 , 27 , 30 thereby resulting in resis-

ance to gefitinib, 31 , 32 erlotinib, 33 , 34 and osimertinib. 35–37 These data

uggest that elevated expression of HER3 induces EGFR-TKI resistance

o promote NSCLC progression. Gene amplification of HER3 is rare in

SCLC. 19 The underlying mechanisms of HER3 overexpression and its

daptive induction by EGFR-TKIs remain elusive. A recent study showed

hat osimertinib upregulated HER3 via an inositol-requiring enzyme

 𝛼 (IRE1 𝛼)-dependent mechanism in NSCLC cells; 37 however, different

GFR-TKIs may utilize distinct mechanisms to induce HER3 expression.

hile overexpression of HER2 has been shown to negatively impact the

ffectiveness of EGFR-TKIs in a subgroup of NSCLC patients with EGFR -

utant tumors, 38 , 39 it is currently unclear if HER3 has the potential to

erve as a predictive biomarker for the efficacy of EGFR-TKIs in NSCLC.

ER3 forms dimerization with kinase-proficient receptors to 

ctivate “bypass signaling pathways ”, resulting in resistance to 

GFR-TKIs in NSCLC 

HER3 is unique among the HER family members. Unlike EGFR,

ER2, and HER4, HER3 has limited intrinsic kinase activity. 5–7 Thus,

ER3 must interact with a kinase-proficient receptor to form het-

rodimers. This interaction leads to the activation of multiple signaling

ascades, thereby promoting cell proliferation and survival. 8–10 EGFR

nd HER2 are the most preferred dimerization partners for HER3 to

ctivate downstream signaling pathways. 9 While clinical analysis con-

rms that overexpression of HER3 significantly correlates with worse

verall survival in patients with various solid tumors, it also suggests

hat the influence of HER3 expression on patient survival may be

reater in tumors with overexpression of HER2. 16 These data reveal

hat heterodimerization of HER2/HER3 plays a pivotal role in cancer

rogression, further emphasizing the importance of understanding the

nique features of HER3 dimerization with a kinase-proficient RTK in

ancer biology. Gene amplification and/or overexpression of several

TKs, including mesenchymal–epithelial transition (MET) factor, also

nown as hepatocyte growth factor receptor (HGFR), wild-type EGFR,

ER2, HER3 and Axl (tyrosine-protein kinase receptor UFO, a member

f the TAM family that also includes TYRO3 and myeloid-epithelial-

eproductive tyrosine kinase (MERTK) have been observed in NSCLC

ells with acquired resistance to EGFR-TKIs. 28 , 30 , 40–44 In studying the

nderlying mechanisms through which increased HER3 causes resis-

ance to EGFR-TKIs, HER3 has been found to interact with some of those

TKs, leading to activation of the so-called “bypass signaling pathways ”

n EGFR-TKI refractory NSCLC. Heterodimerization of EGFR/HER3 and

ER2/HER3-stimulated by the HER3 ligand heregulin (HRG) critically

ontributes to EGFR-TKI (gefitinib) resistance in NSCLC, while inhibi-

ion of HRG production potently suppresses HER3 signaling and signif-

cantly enhances the efficacy of gefitinib in NSCLC. 45 Elevated levels

f HRG were observed in the plasma of NSCLC patients who had re-
12 
eived the EGFR-TKI erlotinib. 46 Increased HRG seemed to induce re-

istance to the first-generation EGFR-TKIs (gefitinib or erlotinib), but

ot the second-generation EGFR-TKI (afatinib, a pan-HER family in-

ibitor). 46 , 47 In addition to HRG, activation of the G-protein-coupled

eceptors bombesin receptor (BnR) and PAC1 can also promote the

ormation of the EGFR/HER3 and HER2/HER3 heterodimers, thereby

timulating the growth of NSCLC cells mainly through the phospho-

nositide 3-kinase (PI-3K)/protein kinase B (Akt) and mitogen-activated

rotein kinase kinase (MEK)/mitogen-activated protein kinase (MAPK)

ignaling pathways. 48 , 49 Interestingly, recent studies show that over-

xpression of DARRP-32 (dopamine- and cyclic-adenosine monophos-

hate [AMP]-regulated phosphoprotein of molecular weight 32,000) in-

reases EGFR/HER3 heterodimers to promote HER3-dependent gefitinib

esistance in gastric cancer 50 and NSCLC. 51 MET gene amplification

r protein overexpression has become an important resistance mech-

nism to multiple EGFR-TKIs in EGFR -mutant NSCLC. 31 , 52 , 53 Inhibition

f MET has been actively evaluated as an effective strategy in combina-

ion with EGFR-TKIs to overcome therapeutic resistance. 41 , 43 , 54 How-

ver, MET does not work in isolation and can form heterodimers with

GFR, HER2, HER3, or rearranged during transfection (RET) in lung

ancer with MET amplification. 55 Elevated expression of MET interacts

ith and activates HER3 in NSCLC cell lines and/or tumor specimens

esistant to gefitinib or erlotinib. 31 , 56 Axl is another RTK whose expres-

ion is upregulated in osimertinib-resistant NSCLC cell lines and tumor

amples. 57 It has been shown that activation of Axl via its interaction

ith EGFR and HER3 results in intrinsic and acquired resistance to os-

mertinib. 58 

In addition, numerous studies reveal that activation or overex-

ression of insulin-like growth factor-1 receptor (IGF-1R) or fibrob-

ast growth factor receptor 1 (FGFR1) plays an important role in the

cquired resistance to EGFR-TKIs in NSCLC. 27 , 59–62 HER3 has been

hown to interact with IGF-1R in herceptin-resistant breast cancer

ells 63 and with FGFR3 in glioblastoma. 64 Currently, it is unclear if

ER3 may also form heterodimers with IGF-1R or FGFR3 in NSCLC to

ause EGFR-TKI resistance. To bypass EGFR signaling, HER3-containing

eterodimers activate multiple signaling pathways, including the PI-

K/Akt, MEK/extracellular regulated protein kinases (ERK), and Janus

inase (JAK)/signal transducer and activator of transcription 3 (STAT3)

athways [ Fig. 1 ], resulting in resistance to EGFR-TKIs in NSCLC. 30 , 41 , 43 

he PI-3K/Akt signaling pathway is a well-known survival pathway,

eading to multi-drug resistance in a wide variety of human cancers.

ounting evidence indicates that activation of the MEK/ERK signal-

ng pathway seems to play a crucial role in NSCLC resistant to EGFR-

KIs. 26 , 40 , 65 Indeed, inhibition of MEK or ERK not only abrogates ac-

uired resistance to EGFR-TKIs, but also delays the acquisition of the

esistant phenotype in NSCLC. 66–68 Current clinical trials are testing the

fficacy of a MEK inhibitor in combination with an EGFR-TKI in NSCLC

atients. 

herapeutic antibodies and ADCs targeting HER3 to abrogate the 

esistance to EGFR-TKIs in NSCLC 

Effective inhibition of HER3 signaling is believed to be required to

vercome resistance, enhance efficacy, and increase patient survival.

ue to its lack of or impaired kinase activity 5–7 , HER3 is rarely tar-

eted by small-molecule inhibitors. Targeting HER3 with a blocking Ab

s the major therapeutic strategy currently under both preclinical and

linical evaluations. 9 , 11 , 14 A number of anti-HER3 Abs, including mono-

lonal Ab (mAb) and HER3-containing heterodimer-targeting bispecific

b, 33 , 69 show antitumor activity in laboratory studies of various cancer

ypes and some of them have been tested in clinical evaluations. 9 , 70 , 71 

ere, we focus on the recent development of mAbs, bispecific Abs, and

DCs that are directly against HER3 in NSCLC, especially those refrac-

ory to EGFR-TKIs. Table 1 lists the ongoing clinical trials testing the

fficacy of HER3-targeted therapeutic Abs and ADCs in cancer patients.
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Table 1 

Ongoing clinical trials of HER3-targeted ADCs or Abs in patients with various cancers (ClinicalTrials.gov). 

Abs Targets Trial phases 

Clinicaltrials.gov 

identifier Cancer types Sponsor 

ADCs 

U3-1402/HER3-DXd HER3 Early phase I NCT04610528 Breast cancer SOLTI Breast Cancer Research Group 

U3-1402 HER3 Phase II NCT04699630 Advanced/metastatic 

breast cancer 

SCRI Development Innovations, LLC 

U3-1402 HER3 Phase II NCT04965766 Advanced/metastatic 

breast cancer 

Gustave Roussy, Cancer Campus, Grand 

Paris 

U3-1402 HER3 Phase I/II NCT02980341 HER3-positive metastatic 

breast cancer 

Daiichi Sankyo Co., Ltd. 

U3-1402 HER3 Phase I NCT03260491 Metastatic NSCLC Daiichi Sankyo, Inc. 

U3-1402 HER3 Phase II NCT04619004 Metastatic EGFR -mutated 

NSCLC 

Daiichi Sankyo, Inc. 

U3-1402 ( + osimertinib) HER3 Phase I NCT04676477 Metastatic EGFR -mutated 

NSCLC 

Daiichi Sankyo, Inc. 

U3-1402 HER3 Phase III NCT05338970 Metastatic EGFR -mutated 

NSCLC after EGFR-TKI 

Daiichi Sankyo, Inc. 

mAbs 

MM-121/seribantumab HER3 Phase II NCT04383210 Advanced solid tumors 

with HRG gene fusion 

Elevation Oncology 

HMBD-001 HER3 Phase I/II NCT05057013 Advanced solid tumors 

with HER3 expression 

Cancer Research UK 

SIBP-03 HER3 Phase I NCT05203601 Advanced solid tumors 

(head & neck and breast 

cancer) 

Shanghai Institute of Biological Products 

Bispecific Abs 

MCLA-128/zenocutuzumab HER2/HER3 Phase II NCT02912949 Advanced solid tumors 

with HRG gene fusion 

Merus N.V. 

MCLA-128 HER2/HER3 Expanded access NCT04100694 Advanced solid tumors 

with HRG gene fusion 

Merus N.V. 

MCLA-128 HER2/HER3 Phase II NCT03321981 Metastatic breast cancer Merus N.V. 

Abs: Antibodies; ADCs: Ab-drug conjugates; EGFR: Epidermal growth factor receptor; HER: Human epidermal growth factor receptor; mAb: Monoclonal Ab; NSCLC: 

Non-small cell lung cancer; TKI: Tyrosine kinase inhibitor. 
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ER3-targeted therapeutic Abs 

Among many anti-HER3 mAbs being investigated in a wide variety

f human cancers, three of them (patritumab, seribantumab, and

umretuzumab) are most studied in preclinical investigations and show

ntitumor activity in different phases of clinical trials. 15 Patritumab

also known as U3-1287/AMG-888) is a fully humanized anti-HER3 im-

unoglobulin G (IgG) 1 mAb that has been clinically tested in patients

ith advanced solid tumors, including NSCLC. 71 Patritumab exhibits

otent inhibitory effects on cell proliferation and survival in both in

itro and in vivo xenograft models of human cancers, including NSCLC. 34 

t has been shown that patritumab is able to abrogate HRG (the ligand

or HER3)-mediated resistance to EGFR-TKIs in the models of colorectal

ancer and NSCLC, 34 , 72 suggesting that this Ab’s antitumor activity de-

ends on the expression levels of HRG. Indeed, circulating levels of HRG

eem to serve as a predictive biomarker for the efficacy of patritumab

n combination with EGFR-TKIs in clinical trials of NSCLC patients. 73–75 

eribantumab (or MM-121) is a fully human anti-HER3 IgG2 mAb with

he capability to block HRG binding to HER3, thus preventing HER3

imerization with another RTK and inhibiting downstream signaling.

long with others, we have shown that seribantumab exerts potent anti-

umor activity in preclinical studies of various human cancers, including

ER2-positive breast cancer and NSCLC. 76–79 Further studies found that

eribantumab was the most effective in repressing the growth of the

umors with ligand-dependent activation of HER3 in in vivo xenograft

odels, and it abrogated gefitinib resistance-induced by exogenous

RG in EGFR -mutant NSCLC cells. 76 These data are consistent with

ecent observations that higher HRG mRNA and low HER2 levels pre-

ict that the addition of seribantumab to a standard of care in patients

ith platinum-resistant ovarian cancer, hormone receptor-positive

ER2-low breast cancer, or EGFR wild-type NSCLC will be benefi-

ial. 80 , 81 Another humanized anti-HER3 IgG1 mAb, lumretuzumab
13 
RG7116) effectively blocks HRG binding with high-affinity binding to

he extracellular domain of HER3. 82 It is a glycoengineered mAb which

nhanced antibody-dependent cell-mediated cytotoxicity (ADCC) activ-

ty. 83 A phase I trial reported that lumretuzumab was well tolerated and

howed evidence of clinical activity. 84 However, recent studies revealed

hat the combinations of lumretuzumab and an EGFR-targeted therapy,

etuximab or erlotinib, exhibited minimal clinical benefit in patients

ith various cancers, although the toxicity profile of the combinations 

as manageable. 85 

A newly developed anti-HER3 mAb GSK2849330 is a humanized

gG1/IgG3. It specifically binds to the extracellular domain III of

ER3 with high affinity, preventing HRG binding to HER3, and subse-

uently blocks receptor dimerization and downstream signaling. In stud-

es of HER3-expressing cancer cell lines, GSK2849330 showed potent

nti-proliferative/anti-survival effects via enhanced ADCC and com-

lement ‐dependent cytotoxicity (CDC) activity. 86 The promising find-

ngs prompted a phase I clinical trial of GSK2849330 in patients with

ER3 ‐positive solid tumors. A favorable safety profile was observed. 87 

ost adverse events (AEs), including diarrhea (66%), fatigue (62%),

nd decreased appetite (31%)-caused by GSK2849330 were Grade 1

r 2. But the antitumor activity of this Ab as a monotherapy in pa-

ients was minimal. Despite this, an exceptional response was seen in

n NSCLC patient with CD74 ‐HRG ‐fusion. 87 It is currently unclear if

RG ‐fusions may serve as a useful biomarker for patient selection to fur-

her evaluate the efficacy of GSK2849330. HMBD-001 is a unique anti-

ER3 IgG1 mAb. It inhibits both ligand-dependent and -independent

ER3 activation via high-affinity binding to the HER3 dimerization in-

erface. It is designed to block the formation of all HER3-containing

eterodimers, regardless of ligand binding or HER2/EGFR overexpres-

ion. Preclinical studies indicate that HMBD-001 exerts robust and

ustained antitumor activity in multiple HER3-positive cancer mod-

ls, including those with HRG -fusions. 88 Ongoing phase I/II clinical
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Fig. 1. Diagram of HER3 signaling-mediated promotion of NSCLC cell prolifer- 

ation and survival. Increased expression of HER3 interacts with EGFR, HER2, 

MET, AXL, or IGF-1R to form heterodimers, which in turn activate multiple 

signal transduction pathways, thereby increasing the growth and survival of 

NSCLC cells. Created with biorender.com. Akt: Protein kinase B; AXL: Tyrosine- 

protein kinase receptor UFO; EGFR: Epidermal growth factor receptor; ERK: 

Extracellular regulated protein kinase; HER: Human epidermal growth factor 

receptor; IGF-1R: Insulin-like growth factor-1 receptor; JAK2: Janus kinase 2; 

MEK: Mitogen-activated protein kinase kinase; MET: Mesenchymal–epithelial 

transition; NSCLC: Non-small cell lung cancer; PI-3K: Phosphoinositide 3-kinase; 

P: Phosphorylation; STAT3: Signal transducer and activator of transcription 3. 
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rials (NCT05057013) aim to test the safety and efficacy of HMBD-

01 in patients with advanced HER3 ‐positive solid tumors, including

SCLC. In addition, a recently generated murine mAb33 against hu-

an HER3 shows the potential to prevent or overcome EGFR-TKI resis-

ance. The mAb33 in combination with the anti-EGFR mAb cetuximab

nd anti-HER2 mAb trastuzumab (3xmAbs) promotes the degradation

f EGFR/HER2/HER3 and induces cellular senescence. Moreover, com-

inations of the 3xmAbs with osimertinib exhibit synergistic effects to

liminate tumors. Thus, the 3xmAbs, either alone or in combination

ith EGFR-TKIs, potentially attenuate the emergence of resistance to

GFR-TKIs. 89 Interestingly, mAb33, when combined with both osimer-

inib and cetuximab, is also able to block the emergence of osimer-

inib resistance, suggesting that the combinations of mAb33, osimer-

inib, and cetuximab likely prevent osimertinib-induced upregulation of

ER3. 90 These novel combinations may offer opportunities to prevent or

vercome EGFR-TKI resistance; however, their clinical activity remains 

nknown. 

Several bispecific Abs targeting HER3-containing heterodimers have

een reported. 9 , 11 Among them, MCLA-128 (zenocutuzumab) seems

o be the most studied HER2/HER3 bispecific Ab. It is a human-

zed IgG1 with two distinct Fab arms simultaneously targeting the

xtracellular domains of HER2 and HER3. 91 MCLA-128 showed a

ood safety profile and was well tolerated in clinical evaluations

f patients with metastatic breast cancer. 92 This Ab-related diarrhea

all Grade 1 or 2) was observed in about 20% of patients. Recent

tudies reveal that MCLA-128 exhibits potent antitumor activity in

RG gene fusion-positive cell lines and/or patient-derived xenograft

PDX) models of lung, breast, ovarian, and pancreatic cancers. More-

ver, MCLA-128 treatment achieves rapid responses in two patients

ith ATP1B1-HRG fusion-positive pancreatic cancer and partial re-

ponse in a patient with CD74-HRG fusion-positive NSCLC. 93 Cur-
14 
ently, three clinical trials are ongoing to test the therapeutic effi-

acy of MCLA-128 in patients with advanced solid tumors with HRG

earrangements. 

ER3-targeted ADCs 

Preclinical studies reveal that the majority of the anti-HER3 Abs po-

ently induce growth inhibition and/or cell death in various cancers,

specially in those with high HRG expression levels, and some of them

emonstrate favorable toxicity profiles in clinical evaluations. However,

he therapeutic efficacy of the anti-HER3 mAbs has been limited in the

linical trials of patients with solid tumors, including NSCLC. 9 , 14 As a re-

ult, the clinical development for most of the anti-HER3 mAbs has been

iscontinued. There are only a couple of active studies of the newly

eveloped HER3 mAbs in the early phases of clinical trials [Table 1] .

he underlying mechanisms of this discrepancy between preclinical and

linical antitumor activities of the anti-HER3 mAbs remain unclear. The

ajority of the anti-HER3 mAbs are able to delay tumor growth, but

ot shrink the tumors in xenografted mouse models. This suggests that

lthough targeting HER3 with a blocking Ab by itself may not be ef-

ective, it is still a good strategy for cancer treatment, despite possibly

equiring modification through drug conjugation. 14 The recent devel-

pment of the HER3 ADC provides a new avenue to identify effective

ER3-targeted therapy for human cancers, including NSCLC. 9 , 94 , 95 

Patritumab deruxtecan (HER3-DXd or U3-1402) is a novel anti-HER3

DC that is composed of the mAb patritumab, a tetrapeptide-based

inker, and the topoisomerase I inhibitor DX-8951 (exatecan) derivative

DXd). 96 It has been shown that HER3-DXd specifically binds to mem-

rane HER3 with high efficiency to trigger internalization into cells.

ubsequently, HER3-DXd releases its payload DXd upon linker cleav-

ge, thereby promoting apoptosis via DNA damage. 96 Preclinical stud-

es indicate that HER3-DXd exerts potent antitumor activity in cell line-

erived xenograft (CDX) and PDX models of breast cancer, NSCLC, colon

ancer, and gastric cancer with HER3 expression. 96–98 A recent analysis

f the paired NSCLC samples showed that the expression of HER3 was

ncreased in EGFR -mutant tumors with acquired resistance to EGFR-TKIs

s compared to those of the paired pretreatment tumor samples, support-

ng the rationale to examine the antitumor activity of HER3-DXd and/or

simertinib in EGFR -mutant NSCLC cells. Indeed, in vitro studies re-

ealed that HER3-DXd in combination with osimertinib markedly inhib-

ted the proliferation of EGFR-TKI-resistant NSCLC cells with increased

xpression of HER3 . 99 Further studies were carried out by taking advan-

age of the PDX models-derived from EGFR-TKI-resistant NSCLC tumors.

retreatment of the PDX models with osimertinib increased the expres-

ion of HER3 on the cell membrane, which resulted in enhanced inter-

alization and antitumor activity of HER3-DXd. 100 Thus, both in vitro

nd in vivo studies support the notion that combinations of osimertinib

nd HER3-DXd may be a useful approach to treat EGFR -mutant NSCLC.

his strategy provides a new avenue for identifying effective therapy for

atients with EGFR -mutant NSCLC. 101 Several clinical trials have been

nitiated to evaluate the safety and antitumor activity of HER3-DXd in

atients with various human cancers, including NSCLC. In a recent phase

 clinical trial, HER3-DXd exhibited a good safety profile in patients

ith EGFR-TKI-resistant NSCLC. 15 The most common AEs-caused by

ER3-DXd were fatigue (64%) and nausea (60%). All patients ( n = 81)

ad at least one AE. The most common Grade ≥ 3 AEs were thrombo-

ytopenia (39%) and neutropenia (25%), both of them occurred early

nd transiently. While treatment was discontinued due to AEs in 9%

f patients, none of them were due to thrombocytopenia. Importantly,

reatment with HER3-DXd provided clinically meaningful efficacy in the

atients. 15 These findings support the development of HER3-DXd as a

ovel therapy to overcome EGFR-TKI resistance in NSCLC. 102 It is worth

entioning that two additional HER3-targeted ADCs (EV20-Sap and

V20/MMAF) have been developed. Both EV20-Sap and EV20/MMAF

ave been examined in preclinical models and have shown some activ-

ty against melanoma and/or breast cancer. 103–105 To date, no studies of
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V20-Sap and EV20/MMAF in NSCLC models have been reported and

here is currently no clinical evaluation of these two ADCs. 

onclusions 

HER3 has been recognized as an excellent target for cancer ther-

py. Among many HER3-targeted Abs and ADCs being actively stud-

ed in preclinical and/or clinical settings, HER3-DXd has high potential

o be developed as a promising HER3-targeted therapy for cancer pa-

ients, especially those with EGFR-TKI-resistant NSCLC. 101 , 102 Due to

he importance of increased HER3 expression in the emergence of resis-

ance to EGFR-TKIs, many studies focus on testing the antitumor activ-

ty of HER3-DXd in combination with osimertinib in EGFR-TKI-resistant

SCLC. 99 , 100 However, the molecular basis of HER3 upregulation dur-

ng EGFR-TKIs treatment remains unclear. Elucidating the underlying

echanisms will not only improve our understanding of the unique bi-

logy of HER3 in NSCLC, but also provide valuable data to facilitate

he development of novel therapy for NSCLC refractory to EGFR-TKIs.

nterestingly, recent studies show that HER3-DXd is able to induce anti-

umor immunity and enhance the efficacy of immune checkpoint block-

de against HER3 -expressing tumors, suggesting that HER3-DXd in com-

ination with immunotherapy could be a useful approach for cancer

reatment. 106 However, the scientific rationale behind this combinato-

ial effect is not fully understood. Clearly, HER3 must interact and act

n concert with another RTK to activate multiple signaling pathways,

esulting in cancer progression. Further investigations are warranted to

efine the key partners of HER3 during the process, which may assist

ith the discovery of rational drug combinations for the effective treat-

ent of human cancers. 
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