Data in brief 27 (2019) 104564

Contents lists available at ScienceDirect

Data in brief

journal homepage: www.elsevier.com/locate/dib

Data Article

Dataset on infrared spectroscopy and X-ray diffraction patterns of Mg—Al layered double hydroxides by the electrocoagulation technique

Marena Molano-Mendoza ^a, Dayana Donneys-Victoria ^a, Nilson Marriaga-Cabrales ^a, Miguel Angel Mueses ^b, Gianluca Li Puma ^c, Fiderman Machuca-Martínez ^{a, *}

^a Escuela de Ingeniería Química, Universidad del Valle, A.A. 25360 Cali, Colombia

^b Department of Chemical Engineering, Universidad de Cartagena, A.A. 1382, Postal 195, Cartagena,

Colombia

^c Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, United Kingdom

A R T I C L E I N F O

Article history: Received 6 July 2019 Received in revised form 26 August 2019 Accepted 19 September 2019 Available online 25 September 2019

Keywords: Layered double hydroxides Al and AZ31 magnesium alloy electrodes Electrochemical synthesis Electrocoagulation

ABSTRACT

The XRD profiles and FTIR analysis of sludge aggregates, Mg–Al layered double hydroxides, produced during electrocoagulation processes are presented. The data describes the composition of materials (LDH) produced at different operations conditions (atmospheric conditions and Mg²⁺/Al³⁺ ratio). The data show the diffraction peaks of (003), (006), (018) and (110) crystal planes for hydrotalcite structure.

© 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons. org/licenses/by/4.0/).

1. Data

The electrochemical method for the synthesis of Layered Double Hydroxides (LDHs) by electrocoagulation is used as an alternative procedure [1]. The LDHs are a class of anionic clays which have observed increasing attention due to their applications in many research areas [2]. Therefore, physicochemical properties of HDL materials, mainly explored from X-ray diffraction and FTIR analysis,

* Corresponding author.

E-mail addresses: fiderman.machuca@correounivalle.edu.co, fiderman@univalle.edu.co (F. Machuca-Martínez).

https://doi.org/10.1016/j.dib.2019.104564

^{2352-3409/© 2019} The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http:// creativecommons.org/licenses/by/4.0/).

Specifications Table

Subject area More specific subject area Type of data How data was acquired	Chemical Engineering Lamellar materials Table, image, graph, figure X-ray diffraction (XRD) patterns were recorded using a X'pert PRO – PANalytical diffractometer under the following conditions: 45 kV, 40 mA, monochromatic CuK α radiation ($\lambda = 0.1542$ nm) over a in the 2 θ range from of 4° to -90°. The FTIR spectra was recorded with a JASCO FT/IR-4100 over a frequency in a range of 500-4000 cm-1. The samples were prepared by mixing the
	powdered solids with KBr.
Data format	Raw data are tabulated and analyzed
Experimental factors	The XRD and FTIR analysis were performed according to the LDHs typical characterization
Experimental features	The LDH materials were prepared by electrocoagulation method with varying operations conditions and M^{2+}/M^{3+} ratio
Data source location	Universidad del Valle, Cali, Colombia
Data accessibility	The data are presented in this article
Related research article	M. Molano-Mendoza, D. Donneys-Victoria, N. Marriaga-Cabrales, M. A. Mueses, G. Li Puma and F. Machuca-Martínez, Synthesis of Mg–Al layered double hydroxides by electrocoagulation, MethodsX, Volume 5, pp. 915–923, 2018.

Value of the Data

• The data set shows the methodology to obtain *Layered Double Hydroxides (LDHs)* through electrocoagulation (EC) method varying atmospheric conditions and M²⁺/M³⁺ ratio.

• X-ray characterization discloses a "classical" 2H-polytype (*Magnesite*) of LDHs as well as common LDHs impurities. FTIR analysis indicates some interesting stretching and bending bonds that can have an effect on the type of material.

• The EC method can guide other researchers toward designing multifunctional LDHs by using other metal electrodes (Zn, Fe, Co) for environmental applications such as water/ground remediation, solar energy storage or conversion and catalysis support.

disclose their more specific applications. The dataset presents LDH characteristics prepared by electrocoagulation varying atmospheric conditions and Mg^{2+}/Al^{3+} ratio. Figs. 1–6 show the diffraction peaks of (003), (006), (018) and (110) crystal planes for hydrotalcite structure. Tables 1–6 describe information on the phases and hkl -diffraction planes. Table 7 shows the band positions in the FTIR spectra. Figs. 7–12 displays the functional groups and bonding information. Table 8 exhibits the LDH-material specifications.

1.1. X-ray diffraction

X-ray diffraction (XRD) patterns of the materials were measured using an X'pert PRO-PANalytical diffractometer with CuK α radiation ($\lambda = 0.1542$ nm). The data were collected in the 2 \circ range of 4–90°. Determination of the phases and diffraction planes were determined using X'pert PRO-PANalytical software [3]. In every case, hydrotalcite composite was showed. Some XRD and FTIR patterns of the composites were similar to those reported in the literature for hydrotalcite materials [4].

1.2. Infrared spectroscopy

The FTIR analysis was carried out in the spectral range (500–4000) cm⁻¹ by a Jasco FTIR-4100 spectrometer with a resolution of 4 cm⁻¹. The Figs. 7–12 represent the FTIR spectrum of composites and different vibrations attribution of the composites are represented in Table 7.

2. Experimental design, materials and methods

The experimental procedure is described details by Molano-Mendoza [1]. Here the protocol is provided for nitrogen experiments, giving details that were omitted from previous research article.

Fig. 1. XRD pattern of the AZ31-AZ31-1 material.

Fig. 2. XRD pattern of the AZ31-Al-N2-1 material.

Fig. 3. XRD pattern of the AZ31-Al-N2-3 material.

Fig. 4. XRD pattern of the HTX3-1 material.

Fig. 5. XRD pattern of the MgHP-1 material.

Fig. 6. XRD pattern of the MgHP-2 material.

Electrocoagulation experiments were conducted in a batch mode, using synthetic chloride solutions as supporting electrolyte. A 5.000 mg L-1 of Sodium Chloride solution was prepared by the dissolution of Sodium Chloride (AR grade) in deionized water giving an overall final conductivity of 8.4 μ s·cm⁻¹. This solution was left to dissolve for 10 min. For nitrogen experiments, the beaker was covered and stirred with a speed of 100-rpm for 3.15 h. The sample was dried in a conventional oven for 2 h at 110 °C. The dried samples were then crushed into a fine powder using a ceramic mortar/bowl.

The electrocoagulation unit consisted on two plates that worked as anodes and cathodes, AZ31 magnesium alloy, Mg or aluminum, with an immersed area of 46.6 cm² each. The distance between electrodes was 5 mm, and the solution was mixing at 100 rpm using a hot magnetic plate mixer machine. Electrodes were connected to a DC power supply and the appropriate amount of the trivalent and divalent cations were carefully added to the beaker by a manual polarity inverter unit at an applied current of 0.36 and 0.15 mA. The Mg²⁺/Al³⁺ ratio and the operating time were calculated based on Faraday's law, assuming that electro-dissolution only occurs at the anode. Before testing, electrodes were subjected to dry abrasion with emery paper No. 600 and then with abrasive paper No. 1000. Afterwards, the electrodes were rinsed with distilled water for approximately 5 min to remove traces (Table 8 describes the experimental conditions).

The following units were obtained beforehand and thoroughly cleaned:

- Digital scale
- Glass beaker (size: 1000 ml)
- Magnetic hotplate stirrer

Table 1 X-ray diffraction planes related to the AZ31-AZ31_(1)_MMH material.

Magnesium Aluminium Hyd	lroxide Carbonate Hydrate (0.5%)	Hydrotalcite (0.5	Hydrotalcite (0.5%)		Carbon (97.6%))	Doyleite (0.2%)	
JCPDS: 98-004-0937 Lattice parameters (Å):		JCPDS: 98-000-6183 Lattice parameters (Å):		JCPDS: 98-003-1976 Lattice parameters (Å):		JCPDS: 98-006-6643 Lattice parameters (Å):		JCPDS: 98-004-9607 Lattice parameters (Å):	
a b c	3.0810 3.0810 23.784	a b c	3.054 3.054 22.81	a b c	14.26 14.26 14.26	a b c	4.314 4.314 12.775	a b c	4.983 5.000 5.168
2 Theta degree	hkl	2 Theta degree	Hkl	2 Theta degree	Hkl	2 Theta degree	Hkl	2 Theta degree	Hkl
11.154 22.409 34.419 36.892 38.657 45.651 45.738 61.243 61.393	0 0 3 0 0 6 0 1 2 1 0 4 0 1 5 0 1 8 0 0 12 1 1 3 1 0 13	11.630 23.382 34.098 34.792 35.390 37.455 39.343 46.811 60.593 60.868 61.933 63.596	$\begin{array}{c} 0 \ 0 \ 3 \\ 0 \ 0 \ 6 \\ 1 \ 0 \ 1 \ 2 \\ 0 \ 0 \ 9 \\ 1 \ 0 \ 4 \\ 0 \ 1 \ 5 \\ 0 \ 1 \ 8 \\ 1 \ 1 \ 0 \\ 0 \ 0 \ 15 \\ 1 \ 1 \ 3 \\ 1 \ 0 \ 13 \end{array}$	10.737 17.578 20.643 21.570 35.583 37.273 37.825 39.956 45.382 45.850 47.687 60.893 62.033 63.910	$\begin{array}{c} 1 \ 1 \ 1 \\ 0 \ 2 \ 2 \\ 1 \ 1 \ 3 \\ 2 \ 2 \ 2 \\ 0 \ 4 \ 4 \\ 1 \ 3 \ 5 \\ 0 \ 0 \ 6 \\ 0 \ 2 \ 6 \\ 1 \ 1 \ 7 \\ 0 \ 4 \ 6 \\ 2 \ 4 \ 6 \\ 4 \ 6 \ 6 \\ 1 \ 3 \ 9 \\ 4 \ 4 \ 8 \end{array}$	37.00 47.192 61.105 63.276	104 113 116 018	18.560 20.731 21.263 21.723 22.926 23.779 35.526 36.002 37.114 37.637 38.766 46.031 46.242 60.163 61.920 63.865	$\begin{array}{c} 0 \ 0 \ 1 \\ 1 \ -1 \ 0 \\ 1 \ 0 \ 0 \\ 0 \ 1 \ 0 \\ 0 \ 1 \ -1 \\ 1 \ 0 \ -1 \\ 1 \ -1 \\ 0 \ 1 \ -2 \\ 1 \ -2 \ 1 \\ 0 \ 0 \ 2 \\ 2 \ -1 \ -1 \\ 1 \ -2 \ 2 \\ 1 \ -2 \ -1 \\ 2 \ -2 \ -2 \\ 2 \ 0 \ -3 \\ 1 \ -1 \ -3 \end{array}$

Carbon dioxide (0.2%)		Hydrotalcite (0.3%)		Nitrogen oxide (0.2%)		Magnesium zinc	(98.3%)	Sodium carbide (0.3%)	Magnesite (0.7%)		
JCPDS: 98-000-4 Lattice parameters	DS: 98-000-4494 JCPDS: 98-004-0936 JCPDS: 98-000-7431 JCPDS: parameters (Å): Lattice parameters (Å): Lattice parameters (Å): Lattice		JCPDS: 98-007-45 Lattice parameter	JCPDS: 98-007-4545 Lattice parameters (Å):		296 rs (Å):	JCPDS: 98-006-6646 Lattice parameters (Å):					
a	5.624	a	3.046	a	5.67	A	14.025	А	6.756	a	4.278	
b	5.624	b	3.046	b	5.67	В	14.083	В	6.756	b	4.278	
с	5.624	c	22.77	c	5.67	C	14.486	С	6.756	с	12.546	
2 Theta degree	hkl	2 Theta degree	Hkl	2 Theta degree	hkl	2 Theta degree	Hkl	2 Theta degree	hkl	2 Theta degree	Hkl	
27.447	111	11.646	003	27.220	111	12.210	002	22.777	111	27.947	012	
35.668	021	23.421	006	31.531	002	12.562	020	37.626	022	37.540	104	
39.206	112	34.194	101	35.368	021	12.611	200	61.312	024	47.716	113	
48.525	122	34.882	012	38.875	112	21.674	222			62.015	116	
61.657	123	35.447	009	48.105	122	23.201	123			64.469	018	
		37.546	104	61.105	123	23.223	213					
		39.446	015			23.437	132					
		46.922	018			23.635	321					
		47.899	0 0 12			26.893	330					
		60.768	110			27.675	024					
		60.980	0015			28.158	042					
		62.109	113			29.409	233					
		71.608	021			34.041	125					
		72.020	202			35.611	404					
		72.360	119			36.410	035					
						37.239	350					
						38.703	325					
						39.423	026					
						39.544	611					
						45.481	071					
						45.703	710					
						46.148	217					
						46.775	255					
						48.359	642					

Table 2 X-ray diffraction planes related to the Al-AZ31_N2 material.

Table 3	
X-ray diffraction planes related to the AZ31-Al-N23 m	aterial.

Hydrotalcite (20.4%) Carbon d		Carbon dioxide	(15.0%)	Brucite (1.1%)		Sodium Carbona	e (15.4%)	Magnesite (48.1%)	
JCPDS:98-000-6 Lattice parameter	6183 s (Å):	JCPDS: 98-001-3 Lattice parameter	3442 ers (Å):	JCPDS: 98-004- Lattice paramet	I-4736 JCPDS: 98-003-6631 JCPE eters (Å): Lattice parameters (Å): Latti		JCPDS: 98-0 Lattice para	JCPDS: 98-006-6646 Lattice parameters (Å):	
a b c	3.054 3.054 22.810	a b c	5.63 5.63 5.63	a b c	3.148 3.148 4.779	a b c	5.208 5.208 6.454	a b c	4.278 4.278 12.546
2 Theta degree	hkl	2 Theta degree	Hkl	2 Theta degree	Hkl	2 Theta degree	hkl	2 Theta deg	ree Hkl
11.630 23.382 34.098 35.3900 46.811 60.593 60.868 61.933	0 0 3 0 0 6 1 0 1 0 0 9 0 1 8 1 1 0 0 0 15 1 1 3	27.414 35.628 39.160 61.588	1 1 1 0 2 1 1 1 2 1 2 3	18.549 37.614 37.967 62.027	0 0 1 0 0 2 0 1 1 1 1 1	27.619 34.137 34.413 39.945 46.746 49.252 60.936 61.468 61.644	0 0 2 0 1 2 1 1 0 0 2 0 0 1 3 0 2 2 0 1 4 1 2 2 0 3 0	27.947 37.540 47.716 62.015 64.469	0 1 2 1 0 4 1 1 3 1 1 6 0 1 8

Table 4

X-ray diffraction planes related to the HTX3_1 material.

Hydrotalcite (12.	7%)	Halite (12.5%)		Brucite (0.7%)		Gibbsite (74.1%)		
JCPDS: 98-000-6 Lattice parameters (183 (Å):	JCPDS: 98-011-62 Lattice parameter	23 s (Å):	JCPDS: 98-003-4961 JCPDS: 98-0 Lattice parameters (Å): Lattice para		JCPDS: 98-008-27 Lattice parameter)8-2783 neters (Å):	
a b c	3.054 3.054 22.81	a b c	5.653 5.653 5.653	a b c	3.148 3.148 4.772	a b c	5.052 9.495 8.686	
2 Theta degree	Hkl	2 Theta degree	hkl	2 Theta degree	Hkl	2 Theta degree	Hkl	
11.630 23.382 34.792 35.390 37.455 39.343 46.811 47.810 60.593 60.868 61.933	$\begin{array}{c} 0 \ 0 \ 3 \\ 0 \ 0 \ 6 \\ 0 \ 1 \ 2 \\ 0 \ 0 \ 9 \\ 1 \ 0 \ 4 \\ 0 \ 1 \ 5 \\ 0 \ 1 \ 8 \\ 0 \ 0 \ 12 \\ 1 \ 1 \ 0 \\ 0 \ 0 \ 15 \\ 1 \ 1 \ 3 \end{array}$	27.303 31.632 45.341	1 1 1 0 0 2 0 2 2	18.577 37.671 37.979 62.040	0 0 1 0 0 2 0 1 1 1 1 1	18.675 22.393 27.054 27.736 27.819 28.669 34.984 35.509 36.989 37.871 38.269 39.315 60.580 62.015 62.493	$\begin{array}{c} 0 \ 2 \ 0 \\ 1 \ 1 \ 1 \\ 1 \ 0 \ 2 \\ 1 \ 2 \ 1 \\ 0 \ 2 \ 2 \\ 1 \ 1 \ 2 \\ 1 \ 3 \ 1 \\ 2 \ 0 \ 0 \\ 1 \ 1 \ 3 \\ 0 \ 4 \ 0 \\ 2 \ 1 \ 1 \\ 0 \ 4 \ 1 \\ 1 \ 4 \ 4 \\ 2 \ 5 \ 1 \\ 2 \ 4 \ 3 \end{array}$	

- Spatula
- Al, Mg and AZ31 alloy electrode plates
- Sodium Chloride, AR grade
- Nitrogen (N₂) gas pipeline
- DI water
- Ceramic mortar/bowl
- Emery paper No. 600 and abrasive paper No. 1000

Zinc Aluminium Hydroxi	de Chloride Hydrate (7.6%)	Magnesite (12.3	3%)	Diamond (2.3%)	Diamond (2.3%)		Sodium carbide (40.0%)		2%)	Gibbsite (32.4%)	
JCPDS: 98-005-8141 Lattice parameters (Å):		JCPDS: 98-006-6646 Lattice parameters (Å):		JCPDS: 98-005-4252 Lattice parameters (Å):		JCPDS: 98-005-6291 Lattice parameters (Å):		JCPDS: 98-000-6183 Lattice parameters (Å):		JCPDS: 98-011-2963 Lattice parameters (Å):	
a b c	3.083 3.083 23.47	a b c	4.278 4.278 12.546	a b c	4.591 4.591 4.591	a b c	6.778 6.778 12.74	a b c	3.054 3.054 22.81	a b c	8.675 5.069 12.508
2 Theta degree	hkl	2 Theta degree	Hkl	2 Theta degree	hkl	2 Theta degree	Hkl	2 Theta degree	Hkl	2 Theta degree	Hkl
11.3 22.711 34.363 38.772 45.920 58.983 62.002	0 0 3 0 0 6 0 0 9 0 1 5 0 1 8 0 0 15 1 0 13	27.947 37.540 47.716 62.015 64.469	012 104 113 116 018	39.212 48.536	002 112	23.206 27.991 36.387 37.501 38.766 46.758 47.439 48.939 50.697 61.093 61.224 61.412 61.983 64.610	$\begin{array}{c}1&1&2\\0&0&4\\1&2&3\\2&2&0\\0&2&4\\2&3&1\\0&2&6\\2&4&0\\2&3&5\\1&3&6\\0&4&4\\0&2&8\end{array}$	11.630 23.382 34.792 35.390 37.455 39.343 46.811 47.810 60.593 60.868 61.933 63.586	$\begin{array}{c} 0 \ 0 \ 3 \\ 0 \ 0 \ 6 \\ 0 \ 1 \ 2 \\ 0 \ 0 \ 9 \\ 1 \ 0 \ 4 \\ 0 \ 1 \ 5 \\ 0 \ 1 \ 5 \\ 0 \ 1 \ 5 \\ 0 \ 0 \ 1 \ 2 \\ 1 \ 1 \ 0 \\ 0 \ 0 \ 1 \ 5 \\ 1 \ 1 \ 3 \\ 1 \ 0 \ 1 \ 3 \\ \end{array}$	18.287 20.293 22.618 27.997 28.081 28.714 31.649 35.159 35.385 35.809 38.327 40.117 40.249 45.440 47.175 50.512 58.612 60.468 64.616 72.237	$\begin{array}{c} 0 \ 0 \ 2 \\ 1 \ 1 \ -1 \\ 1 \ 1 \ -2 \\ 1 \ 1 \ -3 \\ 2 \ 1 \ -1 \\ 1 \ -2 \\ 1 \ 1 \ -3 \\ 2 \ 1 \ -1 \\ 1 \ 0 \ 2 \\ 2 \ 0 \ -4 \\ 3 \ 0 \ 2 \\ 1 \ 1 \ 4 \\ 0 \ 2 \ 0 \\ 3 \ 1 \ 2 \\ 0 \ 2 \ 0 \\ 2 \ 1 \ -5 \\ 0 \ 2 \ -3 \\ 1 \ 0 \ 4 \\ 4 \ 1 \ -5 \\ 3 \ 1 \ 1 \\ 2 \ 3 \ -2 \\ 4 \ 2 \ -6 \\ 6 \ 0 \ -6 \\ 1 \ 1 \ -8 \end{array}$

Table 5X-ray diffraction planes related to the MgHP-1 material.

Magnesium Zinc (98.5%)		Magnesium Alumir Carbonate Hydrate	nium Hydroxide (0.3%)	Hydrotalcite (0.3	3%)	Sodium Carbonate (0.9%)		
JCPDS: 98-007-4 Lattice parameters	JCPDS: 98-007-4545 attice parameters (Å):		JCPDS: 98-004-0937 Lattice parameters (Å):			JCPDS: 98-003-6621 Lattice parameters (Å):		
a	14.025	a	3.045	a	3.054	a	9.015	
b	14.083	b	3.045	b	3.054	b	5.209	
с	14.48	с	22.701	с	22.81	с	6.405	
2 Theta degree	Hkl	2 Theta degree	hkl	2 Theta degree	Hkl	2 Theta degree	Hkl	
12.210	002	11.684	003	11.630	003	23.415	20-1	
12.562	020	23.492	006	23.382	006	23.762	11-1	
17.835	220	34.205	101	34.098	101	27.897	002	
23.201	123	37.580	104	34.792	012	34.408	020	
23.223	213	39.486	015	35.390	009	35.464	202	
23.492	312	48.058	0 0 12	37.455	104	36.557	31-1	
27.675	024	60.786	110	39.343	015	38.070	311	
28.413	420	61.193	0015	47.810	0012	47.893	40-2	
34.741	152	62.140	113	60.593	110	50.244	222	
40.633	620	72.053	202	60.868	0015	55.692	02-3	
45.335	453			61.933	113	58.6	22-3	
46.523	460			72.160	119	60.730	223	
47.310	172					71.203	133	
48.359	642							
50.238	516							

Table 6

Table 7

Positions of the bands (in cm-1) in the IR spectra (Figs. 7–12) [4,5].

X-ray diffraction planes related to the MgHP_Al_2 material.

Vibration/Assignme	ent	Material									
		AZ31-AZ31-1	AZ31-Al-N2	AZ31AlN2-3	HTX3-1	MgHP-1	MgHP-2				
Water and	OH stretching					3694.94	3693.01				
hydroxyl groups	Bending	3459.67	3443.28	3443.28	3450.99	3216.68	3465.46				
	Adsorbed water	1641.13	1639.2	1639.2	1641.13	1646.91	1642.09				
Nitrogen	N—H stretching		2095.28	2095.28	2098.17	2100.1	2101.06				
Carbonates	C = 0	1475.28	1501.31	1501.31			1508.06				
	v3 asymmetric stretching	1364.39 1267 675.93	1363.43	1363.2	1364.39	1360.53	1365.35				
	V_1 symmetrical stretching	1032.69	1069.33	1069.33	1073.19	1087.66	1075.12				
Others	Al-O and Mg-O deformation	1188.9			1175.4						
	Mg-O			639.2							
		557.33	598.80		589.15		544.79				
	Mg-O	447.40	452.22	452.22		412.692					
	Mg-O	378.94			367.37						

Fig. 7. IR Spectrum of the AZ31-AZ31-1 material.

Fig. 8. IR Spectrum of the AZ31-AL-N2-1 material.

Fig. 9. IR Spectrum of the AZ31-AL-N2-3 material.

Fig. 10. IR Spectrum of the HTX3-1 material.

Fig. 11. IR Spectrum of the MgHP-1 material.

Fig. 12. IR Spectrum of the MgHP-2 material.

Table 8

Sample specifications.

Sample	Electrodes	Current (A)	Temperature (°C)	Sodium Chloride (ppm)	Nitrogen gas	Mg ²⁺ /Al ³⁺ ratio
AZ31-AZ31-1	AZ31-AZ31	0.51	50	5000	_	2/1
AZ31-Al-N2-1	AZ31-AZ31	0.51	50	5000	Х	2/1
AZ31-Al-N2-3	AZ31-Al	0.51	50	5000	Х	3/1
HTX3-1	AZ31-Al	0.51	50	5000	-	
MgAl-1	Mg-Al	0.51	50	5000	-	2/1
MgAl-2	Mg-Al	0.51	50	5000	-	2/1

Acknowledgements

The authors would like to acknowledge the Universidad del Valle (Colombia) for supporting the study under Grant No. 2863: Electrocoagulation of textile industrial effluents using magnesium 'Case study of indigo carmine solutions'. The Royal Academy of Engineering -Newton Caldas Fund (United Kingdom) and Loughborough University (United Kingdom) for the financial support for the development of this research, framed in the project: Treatment of petroleum production wastewater by combined adsorption and oxidation process using double layer hydrotalcites under Grant No. IAPP1617 \ 70.

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

- M. Molano-Mendoza, D. Donneys-Victoria, N. Marriaga-Cabrales, M.A. Mueses, G. Li Puma, F. Machuca-Martínez, Synthesis of Mg-Al layered double hydroxides by electrocoagulation, MethodsX 5 (2018) 915–923.
- [2] T. Hibino, A. Tsunashima, Characterization of repeatedly reconstructed Mg Al hydrotalcite-like compounds: gradual segregation of aluminum from the structure, Chem. Mater. 20 (1998) 4055–4061.
- [3] T. Degen, M. Sadki, E. Bron, U. König, G. Nénert, The HighScore suite, Powder Diffr. 29 (Supplement S2) (2014) S13–S18.
- [4] F. Cavani, F. Trifirò, A. Vaccari, Hydrotalcite-type anionic clays: preparation, properties and applications, Catal, Today 11 (1991) 173–301.
- [5] J. Pérez-Ramirez, G. Mul, F. Kapteijn, J.A. Moulijn, A spectroscopic study of the effect of the trivalent cation on the thermal decomposition behaviour of Co-based hydrotalcites, J. Mater. Chem. 11 (2001) 2529–2536.