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While swarming behavior is regarded as a critical phenomenon in phase transition and frequently shows
the properties of a critical state such as Lévy walk, a general mechanism to explain the critical property in
swarming behavior has not yet been found. Here, we address this problem with a simple swarm model,
the Self-Propelled Particle (SPP) model, and propose a way to explain this critical behavior by introducing
agents making decisions via the data-hypothesis interaction in Bayesian inference, namely, Bayesian and
inverse Bayesian inference (BIB). We compare three SPP models, namely, the simple SPP, the SPP with
Bayesian-only inference (BO) and the SPP with BIB models. We show that only the BIB model entails
coexisting tornado, splash and translation behaviors, and the Lévy walk pattern.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

Living systems are adapted to open dynamic environments and
can overcome various problems arising in environments [1,2]. In
other words, they can compute what the environments require
and can resolve them to some extent. If the problem is well
defined, optimization techniques can be applied to the problem.
However, the problems living systems face can be ill-defined and
can change over time. Notwithstanding these situations, living sys-
tems can reach quasi-optimal solutions [3,4]. While various
attempts using bioinspired computing have proposed defining this
adaptability [5–10], the issue of the essential property of adapt-
ability has not yet been found.

A quasi-optimal solution in open environments could be
achieved by balancing sticking to a specific well-defined prob-
lem with giving up that problem, since open environments
could change the problems themselves over time. This can be
replaced by balancing highly efficient computation with univer-
sal computation [1,11], balancing exploitation with exploration
[12–15] and balancing specialist with generalist strategies in
adaptation [16–18]. In terms of dynamical systems, balancing
the exploitation at an attractor basin with the exploration of
wandering various attractors is called the edge of chaos, since
staying at an attractor shows oscillation or ordered patterns
and wandering to various attractors shows chaotic patterns
[19–25]. It is known that systems tuned at the edge of chaos
or at the critical point can have computability, balancing uni-
versal computation with highly efficient computation [21–25].
The critical state is characterized by a power law distribution
[26–29]. What can make a system be tuned to the critical state?
Although the idea of self-organizing criticality is one of the can-
didates [30–32], no generalized method of tuning at the critical
state has been found yet.

Swarming behavior can be a touchstone to determine the core
of quasi-optimal solutions in open environments. Recently, many
optimization techniques have been developed based on swarming
behaviors [33–36]. A swarm is neither a machine-like order nor
just disorder, and a swarm shows a critical state between order
and disorder. Since the Self-Propelled Particle (SPP) model is one
of the most powerful models for swarms, swarming behavior can
be regarded as a critical phenomenon in the phase transition
between order and disorder [37,38]. The SPP model is based only
on velocity matching, although other models implement collision
avoidance and flock centering [39–42]. Because the phase transi-
tion is controlled by the parameter, the critical state is not self-
organizing, and it requires parameter tuning. Indeed, real animal
swarms show various properties of the critical state, such as
scale-free correlation and Lévy walk, which are characterized by
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a power law distribution [43–49]. The problem of what makes a
system tuned to the critical state is an open problem.

Here, we show that a critical state balancing exploration (disor-
der) and exploitation (order) can be obtained through Bayesian
inference [50–53] coupled with the specific interaction between
data and hypotheses [54–56]. We take the SPP model as the basic
swarm model and introduce an agent that can infer the state by
using Bayesian inference. The question becomes how to obtain
the critical behavior of the SPP. The critical behavior can be esti-
mated by a power law distribution of the individual walk pattern,
called the Lévy walk. Although there are many approaches to
explain the Lévy walk, they are nonsystematic approaches [57–
59]. Swarm approaches based on self-organized criticality [60–
62] have universally failed to explain the Lévy walk [63–64].

We implement a swarm agent as the decision maker using
Bayesian inference coupled with the data-hypothesis interaction.
This interaction was previously proposed by us and is called
inverse Bayesian inference [54–56]. Although hypotheses are not
altered through Bayesian inference, both the probability and the
likelihood of each hypothesis are constantly changed in our model.
Normal Bayesian inference does not reveal critical behavior, but
our inference system succeeds in explaining the critical behavior
or Lévy walk. Real animal swarms, schools and/or flocks exhibit
spatial and temporal changes in their collective behaviors, includ-
ing translation, splash and tornado behaviors. Although detailed
parameter tuning is required to reveal these special behaviors in
previous swarm models [65–68], our model, aimed at showing this
critical behavior, easily reveals the coexistence of translation,
splash and tornado behaviors in a swarm. In the context of the
edge of chaos, disturbed patterns and/or disorder are called
‘‘chaos” independent of the definition of chaotic dynamics. In our
paper, we use the term chaos in this sense, especially disorder.

Since our inference system relying on data-hypothesis interac-
tion easily and ubiquitously shows critical behaviors, the system
exhibits universal criticality. Finally, we examine the significance
of universal criticality in realizing the optimal design in an open
environment for both natural and artificial design purposes.

2. Model and Analysis Methods

2.1. SPP with Bayesian and inverse Bayesian inference

2.1.1. Simple SPP
The collective behavior in swarms, flocks and schools could con-

tain the various intrinsic dilemma between social norms and indi-
vidual free decision [69,70]. One of the simplest models, the Self-
Propelled Particle (SPP), implements the social norm by velocity
matching of an individual’s neighborhood and their freedom by
fluctuation [37,38]. In our model, the kth agent at tth time step
in a swarm calculates the average velocity in the form of an angle,
htk,

htk ¼ tan�1ðð
X

j
ytj �

X
j
yt�1
j Þ=ð

X
j
xtj �

X
j
xt�1
j ÞÞ ð1Þ

for any jth agent satisfying the following condition:

ðxt�1
k � xt�1

j Þ2 þ ðyt�1
k � yt�1

j Þ2 � R2 ð2Þ
where xtk; y

t
k

� �
represents the location of the kth agent at the tth

time step, and R represents the radius of the neighborhood. The (t
+1)th location of the kth agent is determined by:

xtþ1
k ¼ xtk þ Vcosðhtk � rnd eð Þ þ dt

kp=2Þ ð3aÞ

ytþ1
k ¼ ytk þ V sinðhtk � rnd eð Þ þ dt

kp=2Þ ð3bÞ
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where rnd eð Þ is the perturbation randomly generated in
0.0�rnd eð Þ�e, and dt

k 2 D ¼ f0;1;2;3g is the angle against the
velocity matching inferred through Bayesian and inverse Bayesian
inference mentioned later. V is the unit velocity in the form of sca-
lar. It is clear that if dt

k ¼ 0, the kth agent accepts the velocity match

under a small perturbation, and if dt
k ¼ 2, the kth agent escapes

from its flock mates in the reverse direction. While d=0 reveals bal-
listic behavior showing exploration, d=1, 2 and 3 reveal perturbed
behavior showing exploration. Thus, these data reveal variation of
exploitation and exploration, and the probability distribution of
data constitutes a hypothesis. If dt

k ¼ 0 for any d and t, then the
swarm model is defined as simple SPP or simply SPP.

2.1.2. Bayes Only (BO)
The second Bayes-Only (BO) model is defined by the SPP model

equipped with Bayesian inference. Each agent k makes dt
k by using

Bayesian inference. The inference process of the kth agent proceeds
as follows. In regard to dt

k in equation (3), the conditional probabil-

ity of any hypothesis h 2 H ¼ f0;1;2;3g under data dt
k is expressed

as:

Pt
k hjdt

k

� �
¼ Pt

k dt
kjh

� �
Pt
kðhÞ=

X
h
Pt
kðdt

kjhÞPt
kðhÞ ð4Þ

where Pt
k hjdð Þ is the conditional probability of h under d used by

the kth agent at the tth step, Pt
k djhð Þis the conditional probability of

d under h, called the likelihood, and Pt
k hð Þis the probability of h. The

hypothesis ht
k is a hypothesis that individual k makes at time t

about the state of the swarm. On the other hand, dt
k is the state

of individual k at time t. Since Pt
kðdÞ ¼

P
hP

t
kðdjhÞPt

kðhÞ, it is clear
that equation (4) reveals the Bayes formula such that
Pt
k djhð ÞPt

k hð Þ ¼ Pt
kðhjdÞPt

kðdÞ. In Bayesian inference, the probability

of any h is replaced by the conditional probability of h under dt
k,

which is expressed by:

Ptþ1
k hð Þ ¼ Pt

kðhjdt
kÞ ð5Þ

Initially, for any d and h, P1
k djhð Þ, P1

kðhÞ and d1
k are given. Then for

any t and any h, Pt
k hjdt

k

� �
is determined by equation (4), and then

Ptþ1
k hð Þ is determined by Ptþ1

k hð Þ ¼ Pt
kðhjdt

kÞ, equation (5). With the

use of the updated Ptþ1
k hð Þ as equation (5), the hypothesis with

the highest probability can be chosen dependent on its probability.

This implies that htþ1
k 2 H satisfying the following:

Ptþ1
k ðhtþ1

k Þ � Ptþ1
k ðhÞ ð6Þ

for any h 2 H can be chosen based on the probability. The cumu-
lative probability of the hypothesis such that:

CPtþ1
k ¼

X
h
Ptþ1
k ðhÞ ð7Þ

is defined, and random variable 0:0 � r � 1:0 is then updated.

The updating of htþ1
k is determined by:

htþ1
k ¼ minfh 2 Hjr � CPtþ1

k ðhÞg ð8Þ

After htþ1
k is determined, data dtþ1

k satisfying:

Ptþ1
k ðdtþ1

k jhtþ1
k Þ � Ptþ1

k ðdjhtþ1
k Þ ð9Þ

for any d 2 D can be chosen with the corresponding probability.
The procedure based on the probability is the same as that in equa-
tions (7-9). The cumulative probability conforming to:

DPtþ1
k djhtþ1

k

� �
¼

X
d
Ptþ1
k ðdjhtþ1

k Þ ð10Þ
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is defined, and random variable 0:0 � p � 1:0 is then updated.

The updating of dtþ1
k is determined by

dtþ1
k ¼ minfd 2 Djp � DPtþ1

k djhtþ1
k

� �
g ð11Þ

Bayesian inference consists of the above procedure equations
(4)-(11).

As mentioned before, in Bayesian inference, a set of hypotheses
is not changed through the inference process. Since a hypothesis is
defined by its likelihood such as PðdjhÞ, the distribution of PðdjhÞ is
not altered in Bayesian inference. In contrast, here, we introduce
the interaction between data and hypotheses below. If the swarm
model is implemented by equations (1)-(11) and Pt

kðdjhÞ is invari-
ant over time, we call the model an SPP with BO model, or simply a
BO model.

2.1.2.1. Bayesian and Inverse Bayesian Inference (BIB). The third
swarm model based on the SPP is called the SPP with Bayesian
and Inverse Bayesian Inference (BIB) model, or simply a BIB model.
In addition to equations (1)-(11), the following equations (12)-(17)
are also implemented in the BIB model.

Given a set of data, such as Dat ¼ f d1
;1

� �
; d2

;2
� �

; � � � ; dm
;m

� �g
for di 2 D, one can obtain the probability of d as the normalized
frequency:

P dð Þ ¼ # di
; i

� �
2 Dat

n ���di ¼ dg=m ð12Þ

where #S for set S is the number of elements in S, and#Dat ¼ m
(window size). For instance, given {(0, 1), (0, 2), (2, 3), (1, 4)}, P(0) =
#{(0, 1), (0, 2)}/4=0.5, P(1) = #{(1, 4)}/4=0.25, P(2) = #{(2,
3)}/4=0.25 and P(3) = #{}/4 =0. In our model, for a set of time series,

given Dat ¼ f dt�mþ1
k ;1

� �
; � � � ; dt�1

k ;m� 1
� �

; dt
k;m

� �
g, the probabil-

ity of d for the kth agent is defined by:

Pt
k dð Þ ¼ #fðdt�w

k ;m�wÞ 2 Datjdt�w
k ¼ dg=m ð13Þ

The interaction between data and hypotheses or the inverse
Bayesian inference is defined by:

Ptþ1
k djf tþ1

k

� �
¼ Pt

kðdÞ ð14Þ

where f tþ1
k 2 Hsatisfies:

Ptþ1
k hð Þ � Ptþ1

k ðf tþ1
k Þ ð15Þ

for any h 2 H, which can be chosen based on the probability.
With the use of the cumulative probability defined as:

EPtþ1
k hð Þ ¼

X
h
ð1� Ptþ1

k ðhÞÞ ð16Þ

f tþ1
k is determined by the probability, for any given random vari-

able 0:0 � r � 3:0, and f tþ1
k is obtained by:

f tþ1
k ¼ minfh 2 Hjr � EPtþ1

k hð Þg ð17Þ
For instance, if Ptþ1

k 0ð Þ ¼ 0:2, Ptþ1
k 1ð Þ ¼ 0:1, Ptþ1

k 2ð Þ ¼ 0:4 and

Ptþ1
k 3ð Þ ¼ 0:3, then EPtþ1

k 0ð Þ ¼ 0:8, EPtþ1
k 1ð Þ ¼ 1:7, EPtþ1

k 2ð Þ ¼ 2:3,

and EPtþ1
k 3ð Þ ¼ 3:0. Thus, it is the most convenient for r to reach

the region between EPtþ1
k 0ð Þ and EPtþ1

k 1ð Þ. This results in f tþ1
k ¼ 1.

It is evident that Ptþ1
k hð Þ ¼ Pt

kðhjdt
kÞ in equation (5) is symmetric

to Ptþ1
k djf tþ1

k

� �
¼ Pt

kðdÞ in equation (14), which is why the proce-

dure of equation (14) is called inverse Bayesian inference. On the
one hand, Bayesian inference contracts the condition of an event
(hypothesis) by replacing the probability of Ptþ1

k hð Þ with the condi-

tional probability of Pt
kðhjdt

kÞ. On the other hand, inverse Bayesian
inference extends the condition of an event (data) by replacing
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Ptþ1
k djf tþ1

k

� �
with Pt

kðdÞ. Thus, Bayesian inference balances contrac-

tion (exploitation) with extension (exploration). This is considered
in a later section and compared to the mechanism of self-organized
criticality.

In our simulation studies, the program for the SPP in which
Bayesian and inverse Bayesian inference (BIB) are implemented
is shown in Figure 1. In the program, if dt

k ¼ 0 for any t, the pro-
gram simulates the simple SPP under which each agent obeys
the velocity matching expressed by equations (1)-(3) without
any inference. If certain sourced codes implying equations (12)-
(17) are commented out, the program simulates the SPP contain-
ing only Bayesian inference. This implies the likelihood of
hypotheses Pt

k djhð Þ ¼ Pt�1
k djhð Þ for any d and h. It is easy to com-

pare the simple SPP, the SPP with only Bayesian inference (BO),
and SPP with BIB.

The SPP part of our model contains various parameters, the
radius of the neighborhood, R, the unit velocity of each agent, V,
and the perturbation (noise) for the velocity matching, e (radian).
Throughout all simulation studies, we set R=20.0 and V =5.0 if
there is no description. The perturbation e varies and corresponds
to the phase parameter controlling the phase shift.

2.2. Step length distribution for the power law analysis

To estimate the critical behavior in the model swarm, the distri-
bution of the step length is measured for the simulation studies. In
research on animal foraging, the step length distribution for vari-
ous animals has been measured and analyzed with respect to the
power law distribution [71–73], since animal foraging always
encounters exploitation and exploration dilemmas. If animals
implement the exploitation strategy and consume food resources
in a closed environment, the walking patterns reveal random
walks. In contrast, if animals implement the exploration strategy
to search for other food resources and leave their previous environ-
ments, the animals reveal ballistic walking trajectories, which
could realize efficient searches for unknown resources. If the step
length is defined by the distance between two bending points,
the ballistic walk implies a very long step length, while the random
walk implies a short step length normally distributed around the
mean step length. Animals could balance exploitation with explo-
ration, and the walk pattern would reveal a random walk pattern
with a long tail, which is characterized by a power law distribution
of the step length. If the exponent of the power law distribution
ranges from 1.0 and 3.0, the walk pattern is called the Lévy walk.
It is known that the foraging patterns of animals frequently indi-
cate the Lévy walk [43–47].

Here, we define the step length by the following. Since the loca-
tion of an agent is moved in a stepwise fashion, we define the
bending angle a in the agent’s walk as:

at ¼ cos�1ðð xtk � xt�1
k

� �
xt�1
k � xt�2

k

� �

þ ytk � yt�1
k

� �
yt�1
k � yt�2

k

� �Þ=V2Þ ð18Þ
where xtk; y

t
k

� �
is the location of the kth agent at the tth time step.

In the walking pattern of agents, if at > amax, one step walk is then
terminated, and the distance, D, between the previous bending
point ðXk; YkÞ and the new bending point xt�1

k ; yt�1
k

� �
is obtained by:

D ¼ ð Xk � xt�1
k

� �2 þ Yk � yt�1
k

� �2Þ1=2 ð19Þ
This is consistent with the step length as the intermittent inter-

val length [74]. After calculating the step length, the previous
bending point is updated by:

Xk ¼ xt�1
k ;Yk ¼ yt�1

k ð20Þ



Figure 1. Schematic diagram of the algorithm for the SPP with Bayesian and inverse Bayesian inference. In all simulation studies in this paper, h and d are chosen from {0, 1, 2,
3}.
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The power law distribution of the step length is estimated with
respect to the frequency distribution of D. In our analysis in this
paper, we define amax ¼ 2p=9.

2.3. Analysis of the translation, splash and tornado behaviors

As mentioned before, the critical behavior in artificial systems
indicates universal and efficient computation. This behavior is
characterized by the complex mixing of contraction and extension
of information. In cellular automata, the critical behavior consists
of locally stable oscillatory or fixed patterns and chaotic wave pat-
terns propagating from one local site to another [22,23]. Natural
and real animal groups also exhibit these behaviors. Locally fixed
patterns and locally oscillating patterns are compared to translat-
ing movements (or schooling) and tornado (or massive tornado)
patterns, respectively [65,67,68]. The chaotic propagating waves
are compared to the splash patterns of animal groups. While the
coexistence of translation, splash and tornado behaviors seems to
be the attribute specific to the critical behavior, previous swarm
models have never revealed the coexistence of these behaviors.
Indeed, splash and tornado patterns require fine tuning of the
parameters and initial conditions.

Therefore, it is very important to estimate the coexistence of
translation, splash and tornado patterns in swarms in terms of
the critical behavior. Here, we define the index for the tornado pat-
tern in a swarm by the number of agents satisfying the following:

a0
tor >

X
at > ator ð21Þ

Inequality (21) implies that the average bending angle of the
agent’s walk is so large that the agent rotates around a point. Since
the splash pattern implies that agents are radially dispersed, the
index for the splash pattern is defined by the number of agents sat-
isfying the following:

rtmin � rt�T
min > rspl ð22Þ

where rtmin denotes the distance between the kth agent and its
nearest neighbor, and T represents a constant time interval. Thus,
inequality (22) implies that the nearest neighbors come away. In
contrast, since the translation pattern of a swarm implies that
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agents move without changing their moving direction, the index
for the translation pattern is defined by the number of agents sat-
isfying the following:
X

at < atrans ð23Þ
Figure 2 (top) shows snapshots of the three patterns of swarm

behaviors. The left snapshot depicts the tornado patterns in which
all 500 agents rotate. The middle snapshot shows the splash pat-
terns in which 500 agents are dispersed from the right to the left.
The right snapshot shows the translation patterns from below to
above. These snapshots are simulated by the SPP-based model
implemented to reveal each pattern. The bottom graph shows
the number of agents satisfying conditions (21), (22) and (23) over
time for each swarm pattern. In the left graph, first, all agents
match their velocity resulting in the translation pattern, after
which all agents rotate. Thus, soon after starting to rotate, the
number of agents satisfying condition (21) (i.e., the tornado index)
increases. In the middle graph, the number of agents satisfying
condition (22) (i.e., the splash index) gradually increases. In the
right graph, the number of agents satisfying condition (23) (i.e.,
the translation index) increases, while there are some agents
exhibiting the splash pattern due to the perturbation in the SPP.

Note that the three indexes are not complementary to each
other, and one agent can therefore satisfy multiple conditions.
Notwithstanding this ambiguity, Figure 2 shows that the three
indexes are suitable factors to estimate the behavioral components
of the splash, tornado and translation patterns.

3. Results

All the experiments were conducted on a PC with an Intel Core
17 processor running at 2.6GHz, and hard drive of 16 Gbytes. Our
implementation was compiled using gcc (4.2.1).

3.1. Critical behavior consisting of splash, tornado and translation
patterns

In this paper, we use the term criticality both in the phe-
nomenological sense and in the strict sense. Criticality in the strict



Figure 2. Indexes for the tornado (Tor) pattern, splash (Spl) pattern and translation (Trs) pattern in swarms. Given the typical tornado, splash and translation patterns in a
swarm model (top diagrams), the number of agents satisfying the corresponding indexes is plotted over time. The blue, orange and gray lines represent the tornado, splash
and translation patterns (bottom), respectively.
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sense is defined here by the phenomena characterized by a power
law distribution. In contrast, criticality in the phenomenological
sense implies the midpoint of the transition between order and
disorder in a broad sense. This phase transition is expressed as
the phase transition between the ordered swarm showing transla-
tion and/or tornado behavior and the disordered swarm showing
splash behavior. While tornado behavior is a typical exploitation
behavior, splash and translation behaviors are typical exploration
behaviors, in another sense. The coexistence of tornado, splash
and translation behaviors implies criticality in the phenomenolog-
Figure 3. Snapshots of SPP model development over time. The time proceeds from the to
right. The boundary condition is the wrapped condition.
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ical sense. Therefore, the question arises whether criticality in the
phenomenological sense entails criticality in the strict sense.

Figure 3 shows the time development of the SPP model. Each
diagram shows a snapshot of the swarm consisting of 1000 agents,
where the kth agent is represented by the line connecting its loca-
tion xt�1

k ; yt�1
k

� �
with xtk; y

t
k

� �
. Although the SPP does not implement

flock centering (the force to approach the denser swarm) but only
velocity matching, the agents are gradually concentrated due to
the periodic boundary condition (i.e., the left margin of the square
space is connected to the right margin, and the top of it is con-
p left (initial condition) to the top right and then from the bottom left to the bottom
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nected to its bottom). This results in a dense translation pattern, as
shown in the right bottom snapshot. Typical time development is
stored as Video_simple_SPP_1.

It is known that the SPP exhibits a phase transition expressed as
polarization (degree of velocity matching) with respect to normal-
ized perturbations. The original SPP, which implements only veloc-
ity matching, could reveal neither tornado nor splash patterns. If
the SPP is coupled with both a self-propelled force and friction, a
specific ratio of the force and friction could lead to self-
organizing tornado patterns [67,68]. Not only the SPP but also
other swarmmodels could entail tornado patterns under attraction
and repulsion balancing [39,65–66]. Tornado patterns require fine
tuning of the parameter setting. Although the splash pattern is fre-
quently observed in real bird flocks and fish schools, it has been
examined with respect to the prey-predator scheme in simulation
studies. Since the prey-predator scheme is implemented by balanc-
ing attraction and repulsion, not only the prey-predator scheme
but also the general swarm model coupled with attraction and
repulsion could reveal splash patterns. However, fine tuning of
the parameters is required.

Our SPP coupled with Bayesian inference contains both deci-
sions consistent with and contradictory to velocity matching. Thus,
it could be similar to the balancing of the self-propelled force and
friction and the balancing of attraction and repulsion. This suggests
that the SPP coupled with only Bayesian inference (i.e., BO model)
could reveal tornado and splash patterns.

Figure 4 shows short trajectories of the SPP coupled only with
Bayesian inference. Since the degree of obeying the velocity match-
ing is determined by Bayesian inference, this behavior depends on
Figure 4. Snapshots of the SPP coupled with Bayesian inference (BO model). The traje
condition is the wrapped condition, for R=20.0 V =5.0, e=0.001, and N=1000.
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the likelihood of the hypotheses, where PkðdjhÞ is invariant
throughout time for each kth agent. In our model, for any k,
Pk djhð Þ ¼ 0:7 if d ¼ h; otherwise, Pk djhð Þ ¼ 0:1. Through time
development, Pk djhð Þ is not altered, and initially, Pk hð Þ ¼ 0:25 for
any h 2 H.

While each agent affects Pk hð Þ dependent on its previous data,
dt
k, no behaviors characterized by critical behavior are observed.

Each agent frequently changes its decision to either obey the veloc-
ity matching or not, and various rotations against the mean veloc-
ity are then mutually canceled. This leads to a fluctuating moving
swarm, which sometimes indicates a large swarm and is some-
times divided into small parts. Dispersing and gathering patterns
are perpetually iterated and indicate a complex fluctuating behav-
ior, although they never show explicit splash and/or tornado pat-
terns. If PkðdjhÞ is randomly given and remains invariant over
time, while the swarm rarely shows a tornado. However, in these
cases, the realized tornado is perpetually sustained and not broken.
This case seems to be achieved by the random setting ofPkðdjhÞ and
could be compared to the fine parameter tuning by chance. Typical
time development of SPP only with Bayesian inference is stored as
Video_BO_1.

Figure 5 shows a pair of snapshots of the SPP coupled with
Bayesian and inverse Bayesian inference (i.e., BIB model). Typical
time development of SPP with Bayesian and inverse Bayesian infer-
ence is stored as Video_BIB_1. It is evident that there are transla-
tion, splash and tornado patterns. Due to the coexistence of
translation, splash and tornado behaviors, the swarm is perpetu-
ally dispersed and gathered. Since the initial likelihood ofPt

kðdjhÞ
ctory of each agent consists of four successive stepwise positions. The boundary



Figure 5. Snapshots of the SPP coupled with Bayesian and inverse Bayesian inference. The trajectory of each agent consists of 20 successive stepwise positions. The boundary
condition is the wrapped condition, for R=20.0 V =5.0, e=0.001, and N=1000. The translation, splash and tornado patterns are marked with green, blue and red squares,
respectively.
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is rapidly replaced by another one and is perpetually altered, com-
plex patterns consisting of translation, splash and tornado behav-
iors occur independent of the initial condition of the distribution
of agents and the initial condition of Pt

kðdjhÞ. Compared to the
SPP with only Bayesian inference (i.e., BO model), there are distinct
patterns of locally stable information processing manifested as a
tornado pattern and of information transmission manifested as
splash and translation patterns. In the BO, information processing
and transmission are mixed and averaged, which involves per-
turbed and fuzzy information processing. Since the BO seems nei-
ther chaotic nor exhibits definite information processing, it cannot
be used for universal and efficient information processing.

The indexes of the tornado, splash and translation patterns are
estimated here for the behavior of the swarm. Figure 6 shows a
comparison of the indexes in the SPP and the BIB. The indexes of
the tornado, splash and translation patterns are plotted over time.
In the SPP, there is no indication of the splash pattern, and the
swarm shows a mixture of translation and tornado patterns due
to the perturbation, while the major phenomenon is translation.
After a very large swarm is generated, translation occurs due to
velocity matching. Thereafter, due to the perturbation, the swarm
is divided into various parts, and one swarm is again formed. In the
dividing process, a small moving population is split to maintain a
dense population. Therefore, swarm deformation does not influence
the index of the splash pattern but affects that of the tornado pattern.

In contrast, the BIB is characterized by the coexistence of tor-
nado, splash and translation behaviors. As mentioned above, since
the indexes of the tornado, splash and translation patterns are not
independent of each other, they are mixed, and the perturbed
splash and/or perturbed tornado pattern can thus be estimated
by both the tornado and splash indexes. As shown in Figure 6
(right), all indexes are high in the swarm of the BIB.

Figure 7 shows a comparison of the BO and the BIB with respect
to the tornado, splash and translation indexes. Both simulation
results are obtained under low-fluctuation conditions. Although
both simulations are performed for 1000 agents, the summation
of the agents satisfying the three indexes is much smaller than
1000 for the BO. This implies that there are many agents satisfying
neither tornado nor translation indexes whose average turn angles
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are over p/10. Since the BO allows agents to neglect velocity
matching, agents can turn at a sharp angle. If this fluctuating
behavior resulting from Bayesian inference is simply mixed with
the agents obeying velocity matching, it is considered that there
are many agents that can turn at an angle other than p/10. In con-
trast, the BIB reveals that both the tornado and translation indexes
are satisfied by a high proportion of agents and indicates that the
agents satisfying the three indexes are complementary with each
other. This implies that splash, translation and tornado behaviors
coexist in the swarm and that these three behaviors continuously
connect with each other as if the information originating from
the tornado pattern is effectively transmitted to other places by
the splash and translation patterns.

The simulation results in Figure 7 are obtained under the condi-
tion of a small perturbation. The question arises whether the dif-
ference between the two kinds of SPPs, BO and BIB, results from
this small perturbation. Therefore, we simulated under the condi-
tion of a large perturbation. Figure 8 shows the simulation results
under a perturbation e of 0.2. The trend depicted in Figure 7 is also
observed in Figure 8. This reveals that adequate combinations of
local information processing and information transmission are
realized by the BIB, independent of the perturbation magnitude.

We conducted a statistical test to assess the difference between
the BIB and BO models with respect to the tornado-translation
index and the splash-translation index (Figure 9). The normality
was tested by the Shapiro-Wilk normality test, and normality
was rejected (p < 0.001, all are smaller than 7.443e-14). The differ-
ence between the mean value of the ratio in the BIB model and that
in the BO model was checked by the Wilcoxon rank sum test, and
the results showed a significant difference between them under
both conditions, small perturbation and large perturbation (p <
0.001, all are smaller than 2.2e-16). The statistical data for the test
are shown in Table 1.

The tendencies found in Figure 9 are general trends in the BIB
and BO models. While the behaviors in the BO model are basically
perturbed translation, which is revealed by the tornado index, the
behaviors in the BIB model are basically characterized by the coex-
istence of tornado, splash and translation behaviors. Thus, the tor-
nado index normalized by the translation index and the splash



Figure 6. Tornado, splash, and translation analysis for the simple SPP (left) and the SPP coupled with Bayesian and inverse Bayesian inference (right). The number of
individuals (agents) satisfying the tornado index (blue), splash index (orange) and translation index (gray) are plotted over time. R=20.0 V =5.0, e=0.1, N=2000,
ator ¼ atrans ¼ p=30, a0

tor ¼ p=10 and rspl ¼ 8:0.

Figure 7. Tornado, splash, and translation analysis for the SPP with only Bayesian inference (BO) and for the SPP coupled with Bayesian and inverse Bayesian inference (BIB).
The number of agents satisfying the tornado index (blue), splash index (orange) and translation index (gray) are plotted over time. R=20.0 V =5.0, e=0.001,
N=1000,ator ¼ atrans ¼ p=30, a0

tor ¼ p=10 and rspl ¼ 8:0.
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index normalized by the translation index in the BIB model are
smaller than those in the BO model.

In addition, we simulated the special case of the SPP model,
in which every individual has a different radius. In that case,
254
individuals converge to a large swarm controlled by the small-
est radius. Thus, it can be concluded that individuals with
heterogeneous radii never generate the coexistence of transla-
tion, tornado and splash behaviors.



Figure 8. Tornado, splash, and translation analysis for the SPP with only Bayesian inference (BO) and the SPP coupled with Bayesian and inverse Bayesian inference (BIB). The
number of agents satisfying the tornado index (blue), splash index (orange) and translation index (gray) are plotted over time. All parameters except for e are the same as
those in Figure 7, and e=0.2.

Figure 9. Comparison between the BIB and BO models with respect to the ratio of individuals showing tornado behavior to those showing translation behavior (left) and the
ratio of individuals showing splash behavior to those showing translation behavior (right). The number .001 represents the condition e=0.001, and .2 represents e=0.2.

Table 1
Statistical data for the ratio of individuals showing tornado behavior to those showing translation behavior (left) and the ratio of individuals showing splash behavior to those
showing translation behavior (right).

BIB_.001 BO_.001 BIB_.2 BO_.2 BIB_.001 BO_.001 BIB_.2 BO_.2

Min. 0.6212 2.421 0.7615 3.659 Min. 0.3571 0.8288 0.3799 1.216
1st Qu 0.8022 3.517 0.9913 5.019 1st Qu 0.5058 1.4817 0.5446 2.138
Median 0.9383 4.017 1.1335 5.614 Median 0.5697 1.7571 0.6 2.491
Mean 0.9684 4.112 1.1834 5.858 Mean 0.5856 1.8284 0.613 2.679
3rd Qu 1.0764 4.566 1.3178 6.462 3rd Qu 0.6537 2.111 0.6758 3.027
Max. 1.8447 8.077 2.9474 12.667 Max. 0.9909 3.7949 1.3835 7.556
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3.2. Power law distribution in the SPP with Bayesian and inverse
Bayesian inference

Next, we determine whether the SPP with Bayesian and inverse
Bayesian inference (BIB model) shows critical behavior in a term of
255
power law distribution. In estimating the translation, splash and
tornado behaviors, the periodic boundary condition is defined as
to not disperse the swarm. In estimating the power law distribu-
tion of the step length, 1000 agents are initially located in a small
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central area in an open space, and the walking pattern of any freely
moving agents is estimated.

Figure 10 shows the trajectories of the simple SPP (above) and
the BIB swarm. Each column shows the conditions of e=0.001,
0.1, 0.2 and 0.4. The SPP model with e=0.001 (above left) shows
ballistic trajectories in finite time since little perturbation influ-
ences the trajectories. Since the simulations were run for
T=10000, most agents remained in a central area, and alignm ent
interactions also contributed to the step length distribution under
a large perturbation. The results of the power law distributions are
the same as those under periodic boundary conditions. The more
perturbations there are, the more rotations occur indicating
plant-root-like networks. In contrast to the SPP, the BIB swarm
reveals similar trajectory patterns independent of the extent of
the perturbation. While there are no trajectories of the BO swarm
in Figure 10, the apparent patterns are similar to those generated
by the BIB, where there are no ballistic trajectories.

First, we conducted a statistical test, the Kruskal-Wallis rank
sum test, to determine whether there was a significant difference
among the distributions of the step length in the SPP, BO and BIB
models. Since the distribution of the step length in the BIB swarm
is far from a normal distribution, the test is nonparametric, and we
adopted the Kruskal-Wallis rank sum test. It was found that all dif-
ferences among the distributions of the step length in the SPP, BO
and BIB models were significant (p < 0.001, all are smaller than
2.2e-16). Figure 11 shows the comparison of the mean and vari-
ance among the BIB, BO and simple SPP models under various
levels of noise. Noise levels 1, 2 and 4 imply that e is 0.1, 0.2 and
0.4, respectively.

For the trajectories from the central area in an open space, the
distribution of the step length is estimated. As mentioned before,
the walk bending at a smaller angle than 2p/9 is regarded as a
straight walk. If the step length and its frequency are represented
by D and f(D), respectively, the power law distribution is expressed
as:

f ðDÞ / D�l ð24Þ
and if 1 � l � 3, it is called the Lévy walk. Recent studies have

demonstrated that animal walks are approximated as truncated
power law distributions [46,47] such as:
Figure 10. Trajectories from a central area of the SPP (above) and of the BIB (below), for
left to right.
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f Dð Þ ¼ D�leaD ð25Þ
Regarding the step length distributions of the simple SPP, BO

and BIB, we test whether the distribution is approximated by the
truncated power law distribution or the exponential distribution
with the Akaike Information Criterion (AIC) [75–78]. Truncated
power law distribution is frequently used for data fitting in Lévy
walk analysis, while there is a trade-off between efficiency of fit-
ting and completeness in data fitting [79–81].

Two probability density functions are given, one for the trun-

cated power law distribution, f xð Þ ¼ ðl� 1Þ=ðx1�lmin � x1�lmaxÞx�l, and
the other for the exponential distribution,
f xð Þ ¼ kexpð�k x� xminð ÞÞ, where xmin is determined by using
Kolmogorov-Smirnov statistics and xmax is defined as the maxi-
mum value of the data [82]. After best-fit exponents for the trun-
cated power law (l) and the exponential distribution (k) and log-
likelihood are calculated, the AIC and Akaike weight for both mod-
els are calculated. Finally, the better-fitting model is determined
based on the Akaike weight.

Figure 12 shows the cumulative frequency distribution for the
step length. We calculated the Akaike weight for the truncated
power law distribution, 0.0�wpl�1.0, where the larger wpl is,
the higher the likelihood of the truncated power law distribution
is. In contrast, 1-wpl represents the likelihood for the exponential
distribution. The left, middle and right columns represent the
conditions with e equal to 0.1, 0.2, 0.4, respectively. In the case
of the simple SPP (above panel in Figure 12), for e = 0.1,
l=1.00, k=0.00, wpl=0.00, for e = 0.2, l=1.00, k=0.00, wpl=0.00,
and for e = 0.4, l=3.00, k=0.03, wpl=0.00, respectively. This
implies that the frequency distribution of the SPP best fits to an
exponential distribution. In the case of the BO, for e = 0.1,
l=3.00, k=0.09, wpl=0.00, for e = 0.2, l=3.00, k=0.08, wpl=0.00,
and for e = 0.4, l=3.00, k=0.10, wpl=0.00. This also implies that
the frequency distribution of the BO model best fits to an expo-
nential distribution. In contrast, the BIB reveals different types
of distributions. In the case of the BIB, for e = 0.1, l=2.65,
k=0.02, wpl=1.00, for e = 0.2, l=2.59, k=0.02, wpl=1.00, and for e
= 0.4, l=2.72, k=0.02, wpl=1.00. Thus, the step length distribution
generated by the BIB model strictly indicates a power law distri-
bution, especially Lévy walk, and critical behavior.
t=500, R=20.0 V =5.0, and N=1000. The perturbation e is 0.001, 0.1, 0.2 and 0.4 from



Figure 11. Comparisons among the step lengths in the BIB, BO and SPP models under various levels of noise. Under each level, the models are significantly different from each
other.

Figure 12. Cumulative frequency distribution of the step length generated by the simple SPP (above), the SPP with only Bayesian inference (BO; middle) and the SPP with
Bayesian and inverse Bayesian inference (BIB; below) plotted against the normalized step length (purple squares). The data are approximated by two distributions, i.e., the
exponential (blue) and truncated power law (green) distributions. From left to right, the perturbation e is set to 0.1, 0.2, and 0.4.
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We checked whether the window size of the BIB inference (m)
influenced the results of the step length distribution. We found
that the window size did not influence the power law distribution,
as shown in Figure 13. The exponent for the truncated (l) and
exponential (k) power law for various windows were obtained by
the following: for m=40, l =2.81 and k = 0.011; for m=20, l
=2.85 and k = 0.010; for m=10, l =2.78 and k = 0.011; and for
m=5, l =2.8 and 5k = 0.010. The Akaike weights, wpl, for all win-
dow sizes were 1.0, and then all step length distributions could
be fit to a truncated power law distribution.

Finally, it is confirmed that the complex patterns consisting of
tornado, splash and translation behaviors, generated by the BIB,
imply critical behaviors. In other words, the interaction between
data and hypotheses in Bayesian inference can self-organize its
critical behavior. This kind of criticality is intrinsically different
from the criticality of the phase transition. As mentioned before,
a phase transition occurs in the SPP. With respect to the step length
distribution, one cannot determine a power law distribution, and
there are signs of critical phenomena only encountered at the crit-
ical point. In contrast, the criticality in the BIB is not observed in
narrow critical regions. Over a wide range of perturbations (e)
and window size (m), power law distribution can be found. In this
sense, the criticality is ubiquitously found and could be called a
universal criticality.
Figure 13. Cumulative frequency distributions of the step length for various window s
exponential (blue) and truncated power law (green) distributions. The perturbation e is
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4. Discussion and Conclusion

First, we consider the problem of artificial and natural design to
be realized in open environments. Since the process of genome
editing was first proposed and developed, it has become possible
to design an artificial genome specific to a particularly concrete
function [83–85]. Artificial design involves the hard problem of
which optimal design based on the above concrete function must
be achieved in an open and real environment. There are two rea-
sons why the artificial and natural design is challenging. The first
is how to overcome the trade-off between the behavior under open
conditions and the behavior specific to a certain function [1,2]. The
second reason is, if one could assign a solution beyond the above
trade-off, how could the solution be effectively obtained [3,4].
These two reasons are mutually related to each other. Herein, we
proposed a kind of solution to this problem.

The above design faces the trade-off between open conditions
and definite functions, and the trade-off can be replaced by the
trade-off between universality and efficiency in computation and
by the trade-off between exploration and exploitation. In this
sense, the design to be achieved results in the coexistence of both
exploration and exploitation beyond the trade-off. In a swarm
model, called the SPP, the trade-off between exploration and
exploitation is expressed as the phase transition between order
izes of the BIB inference. The data are approximated by two distributions, i.e., the
set to 0.001.



Yukio-Pegio Gunji, T. Kawai, H. Murakami et al. Computational and Structural Biotechnology Journal 19 (2021) 247–260
and chaos. Thus, it is expected that universal and efficient design
can be realized at the critical point or the edge of chaos in the
SPP parameter (perturbation) space.

Although determining the critical point as the design solution
requires parameter fine tuning, there have been attempts to auton-
omously identify the critical point, that is called metaheuristics.
One of these attempts is the self-organizing criticality (SOC). While
the SOC has been applied to determining the criticality in the SPP,
previous attempts have failed to identify the critical behavior with-
out ad hoc global knowledge such as a fitness function. The meta-
heuristics for the swarm model based on SOC require global
knowledge such as a fitness function [63,64]. As such, the idea of
the SOC is not autonomously easy beyond parameter tuning. While
there are many swarm-based optimization techniques [33–36],
they are not related to the critical state.

Our proposal based on the interaction between data and
hypotheses in Bayesian inference easily achieves critical behavior.
However, this is different from the idea of the SOC with respect to
two points. First, while the SOC is a way to choose the optimal
solution from among possible states, our proposal does not select
a limited state from many possible states. Instead of choosing,
our proposal turns most states into critical states. In particular,
metaheuristics are not introduced as fitness is added to the phase
transition but instead the phase transition itself is modified. There-
fore, critical behavior is not achieved only at the edge of chaos but
is achieved anywhere in the parameter space. Second, our proposal
never requires fitness knowledge or metaheuristics. The agent of
the SPP never sees all agents in a space, and each agent makes deci-
sions based on Bayesian and inverse Bayesian (BIB) inference,
which is a task based not on global knowledge but on local
dynamic knowledge.

Bayesian inference implements information contraction since it
replaces the probability with the conditional probability. The agent
using Bayesian inference reduces the world to that experienced by
itself. Thus, this occurs in the simple optimization framework, and
Bayesian inference contributes to rapidly reaching the optimal
solution. Inverse Bayesian inference implements information
extension since it replaces the conditional probability with the
probability. In other words, the agent perpetually perceives the
real world (data) outside its own cognitive world (hypotheses).
Because the combination of information contraction and extension
is independent of the knowledge of fitness, it could be applied to
various problems.

Although our proposal is based on agents implementing an
inference system, it never assumes that the genome has the ability
to make decisions even if our proposal is applied to, for instance,
genome editing. The optimal design of a network or traveling sales-
man problem can be resolved by ant agents making decisions with
the probability or pheromones. It is never implied that the network
itself has the ability to make decisions. Bayesian and inverse Baye-
sian inference denote that the probability is not globally given but
is temporally and locally defined. Balancing information contrac-
tion and extension in Bayesian and inverse Bayesian inference
leads to the universal criticality.
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