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Abstract

Background: Psoriasis is an autoimmune inflammatory skin disease that affects 0.5–3% of the world’s population
and current treatment options are posed with limitations. The reduced risk of failure in clinical trials for repositioned
drug candidates and the time and cost-effectiveness has popularized drug reposition and computational methods
in the drug research community.

Results: The current study attempts to reposition approved drugs for the treatment of psoriasis by docking about
2000 approved drug molecules against fifteen selected and validated anti-psoriatic targets. The docking results
showed that a good number of the dataset interacted favorably with the targets as most of them had − 11.00 to
− 10.00 kcal/mol binding free energies across the targets. The percentage of the dataset with binding affinity higher
than the co-crystallized ligands ranged from 34.76% (JAK-3) to 0.73% (Rac-1). It was observed that 12 out of the
0.73% outperformed all the co-crystallized ligands across the 15 studied proteins. All the 12 drugs identified are
currently indicated as either antiviral or anticancer drugs and are of purine and pyrimidine nuclei. This is not
surprising given that there is similarity in the mechanism of the mentioned diseases.

Conclusion: This study, therefore, suggests that; antiviral and anticancer drugs could have anti-psoriatic effects, and
molecules with purine and pyrimidine structural architecture are likely templates to consider in developing anti-
psoriatic agents.
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Background
Psoriasis is an autoimmune inflammatory skin disease
that affects 0.5–3% of the world’s population [1]. It is
caused by the complex interplay of the innate and adap-
tive immune systems together with a wide array of gen-
etic and environmental factors. Environmental triggers
such as stress, injury, drugs, and the disease start the
self-propelled cycle of inflammation culminating in

hyper-proliferation due to the activation of the innate
immune system cells [2–5]. The disease is associated
with decreased quality of life and multiple comorbid
conditions, including metabolic syndrome, cardiovascu-
lar diseases, obesity, diabetes type 2 and Crohn’s disease
[6–8]. In spite of effort by many researchers, there is
currently no drug for curing the disease only for
management purposes. Therefore, chemotherapy for this
disease is highly needed [9, 10].
The goal of drug repurposing is to discover new uses

of old (known) drugs [11]. The field of drug reposi-
tioning is growing rapidly because it starts from com-
pounds, which are often Food and Drug Administration
(FDA) approved drugs, with well-characterized
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pharmacology and safety profiles. Benefits accompanying
this strategy are reduction in the risk of attrition in drug
development during clinical trials and subsequently cost
[12, 13]. Moreover, the successes recorded through this
strategy have popularized its use in drug discovery
courses. For example, Pfizer’s sildenafil is now also pre-
scribed for erectile dysfunction, Celgene’s thalidomide is
repurposed for cancer, Upjohn’s minoxidil for alopecia
and so on [14, 15]. When compared with diseases like
cancer where previously known drugs have been repur-
posed, e.g. the painkiller aspirin for cancer prevention,
metformin previously known for the treatment of type-2
diabetes to protect against cancer development [16, 17],
no repurposed drug has been established as a treatment
for psoriasis to date, thus suggesting the current study.
The use of computers and computer software in drug re-

search has become a common practice because it saves cost
and time. In addition, due to advances in technology and
computer power, accuracy of theoretical results is improv-
ing significantly and as such their predictions represent ex-
perimental results more and more [18–23]. In our previous
investigation of the medicinal plant, Psorospermum febrifu-
gum Spach, we provided evidence that confirm its ethno-
pharmacological usage as antipsoriatic agent and further
identified forty-two fatty acids from the GC-MS chromato-
gram of the most active extract fraction which could be
responsible for its biological activity [24].
In this study, efforts have been made to screen about

2000 currently approved drugs against fifteen selected and
validated anti-psoriatic drug targets through molecular
docking with the aim of repurposing strong binders for the
treatment of the disease. Analysis to identify drugs with
better docking scores than co-crystallized ligands across the
entire protein targets was made and their common motif
noted. The binding modes of the most interesting candidate
in the proteins’ cavities were finally examined.

Materials and methods
Preparation of the approved drugs for molecular docking
The coordinate files, numbering 1852, of the approved
drugs were retrieved from the ZINC database [25] and
prepared by the Molecular Operating Environment soft-
ware (MOE) [26]. The MOE 3-dimensional (3-D)
protonation tool and MMFF94 force field [27] were, re-
spectively, used to protonate the structures of the data-
set and generate low energy structures to a gradient of
0.001 kcal/mol at 300 K and pH of 7.0.

Preparation of the target proteins for modeling purpose
Fifteen selected X-ray crystal structures of enzymes impli-
cated in the disease mechanism alongside their co-
crystallized ligands were retrieved from the protein data
bank [28]. Water and other non-essential small molecules
co-crystallized with the protein-ligand complexes were

deleted and then polar hydrogen atoms were added after
which their low energies were generated using the ffG53a6
in Gromacs 4.5.5 [29]. Finally, each protein and their co-
crystallized ligand was separated and saved as separate files.

Docking procedure
The cavities occupied by each co-crystallized ligand were
considered as the binding site of the fifteen anti-
psoriatic targets and three main stages implemented in
MOE DockTool were employed in docking the dataset
into them as follows: First the program performed a sys-
tematic search to generate all combinations of angles for
each ligand from its single 3-D conformation. Next Tri-
angle Matcher tool placed a collection of poses, gener-
ated from the pool of ligand conformations, into the
protein target binding site. Finally, London dG scoring
function computed the binding free energy of the ligand
from a given pose by taking cognizance of plethora of
factors such as the average rotational and translational
entropy terms, energy lost as a result of the flexibility of
the ligand, hydrogen bonding, metal contacts and a des-
olvation term due the volumes of the atoms of the pro-
tein and ligand in contact with solvent. The program
was set to retain the top 5 poses for each ligand. Note
that the docking parameters were validated by using only
the 3-D affinity grids which reproduced the experimental
poses of the co-crystallized ligands within root mean
square deviation (rmsd) of < 2.0 Å.

Results and discussion
Since psoriasis is a chronic disease with no known cure,
available drugs are only used to manage the symptoms and
improve patients’ quality of life [30]. Thus, drugs for the
management of psoriasis should be safe for long term use.
They should also be cost-effective and very convenient to
administer. However, the current drugs for the manage-
ment of psoriasis have limitations ranging from lack of po-
tency (topical agents), high toxicity (anticancer agents),
high cost and relatively large molecular size. Furthermore,
biologics require engineering from live, specialized cells [31,
32]. Due to these limitations, these drugs are not readily ac-
cessible to patients and those that can afford them still have
problems with compliance because of the high untoward
effects. This situation provided the impetus to search for
better, cost-effective and safer anti-psoriatic drugs.

Virtual screening of the approved drugs on the selected
Antipsoriatic targets
Several parameters for the centroids and dimensions of
grids were centered on each of the proteins’ binding sites
and only the ones that reproduced the experimental li-
gands poses were retained as shown in Table 1 and used
in the virtual screening procedure. The rmsd values
from the docking validation results ranged from 0.86 to
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1.88 Å with co-crystallized inhibitors of Pim-1 kinase
and P38-MAPK showing the best dock poses. Since all
the values are within acceptable range, they were then
used to carry out the docking calculations.
The distribution of the docking scores of the approved

drugs across the studied targets ranged from low

negative values (− 22.81 kcal/mol) to positive values
(Table 2). The most susceptible protein to the dataset
was observed to be the tyrosine kinase (JAK-3) which is
confirmed to participate in the inflammatory affliction.
About 35% of the dataset demonstrated higher binding
affinity for JAK-3 than its specific co-crystallized

Table 1 Validation of the docking protocol employed in the study

Target PDB
Code

Grid Box Origin Grid Box Radius RMSD

X Y Z X Y Z

A2AR 2YDO −28.9352 9.0723 −23.3486 4.0 7.0 4.0 1.60

BTK 4OTF −37.9926 26.1210 −9.4603 7.0 6.0 10.5 1.56

CS 5QC5 42.8295 −4.4045 42.1155 8.0 8.0 8.0 1.65

Il-17α 5HI4 78.6552 −44.1998 −45.5098 8.0 8.0 8.0 1.88

Il-23 3QWR 23.5974 −26.6082 −51.9151 8.0 8.0 8.0 1.72

JaK-3 5TTS −0.2570 17.8777 −5.2946 7.7 8.0 7.0 1.53

P38-MAPK 3NEW 24.4628 16.3186 10.6828 5.0 5.5 4.9 0.94

PDE-4 5K1I 12.5596 3.8457 68.4582 6.0 6.0 6.3 1.48

PAD 4X8G 26.8987 45.0298 26.6235 8.0 8.0 8.0 1.64

Pim-1 Kinase 4A7C −41.1394 −3.0677 2.5015 6.0 5.5 6.2 0.86

PKC 5F9E 26.2347 78.7212 29.1280 8.0 6.0 8.0 1.16

RAC-1 5VCU 2.3215 −21.9062 −6.8930 8.0 5.0 8.0 1.23

SPK 4XG6 0.4376 −3.1674 7.0491 6.0 7.0 6.0 1.86

S1PR 3V2W 7.4851 17.6949 −8.9697 8.0 8.0 8.0 1.66

TNF-α 2AZ5 −19.0000 74.2776 33.5624 6.0 6.3 6.8 1.47

A2AR Adenosine A2 Receptor, BTK Bruton’s Tyrosine Kinase, CS Cathepsin S, IL-17A Interleukin-17A, IL-23 Interleukin-23, JaK-3 Janus Kinase 3, P38-MAPK Mitogen-
activated Protein Kinase-p38, PDE-4 Phosphodiesterase-4, PAD Peptidylarginine Deiminase, Pim-1 kinase ProviralIntegration site for Moloney Murine Leukemia
Virus-1 Kinase, PKC Protein Kinase C, RAC-1 Ras-related C3 Botulinum Toxin Substrate-1, S1PR Sphingosine 1-Phosphate Receptor, SPK Protein Kinase C, and TNF-α
Tumor Necrosis Factor-alpha

Table 2 Number of the drugs with higher binding affinity than the co-crystallized ligands for each studied protein targets, their
corresponding percentages of the dataset and the docking score of the topmost scorer

Protein
Target

Co-crystallized
ligand (kcal/mol)

No. of compounds with higher binding
affinity than co-crystallized ligands

Percentage of dataset with higher binding
affinity than co-crystallized ligands

Maximum
score (kcal/mol)

A2AR −12.62 79 4.27 −16.84

BTK − 13.26 35 1.91 − 18.26

CS −11.65 55 2.99 −17.38

IL-17A −10.59 161 8.76 −15.64

IL-23 −11.91 13 0.73 −15.62

JAK-3 −9.73 641 34.64 −16.31

P38-MAPK −12.32 78 4.24 −17.67

PDE-4 −13.91 36 2.06 −16.74

PAD −13.91 24 1.33 −18.23

Pim-1 Kinase −14.68 14 0.8 −19.08

PKC −12.23 97 5.24 −18.92

RAC-1 −16.08 19 1.05 −20.91

SPK −13.02 107 1.23 −16.64

SIPR −17.36 19 1.06 −22.81

TNF-α −10.81 46 2.5 −15.52
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inhibitor. This lends credibility to our docking method
because JAK-3 had been reported to be a promiscuous
protein [33]. Next to JAK-3 are IL-17A, PKC, A2AR and
P38-MAPK respectively with about 9, 5, 4 and 4% of the
dataset scoring lower than its co-crystallized ligands.
The rest have a low percentage of the dataset in that cat-
egory. The least interactive protein was IL-23 which has
only thirteen drugs scoring better than its co-crystallized

ligand. These observations are consistent with earlier re-
ports [34]. We compared the performance of the thir-
teen compounds across the other 14 targets and realized
all of them scored higher than all the co-crystallized li-
gands except one. In other words, inhibitors of IL-23 will
likely exhibit broad spectra of activities against various
types of psoriasis. Interestingly, all the twelve drugs are
either purine or pyrimidine nucleoside/nucleotide

Fig. 1 2-dimensional structures of the twelve drugs that showed higher binding affinity for all the studied 15 protein targets than each of their
corresponding co-crystallized ligands

Table 3 Names, chemical classes and current indications of the 12 drugs

Drug Name Chemical Class/ Structural Scaffold Current Indications References

Sofosbuvir Pyrimidine nucleotide analog Hepatitis C [35]

Nelarabine Purine nucleoside analog Acute lymphoblastic Leukemia [36]

Entecavir Purine nucleoside analog Hepatitis B [37]

Clofarabine Purine nucleoside analog Acute lymphoblastic leukemia [38]

Ganciclovir Purine nucleoside analog Cytomegalovirus infection [39]

Fluorouracil Pyrimidine analog Various cancers [40]

Penciclovir Purine analog Herpes virus infections [41]

Lamivudine Pyrimidine nucleoside analog HIV/AIDS, Hepatitis B [42]

Cladribine Purine nucleoside analog B-cell chronic lymphocytic leukemia [43]

Zalcitabine Pyrimidine nucleoside analog HIV/AIDS [44]

Fludarabine Purine nucleotide analog Leukemia and Lymphoma [45]

Cytarabine Pyrimidine nucleoside analog Leukemia and Lymphoma [46]

Ibezim et al. BMC Complementary Medicine and Therapies          (2021) 21:193 Page 4 of 8



Ta
b
le

4
Bi
nd

in
g
fre

e
en

er
gi
es

of
th
e
tw

el
ve

dr
ug

s
ac
ro
ss

th
e
15

se
le
ct
ed

ta
rg
et
s

Ta
rg
et
s

B
in
di
ng

Fr
ee

En
er
g
ie
s
(k
ca
l/
m
ol
)

So
fo
sb
uv

ir
N
el
ar
ab

in
e

En
te
ca
vi
r

C
lo
fa
ra
b
in
e

G
an

ci
cl
ov

ir
Fl
uo

ro
ur
ac
il

Pe
nc

ic
lo
vi
r

La
m
iv
ud

in
e

C
la
d
ri
b
in
e

Za
lc
it
ab

in
e

Fl
ud

ar
ab

in
e

C
yt
ar
ab

in
e

A
2A
R

−
13
.7
8

−
16
.8
5

−
15
.8
8

−
13
.1
26

−
15
.4
6

−
14
.4
1

−
13
.9
3

−
14
.2
4

−
13
.5
4

−
13
.2
2

−
14
.8
9

−
13
.2
2

BT
K

−
16
.2
4

−
18
.0
4

−
15
.8
7

−
15
.5
85

−
16
.6
9

−
16
.0
5

−
16
.0
2

−
16
.2
5

−
17
.9
2

−
18
.7
2

−
16
.1
0

−
16
.9
9

C
S

−
13
.8
3

−
15
.3
2

−
12
.2
7

−
13
.8
00

−
13
.9
3

−
12
.7
0

−
12
.7
6

−
13
.3
2

−
17
.0
3

−
12
.8
0

−
13
.4
8

−
13
.9
0

IL
-1
7α

−
13
.6
9

−
14
.7
7

−
14
.8
4

−
13
.9
35

−
14
.4
4

−
13
.6
1

−
13
.6
3

−
14
.9
6

−
13
.5
6

−
13
.6
1

−
15
.9
6

−
14
.4
7

IL
-2
3

−
13
.2
2

−
14
.9
4

−
12
.0
5

−
15
.6
23

−
13
.0
1

−
14
.8
2

−
14
.2
4

−
13
.3
6

−
14
.3
7

−
12
.5
1

−
15
.4
9

−
13
.8
2

Ja
K-
3

−
13
.2
5

−
14
.8
1

−
13
.4
3

−
14
.5
71

−
14
.9
4

−
14
.8
6

−
13
.9
9

−
13
.2
4

−
14
.7
7

−
12
.5
9

−
15
.1
5

−
13
.5
1

P3
8M

A
PK

−
14
.2
5

−
15
.0
6

−
14
.3
9

−
13
.1
81

−
15
.5
3

−
13
.4
3

−
14
.1
3

−
13
.6
7

−
14
.4
7

−
13
.2
9

−
14
.4
4

−
14
.9
7

PD
E-
4

−
13
.9
9

−
13
.9
8

−
12
.0
6

−
14
.2
06

−
12
.6
0

−
12
.7
9

−
12
.4
9

−
13
.2
9

−
14
.4
1

−
11
.9
0

−
13
.6
3

−
13
.0
5

PA
D

−
13
.9
8

−
18
.2
3

−
15
.8
6

−
15
.2
12

−
15
.4
8

−
15
.4
4

−
14
.8
4

−
15
.6
7

−
15
.6
2

−
15
.3
7

−
15
.3
4

−
14
.8
9

Pi
m
-1

Ki
na
se

−
16
.9
9

−
16
.4
7

−
17
.2
9

−
16
.5
00

−
19
.0
8

−
17
.3
3

−
17
.4
8

−
17
.1
9

−
14
.6
8

−
16
.4
4

−
16
.8
3

−
16
.1
8

PK
C

−
17
.2
1

−
18
.0
3

−
16
.3
7

−
16
.5
29

−
17
.4
9

−
16
.6
6

−
16
.5
1

−
16
.7
0

−
16
.8
0

−
16
.3
2

−
18
.1
5

−
17
.2
2

RA
C
-1

−
19
.6
1

−
18
.2
0

−
18
.8
8

−
19
.0
22

−
20
.1
4

−
20
.2
4

−
20
.9
1

−
18
.1
5

−
18
.5
9

−
17
.1
5

−
18
.7
0

−
19
.3
4

S1
PR

−
20
.3
1

−
22
.2
8

−
20
.0
5

−
20
.3
33

−
19
.6
6

−
20
.3
8

−
21
.7
8

−
18
.9
8

−
20
.0
0

−
18
.3
0

−
21
.9
0

−
20
.2
7

SP
K

−
12
.8
2

−
15
.3
2

−
13
.6
3

−
12
.9
29

−
14
.6
6

−
13
.1
9

−
13
.9
8

−
11
.5
6

−
15
.1
0

−
13
.9
5

−
13
.7
7

−
12
.3
6

TN
F-
α

−
13
.1
0

−
13
.3
6

−
11
.4
7

−
12
.4
85

−
12
.2
4

−
12
.4
4

−
11
.9
5

−
12
.5
1

−
11
.9
7

−
12
.4
1

−
12
.0
0

−
11
.9
6

Ibezim et al. BMC Complementary Medicine and Therapies          (2021) 21:193 Page 5 of 8



analogues, except for fluorouracil which is a simple pyr-
imidine (uracil) derivative with neither phosphate group
nor modified sugar side chain (Fig. 1).
The interesting binding interactions shown by the

12 compounds toward the selected protein targets
could be based on their highly functionalized nature,
with many polar moieties and the presence of cyclic
aromatic groups whose pi-electrons are readily avail-
able to engage into hydrophobic bonding. The polar
nature of the drugs is also evident from their molecu-
lar structures. Nelarabine, entecavir, clofarabine, gan-
ciclovir, penciclovir, and fludarabine are derivatives of
purine base while sofosbuvir, fluorouracil, zalcitabine,
and cytarabine are derivatives of pyrimidine base.
These polar moieties can easily be involved in H-
bonding. Current indications of the 12 drugs pre-
sented in Table 3 show that they are either antiviral
or anticancer drugs. Thus, purine and pyrimidine
based antiviral and anticancer drugs are potential che-
motherapeutic options for handling psoriasis. Examin-
ation of the individual scores of each of the twelve
for the 15 targets (Table 4) revealed nelarabine as the
topscorer for five targets (A2AR, PAD, SPK, SIP re-
ceptor and TNF-α), followed by fludarabine with
highest binding affinity for IL-17, JAK-3 and PKC.
Apart from cladribine which topped for CS and PDE-
4, the rest of the drugs either emerged as the tops-
corer for just one target or none. Nelarabine poses in
the binding sites of A2AR, PAD and SIP receptors as
shown in Fig. 2 confirmed our earlier hypothesis as it
was observed to make a series of arene-carbon, arene-
H and pi-pi interactions with the various protein
binding sites residues.
These 12 known drugs (shown in Table 3 and Fig.

2) identified by the described computational approach
could be possible candidates for the treatment of
psoriasis. These are essentially antiviral or antineo-
plastic drugs and have previously been reported to
show some side effects. As an example, common side
effects of sofosbuvir (administered as tablets with

brand name: Sovaldi) include: fatigue, headache, nau-
sea, insomnia, itching, anemia, weakness and rash.
This drug is a nucleotide analogue inhibitor of the hepa-
titis C virus (HCV) NS5B polymerase used for the treat-
ment of chronic hepatitis C (CHC) infection. It is often
employed as part of a combination antiviral treatment
regimen. Fluorouracil has been administered as a topical
cream and as an injection. It has appeared in several brand
names (including adrucil) approved by the FDA as an
injection acting as a nucleoside metabolic inhibitor for the
treatment of patients with several cancer types, including
adenocarcinoma of the colon and rectum, adenocarcin-
oma of the breast, gastric adenocarcinoma and pancreatic
adenocarcinoma. The drug causes hair loss, nausea, bruis-
ing, among other effects (RxList, https://www.rxlist.com/
adrucil-drug.htm#description). Cytarabine is an injectable
cancer medication for the treatment of certain types of
blood cancers (leukemia), particularly those associated
with meningitis. Common side effects include nausea and
vomiting, appetite loss, diarrhea, constipation, headache,
dizziness, injection site reactions (e.g. pain, swelling, and
redness), drowsiness, weakness, memory problems, back
pain, pain in your arms or legs, or trouble sleeping (in-
somnia). Since psoriasis is a skin disease, the administra-
tion route for the repurposing of some of these injectable
drugs could avoid the use of injections to reduce the side
effects observed by injecting patients, preferably by topical
administration. In the case of sofosbuvir, side effects re-
lated to the ingestion of the tablets (e.g. fatigue, headache,
nausea, etc.) could be avoided when administered topic-
ally. This, together with other drugs currently available as
non-ingestible and non-injectable powders would be most
suitable for repurposing as potential drugs for the treat-
ment of psoriasis.

Conclusion
In this study, we identified 12 FDA approved drugs
(nelarabine, fludarabine, clofarabine, cladribine, zalcita-
bine, cytarabine, ganciclovir, penciclovir, sofosbuvir,
entecavir, fluorouracil, and lamivudine) with higher

Fig. 2 Binding poses of nelarabine within the binding cavities of a A2AR, b PAD and c SIP receptor. In each of them carbon atoms are colored
grey while ligand molecules are presented in ball and stick format. Hydrogen, arene-H and arene-carbon bonds are shown in cyan and light
yellow respectively. Only interacting amino acid residues are shown for clarity
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binding affinity for all the 15 studied anti-psoriatic tar-
gets than their co-crystallized ligands. The similarity be-
tween the mechanisms of action of psoriasis and the
diseases (cancer and viral) which the 12 drugs are cur-
rently indicated seems to confirm the in-silico predic-
tion. A recent review on psoriasis and its treatment [47]
suggests that none of these twelve drugs is currently pre-
scribed for managing the psoriatic condition. Although
some drugs used for managing psoriasis at the moment,
like metronidazole, share a common structural motif
with our virtual hits, we consider these twelve com-
pounds as possible candidates that can be repositioned
for managing psoriasis. In the future, we hope to validate
the anti-psoriatic property of the 12 drugs in a biological
assay.
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