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ABSTRACT

Cancer molecular profiling provides better understanding of tumor mechanisms 
and helps to improve the existing cancer management. Here we present the gene 
expression signatures from ~9000 human tumors with clinical information across 
32 malignancies from The Cancer Genome Atlas project (TCGA). Major predictors 
from the RNA sequencing data that were significantly correlated with cancer survival 
were identified. The expression level of these prognostic genes revealed significant 
genomic pathways that were clinically relevant to survival outcomes across human 
cancers. Furthermore, it is shown that in most cancer types, combinations of these 
genomic signatures with clinical information might yield improved predictions. Thus, 
with respect to clinical utility, our study reveals the promising values of genomic data 
from the pan-cancer perspective.

INTRODUCTION

Cancer is a global health burden and the second 
leading cause of death [1]. Despite various detection 
method and treatment options, survival rates for most 
cancers are still very low.

Genomic features emerge as promising biomarkers 
for cancer [2]. Of the various molecular data, the gene 
expression value from RNA sequencing revealed detailed 
molecular features with prognostic associations [3]. 
However, due to high cost, most studies only focused on 
several pre-selected genes, or based on small sample sizes 
[4, 5].

The cancer genome atlas (TCGA) project “motivated 
large-scale genomic efforts to obtain the complete catalogs 
of the genomic alterations in cancer” [6]. Besides the rich 
molecular features (genomic, transcriptomic, epigenomic 
and proteomic) of each tumor, it also provides valuable 
clinical information. However, the clinical utility of these 
data has not been fully elucidated.

In the present study, we depicted the global 
pan-cancer prognostic landscape by analyzing the 
expression signatures from ~9000 human tumors across 
32 malignancies from TCGA data sets. Furthermore, the 

clinical utility of survival predictions was evaluated by 
combining the genomic data with clinical information.

RESULTS

Patient characteristics and outcome

Patient information with complete RNA sequencing 
data and clinical data of all TCGA cancer types were 
collected (32 tumor types) (adrenocortical carcinoma, 
ACC; bladder urothelial carcinoma, BLCA; breast 
invasive carcinoma, BRCA; cervical and endocervical 
cancers, CESC; cholangiocarcinoma, CHOL; colon 
adenocarcinoma, COAD; lymphoid neoplasm diffuse 
large B-cell lymphoma, DLBC; esophageal carcinoma, 
ESCA; glioma, GBMLGG; head and neck squamous 
cell carcinoma, HNSC; kidney chromophobe, KICH; 
kidney renal clear cell carcinoma, KIRC; kidney 
renal papillary cell carcinoma, KIRP; acute myeloid 
leukemia, LAML; liver hepatocellular carcinoma, LIHC; 
lung adenocarcinoma, LUAD; lung squamous cell 
carcinoma, LUSC; mesothelioma, MESO; ovarian serous 
cystadenocarcinoma, OV; pancreatic adenocarcinoma, 
PAAD; pheochromocytoma and paraganglioma, PCPG; 
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prostate adenocarcinoma, PRAD; rectum adenocarcinoma, 
READ; sarcoma, SARC; skin cutaneous melanoma, 
SKCM; stomach adenocarcinoma, STAD; testicular germ 
cell tumors, TGCT; thyroid carcinoma, THCA; thymoma, 
THYM; uterine corpus endometrial carcinoma, UCEC; 
uterine carcinosarcoma, UCS; uveal melanoma, UVM).

Data analysis steps and clinical characteristics of 
the cancer patients were shown in Figure 1A-1E. In total, 
there were 9175 patients of the 32 tumor types, in which, 
49.4% were male and 50.6% were female. Their median 
age was 60 years old. With respect to tumor stage, 30.7% 
of the patients were in stage 1, 30.9% were in stage 2, 
26.7% were in stage 3, and 11.7% were in stage 4. At the 
time of analysis, 77.4% of the patients remained alive, and 
22.6% were deceased.

Pan-cancer prognostic genes and risk scores

To explore the pan-cancer prognostic signatures, 
pan-cancer dataset was built by combining all the cancer 

patients. Samples were randomly assigned into two 
groups, where 80% of the samples were assigned as the 
training group and 20% as the testing group. By cox 
regression analysis for the training group, the top ten 
adverse genes (B3GNT5, SLC11A1, ELF4, GALNT2, 
PA2G4P4, SKP2, S100A9, FOXM1, PSMB2, ARL6IP6) 
and top ten favorable prognostic genes (TADA2B, CBX7, 
CIRBP, MAGED2, CRY2, CREBL2, TMED8, XPC, 
SECISBP2, GPD1L) were identified (Figure 2A). Based 
on these top prognostic genes, risk scores were calculated 
(Table 1). The risk score was defined as the weighted sums 
of the independent prognostic gene values (1 for high 
expression, and 0 for low expression), weighted with their 
regression coefficients from the cox models (Figure 2B).

To assess the clinical utility of the risk score, 
correlation of the risk score with the clinical variables in 
the training group was explored. In the analysis, higher 
scores were associated with male patients, patients 
with older age, and patients with advanced tumor 
stages (Figure 2C). Further cox analysis and log rank 

Figure 1: Overview of the computational approach and patient characteristics. A. Flow diagram summarizing the data 
processing and analysis steps. B. Number of patient samples with survival data, organized by cancer types. C. Median age of the patients in 
different cancer types. D. Median survival time of the patients in different cancer types (some of the cancer types don’t have enough death 
events to calculate the median survival times, either because of the high survival rates or due to the small sample size of the cancer type). 
E. Frequency distributions of gender, tumor stage and survival outcome in the whole cancer population.
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test also confirmed that the poor survival outcome in 
patients with higher risk scores in different tumor stages 
(Figure 2D–2E). In the testing group, similar relationship 
between the risk score and clinical variables was also 
shown (Figure 2F). Notably, with respect to survival 
analysis, higher risk scores in the testing group also 
indicated higher risks of prognosis, suggesting that the 
risk score showed valuable clinical utility (Figure 2G–2H).

Evaluation of the prognostic genes and risk 
scores

The RNA-seq data demonstrated great value for 
cancer prognosis. Risk scores specific for each type of 
cancer were shown in Table 1, which were calculated by 

applying the method used in the whole cancer population. 
However, at this moment, these prognostic models are 
limited by the sample size to be of clinical value.

To evaluate the effect of different normalization 
method for the RNA-seq data, quantile data were 
transformed into z-score or being applied the voom 
normalization. As shown in supplementary Figure 1A-1B, 
after quantile normalization of the RNA-seq data, the z-score 
transformation or voom normalization doesn’t change much 
of the prognostic genes (based on z values of cox regression), 
with the pearson r value of 0.98 and 0.97, respectively. After 
various normalization method, top prognostic genes remained 
mostly the same, which was shown in the supplementary 
Figure 1C. Thus, applying Z-score transformation or voom 
normalization yield limited value for the survival analysis.

Figure 2: Prognostic landscape of gene expression in the whole cancer population. A. Top ten adverse and favorable pan-
cancer prognostic genes were identified in the training group, ranked by the z scores. B. Risk score calculated by the top prognostic genes 
in the training group patients. Upper panel: risk-score distribution of the training group patients and survival status (blue indicates alive, and 
red indicates dead). Lower panel: heatmap showing the expression level of the top prognostic genes. C. Box plots of risk scores in different 
age groups, different gender groups, and different stage groups in the training group patients. D. Forest plot of risk score association with 
cancer mortality in the training group patients of different stages. E. Kaplan-Meier estimates of overall survival according to the risk score 
in the training set. F. Box plots of risk scores in different age groups, different gender groups, and different stage groups in the testing group 
patients. G. Forest plot of risk score association with cancer mortality in the testing group patients of different stages. H. Kaplan-Meier 
estimates of overall survival according to the risk score in the testing set.
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Table 1: Specific risk scores for different types of cancer

Cancer Type Risk Score

Whole population 
(binary)

Score = 0.66*B3GNT5+0.65*SLC11A1+0.65*ELF4+0.65*GALNT2+0.63*PA2G4P4+
0.63*SKP2+0.60*S100A9+0.63*FOXM1+0.61*PSMB2+0.64*ARL6IP6-0.63*GPD1L-
0.62*SECISBP2-0.58*XPC-0.61*TMED8-0.61*CREBL2-0.64*CRY2-0.64*MAGED2-
0.68*CIRBP-0.69*CBX7-0.71*TADA2B

Whole 
population(continuous)

Score = 0.09*B3GNT5+0.17*SLC11A1+0.29*ELF4+0.12*GALNT2+0.18*PA2G4P4+
0.16*SKP2+0.08*S100A9+0.14*FOXM1+0.04*PSMB3+0.23*ARL6IP6-0.34*GPD1L-
0.35*SECISBP2-0.38*XPC-0.26*TMED8-0.36*CREBL2-0.37*CRY2-0.46*MAGED2-
0.54*CIRBP-0.48*CBX7-0.42*TADA2B

ACC Score = 2.48*MASTL+2.38*RECQL4+2.33*PRC1+2.36*KIF11+2.65*AMMECR1L+2.55*
TRIP13+2.54*MKI67+2.59*NCAPD3+2.07*E2F1+2.06*FANCI-2.07*APH1B-2.3*CTSA-
2.04*UPRT-2.02*HNRNPH2-2.28*NDRG4-2.47*PPFIBP2-1.94*LACTB-2.43*PTGR2-
2.11*CHIC1-2.36*BDH2

BLCA Score = 0.81*SPNS1+0.77*GARS+0.78*NBAS+0.77*IFT122+0.75*NOMO1+0.74*TMX2+
0.73*DHRS4+0.74*CCDC28B+0.74*TMEM109+0.74*DAD1-0.86*GATA2-0.77*TRIM26-
0.76*MRPS6-0.77*YDJC-0.76*ZNF841-0.75*ZBTB49-0.72*ORMDL1-0.72*DEDD2-
0.72*OGT-0.74*CTSH

BRCA Score = 0.88*ZHX1+0.82*PRRC1+0.82*SCRN1+0.81*IARS+0.81*PTPN11+0.83*VPS35+
0.78*MRS2+0.77*GRPEL2+0.79*TMEM65+0.76*PGK1-0.95*TNFRSF14-0.95*KDM4B-
0.92*INO80B-0.88*LOC150776-0.86*MRPL23-0.87*PYCARD-0.84*ABHD14A-0.82*FGD3-
0.84*SEC14L2-0.79*NFKBIA

CESC Score = 1.14*PHRF1+1.09*TNRC18+1.06*ITGA5+0.98*DBN1+1.01*LATS2+1.01*TO
R1AIP2+1.02*FASN+1*URGCP+0.95*SRI+0.95*ADAM9-1.28*TREX1-1.21*RBM38-
1.07*LGALS9-1.04*HNRNPA3-0.97*NQO2-0.96*ZER1-0.97*ISCU-0.94*MTCP1NB-
0.96*AKR1A1-0.98*SLC25A28

CHOL Score = 1.91*EIF5A+2*CEBPB+1.9*SCO1+1.89*ROM1+2.32*SRI+1.69*FAM54B+1
.62*MNAT1+1.58*PSEN1+1.51*PDHB+1.66*SLC38A6-1.63*SCRN1-1.95*PGPEP1-
1.83*EIF4ENIF1-1.62*SGSH-1.63*VSIG10-1.49*ACBD5-1.47*PURB-1.61*TNFAIP8-
1.57*FUT4-1.38*FGD6

COAD Score = 1.24*TIAL1+1.14*SMNDC1+1.1*KIAA0907+1.09*POLR2J4+1.03*HSPA1L+0.94*Z
BTB25+0.95*UBN2+0.95*SCRN3+0.98*ZBTB9+0.93*DNAJB6-0.99*CPT2-1.01*MRPL37-
0.99*ATP8B1-0.96*CCDC149-0.92*EIF2C1-0.9*DYNLL2-0.96*ZCCHC11-0.91*MFN2-
1.01*GSR-0.9*SAMM50

DLBC Score = 1.67*ELP4+1.48*API5+1.48*ARHGEF7+1.48*ATXN7L2+1.48*EXOC5+1.48*
GMEB1+1.48*MEMO1+1.48*MPHOSPH10+1.48*MTOR+1.48*NEO1-1.48*TBKBP1-
1.48*STXBP2-1.48*PUS1-1.48*PTRH1-1.48*POLR3D-1.48*KCNK6-1.48*IFI35-
1.48*GPAA1-1.48*FHL3-1.48*FBXW5

ESCA Score = 1.13*B3GALTL+1.11*PGK1+1.18*GRPEL2+1.17*MAPRE1+1.03*SRXN1+1.02*LR
RC58+0.99*NFATC3+0.96*ST13+0.94*TRMT6+0.92*MLLT11-1.02*UNC13D-0.98*PCSK7-
0.94*PLCD3-1.01*DIP2A-0.98*PLEKHM1P-0.89*UNC93B1-0.87*ERAP2-0.84*LRCH4-
0.86*CCBL2-0.84*C10orf54

GBMLGG Score = 1.98*GLA+1.83*KDELC2+2.01*WEE1+1.88*EMP3+1.8*DUSP10+1.84*CLI
C1+1.88*TIMP1+1.84*CD58+1.79*DDB2+1.81*SHISA5-2.01*ZRANB1-1.9*GLUD1-
1.88*FAM190B-1.78*RAP2A-1.79*ADD1-1.77*HDAC4-1.83*ARL3-1.74*PATZ1-
1.79*SCAPER-1.73*RPL7

HNSC Score = 0.9*PGK1+0.8*USP10+0.78*TOMM34+0.8*SNX6+0.72*TMED2+0.7*PDIA3
P+0.69*ADK+0.71*USP14+0.69*TRIM32+0.68*HPRT1-0.75*ZNF266-0.69*ZNF700-
0.64*AHCYL2-0.65*SH3BP2-0.65*ZNF577-0.64*ZNF557-0.64*ATXN7L2-0.64*ZNF20-
0.63*DUSP16-0.63*CDK3

(Continued )
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Cancer Type Risk Score

KICH Score = 2.36*PNPT1+2.33*PTP4A2+2.31*GPN1+2.31*GPATCH2+2.3*PLEKHA2+2.29
*NRAS+2.27*PDS5A+2.27*KDM1B+2.27*TTF2+2.26*NT5DC3-2.36*FIZ1-2.34*TST-
2.34*C14orf1-2.34*ELAVL1-2.33*KLHL26-2.31*CES2-2.31*CTDP1-2.31*SUSD1-2.3*USF2-
2.3*COPS7A

KIRC Score = 1.28*DONSON+1.24*STRADA+1.2*ATP13A1+1.19*NOP56+1.18*CARS+1.18*AN
APC7+1.16*ANAPC5+1.14*SBNO2+1.15*NCLN+1.18*FKBP11-1.16*SGCB-1.15*PINK1-
1.12*FBXO3-1.11*SSFA2-1.1*ITGA6-1.01*HBP1-1*FBXL3-1.02*RNF20-1*PURA-
0.98*FBXL5

KIRP Score = 1.7*GLT25D1+1.48*LMNB2+1.54*SPAG5+1.96*ADA+1.41*PUS7+1.61*CCN
F+1.5*RHBDF2+1.7*P4HB+1.58*TSEN15+1.41*AEBP1-1.65*TMCO4-1.49*PGPEP1-
1.63*FBXL5-1.51*HTATSF1-1.56*CCDC71-1.56*ACTR8-1.36*CC2D2A-1.42*PARP3-
1.39*ZBTB3-1.39*SLC25A11

LAML Score = 1.1*TOMM40L+0.95*NUP210+0.91*PARP3+0.83*DDIT4+0.83*CLCN5+0.79*FIB
P+0.78*RPS6KA1+0.77*PSMA7+0.76*RINL+0.76*PARVB-0.99*PWWP2A-0.97*MBTPS1-
0.87*NHLRC3-0.87*LOC646762-0.86*ADSS-0.84*TGIF1-0.81*SIAH1-0.83*DET1-
0.8*KCTD15-0.79*FCHSD2

LIHC Score = 0.97*HNRNPH1+0.81*N4BP3+0.82*LDHA+0.81*ZCRB1+0.84*YBX1+0.78*STK
39+0.78*ATP6V1E1+0.8*ANXA5+0.78*HN1+0.76*ATP1B3-0.81*STAT5B-0.79*C9orf3-
0.79*CHST14-0.76*SIK2-0.72*POLDIP2-0.73*ATF7IP2-0.72*SLC23A2-0.67*STIM1-
0.65*MIA3-0.65*PSD4

LUAD Score = 0.72*ITGA6+0.73*C1QTNF6+0.72*MTHFD1+0.7*DNAJB4+0.7*BACH1+0.69*CCN
A2+0.65*EXT1+0.65*FSCN1+0.66*DNAJB6+0.65*NOC3L-0.91*SLC25A42-0.82*PRKCD-
0.79*DBP-0.75*DENND1C-0.71*NRL-0.72*C19orf42-0.73*ALAD-0.71*SLC11A2-
0.68*ABAT-0.67*FAM117A

LUSC Score = 0.74*CD14+0.66*ARHGAP1+0.63*CD151+0.62*FSTL3+0.6*RALGAPA2+0.59*C
ST3+0.57*C11orf2+0.56*SNX29+0.56*FAM109B+0.54*EHD1-0.69*ERH-0.65*NDUFB1-
0.59*CBX1-0.56*EMD-0.55*RLIM-0.53*FAM103A1-0.53*MNAT1-0.53*VRK1-
0.51*SS18L2-0.5*FKBP3

MESO Score = 1.71*CDCA8+1.63*KPNA2+1.62*SPAG5+1.54*CCNA2+1.64*IQGAP3+1.66*FO
XM1+1.5*HMGB2+1.51*MAD2L1+1.52*CDCA5+1.58*PRC1-1.53*KLHL9-1.44*ETAA1-
1.41*THTPA-1.36*HIST1H2BD-1.32*FOXO4-1.39*FBXO44-1.28*HIST1H2AC-
1.39*HIST1H2BK-1.3*SH3BGRL-1.36*TMBIM4

OV Score = 0.6*CBLL1+0.59*CACNA1C+0.56*SOCS5+0.54*ZNF384+0.54*CACNB1+0.53*S
EMA4F+0.52*AGPAT6+0.52*CHKA+0.54*GLIS2+0.52*GLCE-0.77*NPEPL1-0.6*TLCD1-
0.57*LMO4-0.55*CASP6-0.54*ISG20-0.55*AP4B1-0.53*SAT1-0.52*ZNF326-0.51*ENSA-
0.5*AP1S2

PAAD Score = 1.31*ATG12+1.3*ASCC1+1.33*NFE2L3+1.31*KIAA1609+1.3*CCDC6+1.2*EIF
2A+1.26*TMOD3+1.21*AP3S1+1.24*METAP1+1.22*NCK1-1.33*USP20-1.27*MUM1-
1.27*REC8-1.24*RBM6-1.21*ARMC5-1.23*DEF8-1.27*KLHL22-1.13*C7orf43-
1.14*MGC23284-1.1*ELMOD3

PCPG Score = 2*GLE1+1.99*EFTUD1+1.99*NARG2+1.98*CIZ1+1.97*ZNF490+1.97*TTC9C+1.9
6*FAM178A+1.96*ABCA1+1.95*AKAP13+1.95*LOC642852-2.03*HMOX2-1.96*DGCR14-
1.96*SLC10A3-1.95*ITFG3-1.94*FAM118A-1.93*MBD3-1.93*USE1-1.92*ICOSLG-
1.91*FSCN1-1.91*TMEM167B

PRAD Score = 20.3*EXTL2+20.3*B3GNT5+20.3*SEMA4C+20.3*NUDCD2+20.3*GNAI1+20.3*TH
UMPD1+20.3*CNNM3+20.3*RNF138+20.3*PRPF4+20.3*FASTKD3-20.3*MRM1-20.3*DAP-
20.3*PAOX-20.3*PLA2G15-20.3*SBNO2-20.3*STK19-20.3*CCDC85C-20.3*TBXAS1-
20.3*NFATC1-20.3*HSD17B7

(Continued )
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For the above prognostic model, the high or low 
expression for prognostic model was determined by the 
median expression level of each gene. The gene was divided 
as binary categorization such as 1 for high expression 
(> median value) and 0 for low expression (< median value). 
Here we also applied the z-score (continuous variable) 
directly to propose a prognostic model that can reflect the 
values of gene expression (Table 1). Cox regression results 
showed that the continuous prognostic model have an 

hazard ratio of 1.22, which means the death risk increases 
by 22% if the patients get a risk score increased by 1.

The prognostic genes (in each cancer type and in 
the whole cancer population) were filtered by a specific 
cutoff (|z| > 3.09, or nominal one-sided p < 0.001). As an 
investigation of the relationship of different prognostic 
gene across different cancer types, prognostic genes in 
each cancer type were compared with the whole cancer 
population. As shown in the supplementary Figure 1D, for 

Cancer Type Risk Score

READ Score = 2.26*PSMA3+2.84*PHLPP1+2.91*CNDP2+2.96*CORO1A+2.2*AKR7A2+2.82
*SSBP2+2.82*TMEM173+2.7*ATP6V0C+2.7*NFYC+2.79*B4GALT3-2.28*OSGEPL1-
2.96*PHF20-3.01*ANKRD27-2.95*ZNF853-2.95*RAPGEF2-2.88*SETD2-2.87*MSH6-
2.85*ATM-3.01*SIRT5-2.81*SGK3

SARC Score = 1.12*RLIM+1.03*BAIAP3+0.97*FUBP1+1*ZNF146+0.99*ATXN10+0.95*LRRC41
+0.93*LRRC47+0.9*DOCK7+0.9*ZNF697+0.89*LAPTM4B-1.13*TRIM21-1.08*B3GALT4-
1.04*CCDC69-1.01*CCNDBP1-0.97*C14orf159-0.95*GALK2-0.91*PARP14-0.91*ATP2A3-
0.86*C15orf24-0.84*PPAP2A

SKCM Score = 0.75*HN1L+0.7*GATAD2A+0.68*NT5DC2+0.66*VDAC1+0.65*KPNA2+0.62*FOX
M1+0.62*DCTN2+0.61*CDC25A+0.6*SLC25A3+0.61*SLC25A15-0.81*GBP2-0.77*APOL6-
0.77*IFITM1-0.75*FCGR2A-0.74*FAM96A-0.72*PARP9-0.72*APOBEC3F-0.71*NXT2-
0.7*UBA7-0.7*APOL1

STAD Score = 2.33*SLC9A3R2+1.91*ITPRIP+1.74*SOCS2+2.04*C1orf144+1.7*LOC282997+
1.69*BMP2K+2.64*VPS52+1.93*UBE4B+1.51*CXCR7+1.9*NDUFA11-2.55*SLC33A1-
2.27*TMEM66-2.18*UBA5-2.14*CD47-1.8*C21orf59-2.03*NSF-2.01*FUNDC1-
1.97*RAB1A-1.69*C14orf142-1.95*PFDN4

TGCT Score = 1.03*FAM177A1+1.03*NBR2+1*ATAD2B+0.98*C8orf73+0.96*FMNL2+0.95
*CEBPA+0.95*VCPIP1+0.94*C12orf23+0.94*LMBR1L+0.94*ABCC5-1.06*MYO1E-
1.03*CABLES1-1*FAM84B-0.99*TOP1-0.98*NCSTN-0.97*NAIF1-0.97*IRS2-
0.97*HIBADH-0.97*FUBP3-0.97*PGM1

THCA Score = 2.06*IQSEC1+1.99*FLYWCH1+1.88*ZHX3+2.12*SEMA6A+1.78*FTO+1.76*LAR
S+1.74*TGFBR3+2.03*PTEN+1.72*ZNF324+2.72*CEP250-1.96*ANXA1-1.89*SEC14L2-
2.18*CIR1-2.17*MED17-2.15*ITGB1BP1-1.86*SRP68-2.14*VAMP8-2.08*PSME2-
2.77*RPS27-1.73*CLU

THYM Score = 2.5*RARG+2.45*RBM47+2.39*PELI3+2.39*ATP1B1+2.39*TST+2.35*NUDT16+2
.38*DENND1A+2.35*PPAPDC1B+2.34*GNS+2.3*TBC1D16-2.44*ADRBK1-2.43*PDSS1-
2.41*SEMA4D-2.4*INTS8-2.4*VRK1-2.4*PTP4A2-2.39*CUTC-2.39*SEMA7A-2.38*SCLT1-
2.37*ANKRD27

UCEC Score = 2.12*TUBB2A+1.92*TAOK3+2.11*ENDOD1+2.05*KLF11+2.06*SYNPO+2.02*
BRAF+2.02*SYTL2+2.05*SPAG5+1.72*MCL1+1.73*ARMC1-1.81*SETD6-1.8*LYRM1-
1.58*PYCRL-1.58*YDJC-1.71*CRBN-1.94*C15orf29-1.52*PHF5A-2.57*PPA1-1.56*WWOX-
1.64*IFT140

UCS Score = 1.27*S100A10+1.23*PDE4A+1.21*STMN3+1.22*ARL4D+1.18*HIBCH+1.16*FN
3K+1.2*SEC23B+1.12*NINJ1+1.16*LOC728554+1.16*CTU1-1.86*CBX5-1.32*DNMT3A-
1.31*PSMD7-1.35*PCBP2-1.25*C2orf68-1.18*BUD13-1.17*ZNRF1-1.21*SSRP1-
1.19*ST3GAL2-1.22*TUT1

UVM Score = 2.32*GTF3A+3.14*PSTPIP2+2.27*SPAG1+3.03*SFT2D2+2.23*LIPA+2.2*IMPA1+2
.21*JTB+2.16*COQ2+2.93*ALG5+2.97*ISG20-3.14*RABL2B-2.26*C16orf86-2.19*CNP-3.0-
1*C3orf39-2.19*C3orf37-2.17*TBKBP1-2.14*TOM1L2-2.17*RPL32P3-2.89*PPP2R3B-
2.16*QRICH1
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the prognostic gene identified in the study on single cancer 
type, most of them were also found in the pooled analysis. 
For example, 66% of the prognostic genes in the ACC also 
had prognostic values in the whole cancer population.

Pathway analysis in patients with different 
prognosis

Based on the prognostic risk score, patients were 
stratified into two different survival groups of a positive 
risk score and a negative risk score. This unsupervised 
cluster analysis showed obvious distinctions between the 
stratified survival groups, both in the training group and 
the testing group (Figure 3A, 3E). To link the observed 
gene expression changes with molecular pathways that 
may impact the differential survival between high- and 
low-risk groups, gene set enrichment analysis (GSEA) 
was performed. As shown in Figure 3B and 3F, pathways 
such as E2F targets, MYC targets, G2M checkpoint, 
mTORC1 signaling and interferon gamma response were 
significantly enriched in the patients of higher risk scores, 
with good consistency between the training group and the 
testing group.

In order to assess possible effects of different 
pathways, the GSEA for every sample were evaluated 
using the single sample gene set enrichment analysis 
(ssGSEA). Based on the calculated scores for each 

pathway, cox analysis was performed to evaluate their 
prognostic effects. Results showed that most of the 
significant pathways from the GSEA output showed 
positive correlations with the survival outcome (Figure 3C, 
3G). In addition to the cox analysis, positive correlations 
were detected between the pathway ssGSEA scores and the 
prognostic risk scores. In Figure 3D and 3H, correlation 
analysis were shown in the most significant pathway (E2F 
targets), in both the training group and testing group.

Assessment of prognostic power of gene 
expression data

Since the gene expression analysis and pathway 
analysis showed great prognostic values in the study, 
prognostic power of gene expression data were further 
explored. C-index was applied to assess the predictive 
power of the gene expression data alone or combined with 
clinical information. To improve accuracy, cancer types 
that don’t have enough death events (< 20 deaths or < 10% 
mortality) were excluded. Cancer patients were randomly 
split into 80% training and 20% testing for 100 times to 
calculate the final C-index. As shown in Figure 4A and 4B, 
the predictive power of gene expression data alone varied 
across cancer types. In KIRC and GBMLGG, the 
prognostic power was much higher when compared with 
other cancer types.

Figure 3: Prognostic landscape of pathway scores in the whole cancer population. A, E. Heatmap depicting gene expression 
levels after unsupervised hierarchical clustering in the training set and testing set, respectively. Expression levels are indicated on a low-to-
high scale (green-black-red). Two clusters are defined, namely the high risk group and low risk group. B, F. GSEA analysis was performed 
in the training set and testing set, respectively, to identify biological pathways associated with survival outcome. FWER-p values are 
indicated on a low-to high scale (lightblue-darkblue). The number of significant genes in each gene set is indicated by the circle size. 
C, G. Forest plots of pathway score association with cancer mortality in the training set and testing set, respectively. D, H. Scatter plots of 
correlations between risk scores and the E2F pathway scores in the training set and testing set, respectively.
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To explore any additional prognostic power, the gene 
expression data was combined with clinical information. 
Significant clinical features (correlated with survival) 
were applied as baseline to build the cox model. A feature-
selection step against the residuals was utilized to include 
the gene features that better fit the model. Results showed 
that the most gene expression data alone (18 out of 20 
cases) had significant predictive power (C-index > 0.5). 
Incorporating clinical information to gene expression data 

statistically boosts the model performance in 12 cancer 
types (BLCA, BRCA, CESC, GBMLGG, KIRC, KIRP, 
LAML, LIHC, LUAD, LUSC, OV, SKCM) (p < 0.05) 
(Figure 4A, 4B).

DISCUSSION

In this study, we assessed the clinical utility of 
genomic expression data from ~9000 cancer patients of 

Figure 4: C-indexes by models trained from individual gene expression data alone or in combination with clinical 
variables. A. C-indexes calculated from the ACC, BLCA, BRCA, CESC, COAD, ESCA, GBMLGG, HNSC, KIRC and KIRP. B. C-indexes 
calculated from the LAML, LIHC, LUAD, LUSC, MESO, OV, PAAD, SARC, SKCM and UCS. The lightblue box indicates the model 
built from individual gene expression data alone, and the darkblue box indicates the model built from the combination of gene expression 
data and clinical variables.
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32 tumor types. The prognostic power across different 
cancer types was also evaluated [7, 8].

Currently, only a few gene expression-based 
markers are routinely used in clinical practice [9–12]. The 
clinical utility of genomic expression has not been fully 
explored. Yuan et al. reported that for cancer patients, 
incorporating molecular features with clinical information 
yields significantly improved predictions. However, they 
only focused on 4 cancer types (KIRC, GBM, OV, LUSC), 
and no conclusions could be drawn for the whole cancer 
population [13]. Recently, Gentles et al. described the 
genomic prognostic landscape across human cancers, 
highlighting the promise of genomic expression data 
as biomarkers for clinical outcomes [14]. In our study, 
besides illuminating the prognostic landscape of genomic 
expression, pathway analysis based on these prognostic 
genes was also evaluated. In addition, the C-index was 
calculated from the prognostic models across tumor types, 
to assess the prognostic power of gene expression data.

Based on the genomic expression data in the 
whole cancer population, the top prognostic genes were 
identified, such as FOXM1, CBX7, CREBL2 and SKP2, 
which were consistent with previous studies [14–16]. 
Notably, when building the risk scores based on these 
top prognostic genes, significant stratification in survival 
outcomes were shown, both in the training and validation 
cohorts, indicating the robustness of the predicting effect 
of the prognostic genes.

Because of heterogeneity, many statistical methods 
have been developed to analyze cancer genomics, based 
on gene sets, pathways and network modules [17–19]. For 
the first time, our study described the prognostic landscape 
of biological pathways in the whole cancer population. 
Gene set enrichment of the differentially expressed genes 
revealed significant prognostic pathways, such as the E2F 
targets, MYC targets, G2M checkpoint, interferon gamma 
response, and so on. Mostly, these pathways are correlated 
with cell cycle, proliferation and inflammation, which 
is consistent with the biological mechanisms of tumor 
progression [20, 21].

To explore prognostic power, our results showed that 
combining the clinical and molecular information could 
improve the predictive power of the gene expression data 
in most cancer types. Although the absolute magnitude 
gains were limited, the gene-expression signatures 
provide new biological insights into the process of cancer 
progression and metastasis that can help to improve the 
prediction power [22]. Actually, some of the gene-based 
prognostic signatures have already been demonstrated 
to be clinically useful for predicting the risk of tumor 
recurrence, such as the 70-gene and 76-gene signatures in 
breast cancer [23–26].

It is also important to realize that gene expression 
information is just one of the abundant molecular data 
(genomic, transcriptomic, epigenomic and proteomic) 
revealing the biological complexity of cancer. Other 

molecular information will also improve our understanding 
of the genotype–phenotype relationships involved in 
cancer. On the other hand, regarding the reliability and the 
reproducibility of the clinical use of molecular data, future 
technology, statistical and analytical methods are in great 
need to catch up with clinical needs [22].

In conclusion, our gene analysis and pathway 
analysis showed significant values for the prediction of 
survival outcomes for cancer patients. Additionally, it 
was found that by combining clinical information with 
molecular data, the model performance could be boosted 
statistically in most cancer types. However, further efforts 
would be needed to generate prognostic models ready for 
clinical use in the future.

MATERIALS AND METHODS

Data set compilation

Clinical and survival data were acquired from the 
TCGA Data Portal (https://tcga-data.nci.nih.gov/tcga/). 
RNA sequencing data was obtained from the GDAC 
Firehose System (http://gdac.broadinstitute.org/). To 
maintain data consistency, only the RNA sequencing 
data from the platform of Illumina HiSeq 2000 RNA 
Sequencing V2 was included. Patients who have a 
complete clinical and RNA sequencing data were screened 
for further analysis. For each cancer data set, patients were 
split into two groups randomly: 80% as the training set 
and 20% as the testing set. For the pan-cancer study, all 
RNA sequencing data were combined by intersecting the 
common genes across different cancer types.

Prognostic genes and construction of the 
prognostic model

For RNA sequencing data, all “raw count” values 
were divided by the 75th percentile of the same patient 
(after removing zeros) and multiplied by 1000, to get the 
quantile normalization for survival analysis. Furthermore, 
quantile data were also transformed to the z-score or 
normalized by “voom” to evaluate the effects of different 
normalization method. The Z-score was calculated as 
“(tumor expression - mean expression in reference) / 
standard deviation of expression in reference”. The voom 
normalization was applied using the R package “limma”. It 
estimates the mean-variance relationship of the log-counts 
and generates a precision weight for each observation.

The association of each gene expression with 
survival outcomes was assessed via cox proportional 
hazards regression using the ‘coxph’ function of the R 
‘survival’ package. Cox coefficients, hazard ratios with 
95% confidence intervals, p values, and z-scores were 
obtained for each array probe. Top prognostic genes were 
identified by the values of z-scores. Based on these top 
prognostic genes, risk scores were built and it was defined 
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as the weighted sums of the independent prognostic gene 
values (1 for high expression, and 0 for low expression). 
They were weighted with their regression coefficients 
from the cox models. Based on the prognostic risk score, 
further cox regression analysis and correlation analysis 
with clinical variables were performed.

Differential expression analysis and clustering 
analysis

Differential expression analysis was done using R 
“limma” package. Based on the limma output for the most 
differentially expressed genes, unsupervised hierarchical 
clustering analysis was used to discover the gene expression 
patterns of these groups sharing common characteristics. 
Heatmap was constructed using the R “gplots” package.

Gene set enrichment analysis

Prognostic gene sets are groups of genes that share 
common biological function. The evaluation of prognostic 
gene sets was performed using gene set enrichment 
analysis (GSEA) [27], where gene sets were obtained 
from the Molecular Signatures Database (mSigDB) [28]. 
In addition, a variant of GSEA, termed single sample 
gene set enrichment analysis (ssGSEA) was applied to 
calculate separate enrichment scores for each pairing of a 
sample and gene set [29]. Further cox regression analysis 
and correlation analysis were performed based on the 
enrichment scores of each gene set.

Performance evaluation of gene expression data

Performance evaluation of gene expression data 
was conducted based on the method suggested by Yuan 
et al [13]. Firstly, univariate cox was applied to the 
training set to select the top features correlated with 
survival, which were then converged by the LASSO 
using the R package “glmnet”. The model was then 
applied to the testing set for prediction. Concordance 
index (C-index) was estimated from 100 randomizations 
using the R package “survcomp”. To explore the 
predictive power of integrating gene expression data 
with clinical information, we used the significant clinical 
features (correlated with survival) as baseline to build 
the cox model. Then a feature-selection step against the 
residuals was applied to combine the gene features that 
better fit the model.
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