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Abstract: Many features of aging result from the incapacity of cells to adapt to stress conditions.
When cells are overwhelmed by stress, they can undergo senescence to avoid unrestricted growth
of damaged cells. Recent findings have proven that cellular senescence is more than that. A spe-
cific grade of senescence promotes embryo development, tissue remodeling and wound healing.
However, constant stresses and a weakening immune system can lead to senescence chronicity with
aging. The accumulation of senescent cells is directly related to tissue dysfunction and age-related
pathologies. Centenarians, the most aged individuals, should accumulate senescent cells and suffer
from their deleterious effects, however, they enjoy a compression of morbidity. We have shown
that they overexpress B-cell lymphoma-extra large (Bcl-xL). Bcl-xL could avoid an excessive burden
of senescent cells through the regulation of intrinsic apoptosis, mitochondrial bioenergetics and
oxidative stress. On the other hand, Bcl-xL maintains a fully functional immune system that ensures
an efficient clearance of senescent cells. Moreover, there is a paradox, as inhibitors of Bcl-xL have
been employed as senolytic agents, which have been shown to protect from aging in animal models.
In this review, we aim to discuss how Bcl-xL could modulate senescence-associated harmful effects
in centenarians, protecting them from the burden of accumulation of senescent cells.
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1. Introduction

Humans have experienced an increase in lifespan during the twentieth century than in
any other similar period in recorded history [1]. Parallel to this change, human behavior has
also been modified, in part due to the social and economic development of the nowadays
life style [2]. Accordingly, we are looking forward to extend the years of youth to the
maximum, pushing the “old age” to the last years of our lives, where health-span extension
is the principal outcome for success [3]. Therefore, we should not wait till being close to
the retirement to start worrying about aging and age-related diseases, but instead, try to
make the utmost benefit of aging as soon as possible and be delighted by a healthy aging.

Many features of aging result from the incapacity of cells to adapt to stress conditions.
When damage accumulates irreversibly, both mitotic and postmitotic cells will undergo
one of the three main pathways that will determine the pro-death or pro-survival fate of a
single cell towards the benefit of the whole organism [4]. These pathways are autophagy,
apoptosis and senescence. Each of them acts independently from the others, but there is
more than enough evidence of a crosstalk between them. From a general point of view, the
main aim is to avoid the accumulation of damage.

Initially, autophagy (self-eating) acts as a major homeostatic mechanism to eliminate
damaged organelles, proteins and superfluous portions of the cytoplasm. It is known
that autophagy is downregulated through aging [5] and this reduced function has been
blamed for the accumulation of damaged proteins in old organisms [6,7], but it has also
been reported that it contributes to cell survival and to cell death as well [8]. The fate of
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a damaged cell will either be apoptosis (self-killing) or senescence (irreversible growth
arrest), so the damage is not propagated triggering harmful signals for the organism. What
determines that a cell decides one pathway, or another is yet to be clarified.

2. Measuring Cellular Senescence In Vivo

Senescence is usually described as a cell fate that involves the loss of a proliferative
potential, together with a resistance to cell death and an increased metabolic activity. At
first, senescence is initiated by the activation of p53/p21CIP1 and p16INK4a/Rb pathways by
several stresses, such as DNA damage or reactive oxygen species (ROS) among others [9].
Downstream, the spreading of these signals is mediated by ATM, IKK/NF-κB, JAK/STAT,
GATA4 and mTOR signal transducers, amplifying the senescence response [10].

Once senescence is fully established in a cell, this cell shows specific morphological
characteristics. A senescent cell can be identified by its enlarged size, increased lysosomal
hydrolase activity (senescence associated-β-galactosidase (SA-β-gal)) and evidence of DNA
damage [gamma-H2A histone family member X (γ-H2AX) foci, telomere associated-foci
(TAF), senescence associated-heterochromatin foci (SAHF) and senescence associated-
distension of satellite DNA (SADS)] [11]. Moreover, senescent cells display a senescence
associated-secretory phenotype (SASP), which includes interleukins, chemokines, growth
factors, extracellular matrix components, soluble receptors, proteases, reactive metabolites,
bioactive lipids, microRNAs and extracellular vesicles [12,13].

It is very challenging to detect cellular senescence in vivo, in part due to the lack of
specific biomarkers. Currently, there is not one single marker that identifies senescent cells,
but a simultaneous measure of multiple parameters offers a more accurate identification of
cellular senescence [14]. The most widely used markers to detect cellular senescence are
listed in Table 1.

Table 1. Markers of cellular senescence.

Marker Senescence Ref.

Proliferation (Ki67, BrdU assay) Absent [15,16]
Cell cycle inhibitors (p21CIP1, p16INK4a) Increased [17–19]

DNA damage (p53, γH2AX foci, TAF, SAHF, SADF) Increased [20–25]
SA-β-gal activity Increased [26–28]

Lamin B1 Decreased [29]
Nuclear exclusion of HMGB1 Present [30]

SASP factors (IL-1, IL-6, IL-8, PAI-1, MMPs) Present [31,32]
Anti-apoptotic proteins (Bcl-xL, MCL-1) Increased [33,34]

To date, the majority of in vivo studies measure senescence markers in tissue ho-
mogenates or in tissue sections. They include flow cytometry combined with histo- or
cytochemical approaches, fluorescent senoprobes, and analysis of circulating SASP factors
and extracellular vesicles from plasma as well [35]. However, these methods lack the ability
to colocalize several biomarkers of senescence in a single cell. New approaches such as
imaging flow cytometry (cytometry by time of flight, or Amnis Flow Sight) or single-cell
omics would help filling this gap [36].

3. Senescence: From Development to Adulthood

Senescence is not a static endpoint but represents a series of progressive and pheno-
typically diverse cellular states acquired after the initial growth arrest. Initially, Hayflick
and Moorhead introduced the term senescence to describe the phenomenon of irreversible
growth arrest of human diploid cell strains after extensive serial passaging in culture [37,38].
Later, this particular type of senescence (replicative senescence) was causally linked to
telomere attrition, a process that leads to chromosomal instability and promotes tumori-
genesis, supporting the original hypothesis that senescence guards against unrestricted
growth of damaged cells. A wealth of information about senescence in cultured cells has
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been acquired over the past half-century; however, senescence in living organisms is still
poorly understood [39]. In part because of technical limitations for the identification and
characterization of senescent cells in tissues and organs, but also due to the fact that cells
in vivo are subjected to more than one senescence-inducer stressor, which complicates the
comparison with in vitro studies that normally assess one single stressor at a time.

It is true that senescence is a cellular response to stress, but the fact that senescence
has been detected in cells lacking metabolic alterations or DNA damage challenges the
paradigm [40]. Although senescent cells might accumulate during aging and trigger age-
related diseases, there is growing evidence suggesting that senescence is not the real aging
of the cells. At this point, it is important to keep in mind that senescence refers to cells,
while aging is at the level of the whole organism and includes physical decline, loss of
memory and increased susceptibility and vulnerability to disease.

Cellular senescence is a phenomenon that has a function by itself as it displays physi-
ological roles during embryonic development and wound healing [40]. Recent findings
reveal the presence of senescent cells during embryonic development, a process called
“developmental senescence” [41,42]. Interestingly, this type of senescent cells does not
display any DNA damage response (DDR), preserve the ability to activate the immune
system [43] and to undergo apoptosis [44]. During embryogenesis, senescent cells act as
key regulators of cell proliferation and tissue remodeling, followed by immune system
activation through the senescence-associated secretory phenotype (SASP) signaling in
order to be quickly eliminated when their task is fulfilled [40]. Senescent natural killer
(NK) cells play a role remodeling the decidua to promote the vascularization needed for
fetus implantation [45]. Similarly, senescent syncytiotrophoblasts are required to maintain
the viability of the placenta [46]. Taken together, the role of developmentally programmed
senescence is to promote tissue remodeling and it has been proposed to be the evolutionary
origin of damage-induced senescence [42].

During adulthood, senescent cells respond to different stresses and are involved in
wound-healing processes. In fact, senescent cells appear at wound sites a few days after
the injury, promoting optimal healing by secreting specific SASP factors [47]. Specific
interleukins, such as IL-6 and IL-8, have been detected at wound sites [41]. Moreover, it
has been demonstrated that the SASP factor IL-6 promotes skeletal muscle repair after
injury, which in turn activates muscle stem cells to replenish the muscle [48]. In young
organisms, with fully functional immune system, senescent cells are quickly cleared by
macrophages and NK cells [49]. In this regard, the lifespan of senescent cells seems to be
crucial; from embryogenesis to adulthood, where senescent cells are promptly removed
from organs [50].

Conceptually, senescent cells can be subdivided into two main classes based on kinetics
of senescence induction and functionality [51]. “Acute senescence” is induced by extrinsic
stimuli that target specific cell populations, and self-organizes their clearance through
SASP factors that attract the immune system effectors. Acute senescence is supposed
to participate in the orchestrated biological processes to halt the expansion of specific
cells and to produce specific SASP factors with concrete functions. On the opposite,
“chronic senescence” appears following cellular stress or macromolecular damage. Chronic
senescence is not cell-specific and is not programmed. Ineffective clearance by the immune
cells and aberrant SASP factors allow the accumulation of senescent cells. The persistence
of senescent cells in tissues and organs, no longer promotes tissue regeneration, but drives
tissue aging and inflammation [52].

4. Senescence Role in Ordinary Aging

Aging is a universal, intrinsic, progressive and deleterious process [53]. Commonly,
an old person’s lifespan approaches the average population lifespan; this is what we refer
to as “ordinary aging”. However, there is increasing incidence of specific individuals who
surpass average lifespan and approximate to the population maximum lifespan. This is the
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case of centenarians, exceptionally long-lived individuals who represent a model that we
call “exceptional aging”.

The association between senescence and aging is supported by the increased occur-
rence of senescent cells obtained from old organisms [26]. Cellular senescence is now
believed to contribute to organismal aging via two independent, yet not mutually exclu-
sive, mechanisms: stem cell senescence that leads to stem cell dysfunction thus hampering
tissue regenerative potential, and the SASP which causes chronic inflammation and tissue
dysfunction [54]. Common cellular stresses such as oxidative stress [55–57], UV light [28,58]
and oncogenes [59] yield senescent cells to accumulate systemically in various tissues over
time contributing to tissue dysfunction in ordinary aging [60].

Figure 1 summarizes the impact of cellular senescence in old organisms. Senescence
of immune cells hampers the clearance of non-immune senescent cells in tissues, which in
turn accumulate creating a proinflammatory ambient and triggering tissue dysfunction
and age-related pathologies.
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4.1. Senescence and Age-Related Diseases

The remaining question now is, could senescent cells cause pathology? As suggested
by He and Sharpless, even if senescence occurred in only 1–5% of cells within tissues, this
would be a massive number of dysfunctional cells that could exert a substantial effect
on host physiology [61]. Moreover, if that 1–5% of cells undergoing senescence includes
a particularly important fraction of cells, then the loss of function of these cells could
have a deep impact on tissue integrity and function, thus triggering the beginning of the
pathology [61].

It has been described that obesity is associated with senescence [62] and contributes
to type 2 diabetes [63,64]. Both aging and obesity are related to the impaired capacity of
adipocyte progenitors to replicate and differentiate into fully functional, insulin-responsive
adipocytes [65]. Senescent cells accumulate in adipose tissue of aged and obese humans
and mice, accompanied by an increased SA-β-gal activity and an overexpression of p53,
p16INK4a and PAI-1, contributing to reduced adipogenesis. Moreover, senescent cells can
directly cause insulin resistance through the release of SASP factors enhancing the risk of
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diabetes [66]. Senescence is also tightly related to frailty as it participates in osteoporosis
and aggravates sarcopenia [67]. Senescent osteocytes are sixfold higher in old mice than in
young mice, and the expression of SASP factors is significantly increased as well [68]. The
removal of these senescent osteocytes resulted in improved trabecular bone, thicker cortices
and bone strength [69]. Regarding the skeletal muscle, it is a very heterogeneous tissue, and
senescence of resident cell populations, including satellite cells, fibroadipogenic progeni-
tors, endothelial cells and immune cells contribute to muscle aging. Thus, muscle senescent
cells hamper muscle regeneration and contribute to muscle loss. Similarly, cell senescence
has been related to neurodegenerative disorders, such as Alzheimer’s and Parkinson’s dis-
eases [70,71]. Emerging data have shown that neurons dissected from postmortem human
brains with Alzheimer’s disease exhibit increased expression of senescent markers [72].
Importantly, experimental clearance of senescent cells led to functional improvements in
mouse models of neurodegenerative diseases [73,74]. Also, senescence seems to play a
role in atherosclerosis development and cardiovascular disease [75,76]. Recent studies
suggest that the increased burden of senescent cells influences age-related cardiovascular
dysfunction through SASP factors, which induce systemic inflammation and alter local
paracrine signaling of endothelial cells [77,78]. Altogether contribute to vascular stiffness
and hypertension. Finally, cellular senescence has been argued to be involved in other
age-related disorders, such as hair graying, glaucoma, cachexia, osteoarthritis, cataracts
and glomerulosclerosis [51,79–81].

4.2. Immunosenescence and Inflammaging

The immune system becomes deficient at old ages; while inflammaging indicates an
increased pro-inflammatory activity of the innate system, immunosenescence describes the
lower precision and activity of the adaptive immune system [82,83]. Immunosenescence
and inflammaging are key phenomena to understand the onset of age-related diseases,
which in turn accelerate the aging process and shorten the lifespan. Immunosenescence
(and inflammaging) have usually a negative connotation, but, the changes of the immune
system with age are complex, personalized and dynamic, being characterized by homeody-
namic features balanced between “adaptive” and “maladaptive aspects” [84].

Senescent cells produce very large quantities of many bioactive compounds as part
of their SASP. These secreted factors have paracrine effects on surrounding cells. The
SASP can induce accelerated aging by establishing a chronic inflammatory microenviron-
ment [85]. In mouse models, the SASP has been associated with several age-related diseases
such as atherosclerosis [76], sarcopenia [86], Alzheimer’s disease [70], cataracts [87] and
intervertebral disc degeneration [88]. Removal of senescent cells in these tissues reduces
local inflammation and rescues some of the associated tissue impairments [76,89]. The
SASP is also intended to create a proinflammatory milieu that facilitates the removal of
senescent cells [90,91]. However, immune cells undergo senescence during aging, thus
hampering this mechanism and allowing senescent cells to become permanent along with
their adverse effects [92]. Additionally, senescent cells in old organisms seem to be able
to escape immune elimination by T cells [93]. Thus, the increased incidence of senescent
cells in tissues at old ages, is the result of accumulated cellular damage together with a
dysfunctional immune system that drives an inefficient clearance. The accumulation of
senescent cells has been thought to trigger aging, but it could also suggest that senescent
cells accumulate as a result of the aging process itself [94].

The combination of an inefficient clearance, excessive SASP and ineffective regenera-
tion may explain the chronicity of senescent cells during aging, thus contributing to the
aging phenotype with increased morbidity and mortality in the elderly [95,96].

5. Senescence Role in Exceptional Aging

Centenarians are a model of exceptional aging because they live longer than their coun-
terparts, and more importantly, because they compress morbidity, living up to 100 disease-
free years. From a general point of view, cellular senescence physiological main function is
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to promote tissue remodeling through a stable proliferative arrest, a secretory phenotype
that recruits immune cells and modifies the extracellular matrix, and the mobilization of
nearby progenitors that repopulate the tissue. This sequence of events is referred to as
senescence-clearance-regeneration [75]. Moreover, a recent study reported a significant rela-
tionship between longevity and the capacity to induce senescence following DNA damage
in primary fibroblast cultures of six long-lived mammalian species; thus, suggesting that
senescence has a pro longevity role [97]. This finding supports the idea that a specific grade
of senescence may have positive effects for the organism. According to this, centenarians
seem to be able to avoid a chronic accumulation of senescent cells, and benefit from an
acute senescence [98].

5.1. Balance between Senescence and Apoptosis in Exceptional Aging

Senescence and apoptosis are alternative cell fates that can be triggered by the same
stimuli. Although it is still not clear what makes the cell decide between one pathway or
the other, mechanisms must be in place to lock those decisions. Previously, we performed
a transcriptomic analysis of centenarians, septuagenarians and young people’s blood. Sub-
network classification of the differentially mRNAs levels revealed that all the signaling
pathways involved in successful aging were associated to three apoptosis-related genes:
Bcl-xL, Fas and Fas ligand (FasL) [99].

Bcl-xL is an anti-apoptotic protein that inhibits the intrinsic (mitochondrial) pathway to
apoptosis. Bcl-xL promotes cell survival by migrating to the mitochondrial outer membrane,
counteracting mitochondrial permeabilization and the subsequent cytochrome c release.
The latter event is critical for the formation of the Apaf-1/Caspase-9 apoptosome, which
unleashes a cascade of caspase activations that culminate in apoptosis. Fas and FasL are
mainly involved in the control of the extrinsic (receptor-mediated) pathway to apoptosis.
The binding of Fas ligand to Fas receptor results in the binding of the adapter protein
FADD which in turn associates with procaspase 8. At this point, a death-inducing signaling
complex (DISC) is formed, resulting in the auto-catalytic activation of caspase 8.

During senescence, both apoptotic pathways could be differentially modulated with
variable impacts on the aging process. As previously suggested by Franceschi et al., a
well-balanced modulation of apoptosis may be useful to expand lifespan, and to reduce
age-related degenerative and inflammatory diseases [100]. The fact that centenarians
overexpress Bcl-xL, Fas and FasL, suggests a very fine-tuned control of apoptosis. Cells
with damage might be more prone to enter senescence and become apoptosis resistant
by overexpressing Bcl-xL. On the other hand, Fas and FasL may drive cells accumulating
environmental damage to enter apoptosis avoiding senescence [33]. This would prevent
an excessive burden of senescent cells. Supporting this hypothesis, lymphocytes from
healthy centenarians have shown reduced expression levels of senescence biomarkers
when compared to old donors [98].

5.2. Bcl-xL Modulates Senescence in Exceptional Aging

Despite its well-documented anti-apoptotic role, Bcl-xL is also related to mitochondrial
bioenergetics by modulating mitochondrial fusion and fission, increasing total mitochon-
drial biomass and enhancing the efficiency of the ATP synthesis by decreasing the proton
leak within the F1F0 ATPase [101,102]. As cellular senescence can be both beneficial and
detrimental for the organism, accordingly, Bcl-xL might play a dual role on senescence.

A possible hypothesis could be that during acute senescence, Bcl-xL effects on mito-
chondria would help senescent cells to cover their metabolic demand to secrete the SASP
to promote their clearance as part of the senescence-clearance-regeneration procedure.
However, senescent cells are also characterized by dysfunctional mitochondria, due to an
imbalance between mitochondrial fission and fusion, which is critical for the functionality
of the mitochondrial network [103,104]. In this scenario, Bcl-xL might avoid the accumula-
tion of dysfunctional mitochondria in senescent cells, thus preventing their detrimental
effect on tissue homeostasis.
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Regarding the first part of the hypothesis, senescent cells are known to display
metabolic changes such as increases in glycolysis and mitochondrial metabolism [105]. The
increased SASP production and secretion relies on enhanced ATP production mediated by
mitochondrial metabolism and glycolysis. Bcl-xL increases the efficiency of ATP synthesis
by decreasing the proton leak within the F1F0 ATPase, thus improving mitochondrial
metabolism [106]. Furthermore, it has been demonstrated that Bcl-xL overexpression pro-
tects against oxidative stress-induced apoptosis [107]. Supporting the second part of the
hypothesis, a recent study revealed the existence of mitomiRs (nuclear-coded miRNAs
found within mitochondria [108]), such as miR-181-a, miR-34a and miR146a, that can target
Bcl-xL to modulate the mitochondrial fusion and fission dynamics in senescent cells [109].
This process has been implicated in the quarantining of impaired mitochondria during
mitophagy [110–112].

The role of autophagy in senescence is still controversial. Some authors suggest that
senescent cells engage autophagy with protein synthesis to support the amino acid de-
mand [113]. Other authors support that defective mitophagy leads to accumulation of
dysfunctional mitochondria and ROS-induced senescence [114]. Several findings have
shown that Bcl-xL can influence macroautophagy through binding to the autophagy reg-
ulator Beclin-1 and blocking its participation in the triggering of autophagosome forma-
tion [115,116]. Similarly, Bcl-xL antagonizes Parkin-dependent mitophagy in a Beclin-1-
independent manner [117]. Taken together with its role as a regulator of mitochondrial
fusion/fission dynamics, enhancer of the F1F0 ATPase and protector of ROS overproduc-
tion, Bcl-xL acts as a global regulator of mitochondrial homeostasis.

Consistent with this, Bcl-xL seems to play a key role in the regulation of senescence,
either directly or indirectly, through the modulation of intrinsic apoptosis, mitochondrial
bioenergetics, oxidative stress and autophagy [101]. Since Bcl-xL could be a modulator of
the harmful consequences of senescent cells accumulation, it would be of utmost interest to
assess whether Bcl-xL might also modulate SASP factors or senescence-derived extracellular
vesicles cargo.

5.3. Bcl-xL Maintains Immunosurveillance of Senescent Cells in Exceptional Aging

Clearance efficiency matters in order to avoid senescent cells accumulation and to
prevent the risk for age-related diseases [61]. To this end, senescent cells modulate NK
cell effector functions through the SASP and extracellular vesicles [52]. But, as we age, the
immune system also weakens by two main causes: hematopoietic stem cell (HSC) dysfunc-
tion, and cellular senescence of immune cells such as macrophages [118]. HSC dysfunction
leads to reduced NK cell activity [119], which in turn contributes to the accumulation of
senescent cells. Remarkably, healthy elderly individuals as well as centenarians show an
increase of total NK cells [120]. Macrophages are also in charge of the clearing of senescent
cells. Reduced chemotaxis might be involved in impaired capacity of macrophages to
respond to SASP factors and to migrate to the places where senescent cells accumulate [50].

Long-lived organisms are equipped with an efficient immune system that eliminates
senescent cells [121]. Such a process would enable them to avoid or delay age-related
diseases and to live longer. As stated before, centenarians overexpress Bcl-xL, which
is important for the development and maintenance of the immune system [122]. Our
previous analysis revealed that leukocyte chemotaxis and NK cell activity was significantly
impaired in septuagenarians in comparison with young people and centenarians [99].
Moreover, transduced lymphocytes from septuagenarians with Bcl-xL expressed lower
levels of senescence markers and increased their proliferation capacity compared to controls.
These results suggest that overexpression of Bcl-xL is able to rescue impaired lymphocytes
from septuagenarians to behave like those from centenarians and young individuals.
Accordingly, there is a positive correlation between the amount of total NK cells and the
health status of elderly individuals [120]. Furthermore, it has been demonstrated that
Bcl-xL is related to the development of B cells and is highly expressed in T cells, which is
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necessary for their function [123]. Consistent with this, Bcl-xL plays an important role in
maintaining the effectiveness of the immune system during aging.

Taken together, Bcl-xL overexpression in centenarians modulates cellular senescence
according to the homeostatic needs of the organism. On the one hand, Bcl-xL improves the
function of the immune system for an effective clearance of senescent cells. On the other
hand, Bcl-xL controls the SASP production by maintaining mitochondrial homeostasis and
regulating autophagy (see Figure 2).
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6. Bcl-xL as a Senolytic

Senotherapeutics are a new class of drugs that selectively kill senescent cells (senolyt-
ics) or suppress their SASP (senomorphics or senostatics) without killing the senescent
cell [10]. Senescent cells mainly depend on the immune system to be cleared; thus, a
dysfunctional immune system will lead to accumulation of senescent cells within tissues.
To promote the depletion of senescent cells, senolytic drugs aim to eliminate senescent cells
without affecting quiescent or proliferating cells [124]. The clearance of senescent cells has
been shown to delay and reduce the aging phenotype in several tissues of premature and
natural aged models, such as BubR1 and Ercc1 knockout progeroid mice [125].

Since the expression of anti-apoptotic and pro-apoptotic genes is higher in senes-
cent cells compared to healthy cells, inhibitors of Bcl-xL have been described as senolytic
agents because they only induce apoptosis in senescent cells, both in vitro and in vivo [126].
ABT737, ABT263 or Navitoclax, which targets the Bcl-2/Bcl-xL proteins, is a potent senolytic
drug that selectively kills senescent cells, regardless of how they were induced [127,128].
Initially, Navitoclax was introduced as a broad spectrum senolytic because it killed more
than 60% of senescent human umbilical vein endothelial cells (HUVECs) and senescent
WI-38 and IMR90 human lung fibroblasts [127], as well as MEFs in 72h [128]. However,
Navitoclax had no apoptotic effect on senescent pre-adipocytes [62]. Moreover, a phase
II study revealed that the administration of Navitoclax has some side effects, thrombocy-
topenia and neutropenia among them [129]. These well-known side effects emphasize the
importance of Bcl-xL in the survival of platelets and neutrophils in a normal setting [130].

Although senolytics show a wide range of beneficial effects for senescence-related
indications, especially on cardiovascular function, osteoporosis and frailty [96], the use
of senolytics as an anti-aging treatment still has some limitations. First of all, senolytic
therapies are still not effective in all senescent cell types and should be tissue specific. Next,
there is no information regarding the replacement of senescent cells by new cells. Excessive
clearance of senescent cells might speed up stem cell exhaustion. If there are no cells to fill
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the empty place, in this case, it might be better to keep the senescent cell rather than no
cell [40].

Taken together, more research is needed to evaluate in vivo senescence to determine
the beneficial or harmful consequences of senescent cell elimination by senolytic agents.
Centenarians are the proof of concept that senescence can be also beneficial throughout
our lives.

7. Conclusions and Future Perspectives

Senescence is a physiological response with a particular role from embryonic devel-
opment until adulthood. The organism benefits from a brief senescence, where senescent
cells are efficiently cleared to enable tissue regeneration. Chronic senescence appears upon
aging as a result of the accumulation of senescent cells as a consequence of constant damage
through life and an impaired clearance by the immune system.

Centenarians overexpress Bcl-xL [99], which plays a role in the regulation of senes-
cence, either directly or indirectly, through the modulation of intrinsic apoptosis, mitochon-
drial bioenergetics, oxidative stress and autophagy [101]. In this scenario, centenarians
have a fine-tuned control of apoptosis which enables them to avoid an excessive burden of
senescent cells, together with a fully functional immune system that removes senescent
cells on time. Thus, centenarians avoid tissue functional deterioration and prevent age-
related pathologies due to a good control of senescent cell accumulation. In other words,
centenarians’ ability to modulate senescence might explain, at least in part, their morbidity
compression. Moreover, centenarians’ intrinsic capacity might be related to their high
regenerative potential to replace senescent cells by new cells. Altogether, it looks like that
centenarians still benefit from an acute senescence.

The principles of regenerative medicine can be applied to aging and age-related dis-
eases. Expression of the pluripotency factors (SOX2, OCT4, KLF4 and c-MYC) in senescent
cells has been shown to allow cell cycle entry with reset of telomere size and gene expres-
sion profiles, to reduce oxidative stress and to switch mitochondrial metabolism [131,132].
Bcl-xL enhances Yamanaka factors-induced iPSC generation from adult peripheral blood
mononuclear cells (PBMCs) [133], future research is needed to study the possible role of
Bcl-xL cellular reprogramming.

These newly recognized beneficial signaling functions of senescence suggest that
indiscriminately targeting senescent cells or modulating their secretome for anti-aging
therapy may have negative consequences [81]. Similarly, senescent cells clearance may
also have adverse outcomes, especially in young individuals [134]. Both pro-senescent
and anti-senescent approaches can be desirable depending on the therapeutic context.
Pro-senescent therapies can be useful for cancer treatment and for ongoing tissue repair
processes such as organ fibrosis, whereas anti-senescent therapies can be beneficial to
eliminate the tissue-specific burden of senescent cells that accumulate during aging or
chronic damage in order to prevent age-related pathologies [75]. In this regard, studying
the role of Bcl-xL on the modulation of senescence might have an impact in the field of
aging, as this protein is overexpressed in the individuals who live longer and better, i.e.,
centenarian ones.
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