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Currently, the coronavirus disease 2019 (COVID19) pandemic has killed more than one million people
worldwide. In the present outbreak, radiological imaging modalities such as computed tomography
(CT) and X-rays are being used to diagnose this disease, particularly in the early stage. However,
the assessment of radiographic images includes a subjective evaluation that is time-consuming and
requires substantial clinical skills. Nevertheless, the recent evolution in artificial intelligence (AI) has
further strengthened the ability of computer-aided diagnosis tools and supported medical professionals
in making effective diagnostic decisions. Therefore, in this study, the strength of various AI algorithms
was analyzed to diagnose COVID19 infection from large-scale radiographic datasets. Based on this
analysis, a light-weighted deep network is proposed, which is the first ensemble design (based
on MobileNet, ShuffleNet, and FCNet) in medical domain (particularly for COVID19 diagnosis) that
encompasses the reduced number of trainable parameters (a total of 3.16 million parameters) and
outperforms the various existing models. Moreover, the addition of a multilevel activation visualization
layer in the proposed network further visualizes the lesion patterns as multilevel class activation maps
(ML-CAMs) along with the diagnostic result (either COVID19 positive or negative). Such additional
output as ML-CAMs provides a visual insight of the computer decision and may assist radiologists in
validating it, particularly in uncertain situations Additionally, a novel hierarchical training procedure
was adopted to perform the training of the proposed network. It proceeds the network training by
the adaptive number of epochs based on the validation dataset rather than using the fixed number of
epochs. The quantitative results show the better performance of the proposed training method over
the conventional end-to-end training procedure.

A large collection of CT-scan and X-ray datasets (based on six publicly available datasets) was used
to evaluate the performance of the proposed model and other baseline methods. The experimental
results of the proposed network exhibit a promising performance in terms of diagnostic decision. An
average F1 score (F1) of 94.60% and 95.94% and area under the curve (AUC) of 97.50% and 97.99% are
achieved for the CT-scan and X-ray datasets, respectively. Finally, the detailed comparative analysis
reveals that the proposed model outperforms the various state-of-the-art methods in terms of both
quantitative and computational performance.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Recently, the outbreak of coronavirus disease 2019 (COVID19)
as led the entire world toward the verge of devastation. The
orld Health Organization (WHO) announced COVID19 as a

lobal pandemic on March 11, 2020 [1]. As per given statistics
ntil April 12, 2021, approximately 135,646,617 cases of COVID19
nfection have been reported, including 2,930,732 deaths (with
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568-4946/© 2021 Elsevier B.V. All rights reserved.
a fatal rate of 2.16%) in more than 200 countries [2]. Until
now, various experimental vaccines have been developed and
undergone rigorous clinical trials to ensure their effectiveness
and safety before obtaining official approval. Recently, a few
vaccines have obtained the Food and Drug Administration (FDA)
or European Medicines Agency (EMA) approval after completing
the clinical trials effectively. As of 11 April 2021, a total of
727,751,744 vaccine doses have been administered [2]. However,
the massive production and distribution of these vaccines are still
a challenging and time-taking task. Therefore, early diagnosis and

appropriate safety measures should be accomplished to control
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he transmissibility of COVID19 infection. For COVID19 diagnosis,
he reverse transcription-polymerase chain reaction (RT-PCR) test
as been adopted as the gold standard. However, the subjective
ependencies and strict requirements for testing environments
estrict the quick and precise testing of suspected subjects. In
ddition to RT-PCR testing, radiological imaging modalities, such
s computed tomography (CT) and X-ray, have shown effec-
iveness in diagnosis as well as evaluation of disease evolution
s a complementary assessment [3,4]. A recent clinical study
ith 1014 patients in Wuhan, China, showed that chest CT scan
nalysis can achieve a sensitivity of 0.97 for the detection of
OVID19 with RT-PCR results for reference [3]. Similar results
ave also been stated in recent studies [4,5], suggesting that ra-
iological imaging modalities may be advantageous in the initial
iagnosis of COVID19 in epidemic areas. However, the diagnostic
ssessment of radiographic scans (i.e., CT scans and X-ray images)
an only be performed by a specialized radiologist, who must
tilize substantial effort and time to make an effective decision.
herefore, such subjective assessment may not be appropriate for
eal-time screening in epidemic regions.

Recent advancements in artificial intelligence (AI) have shown
remarkable breakthrough in the development of computer-

ided diagnosis (CAD) tools [6–27]. In particular, with the advent
f deep learning algorithms, such automated tools have shown
ignificant decision-making performance in different medical do-
ains, including radiology. These tools can mimic the human
rain in making a diagnostic decision with extraordinary per-
ormance, particularly in real-time population screening appli-
ations. In the present era of deep learning-based algorithms,
onvolutional neural networks (CNNs) have achieved significant
enown in general as well as medical image-based applications. In
he case of COVID19 screening, these networks can also be trained
o identify normal and diseased patterns in given radiographic
cans (i.e., CT scans and X-ray images) within a second. However,
sufficient amount of training data is required to train a CNN
odel, which can be considered as a major restraint in the deep

earning methods. The layout of a CNN model mainly comprises
onvolutional layers that include a number of learnable filters
ith different sizes. In the first stage, training is performed to

earn the trainable filters using the available training dataset.
fter the training process, the trained model can explore the
iven testing samples and ultimately predict the accurate output.
In this study, a comprehensive analysis of various machine

earning and deep learning algorithms were performed in re-
ponse to COVID19. Finally, a light-weighted deep CNN model
as proposed with significant gains in terms of accuracies and
omputational cost. The overall performance of the proposed
etwork is greater than those of various state-of-the-art methods.
o highlight the key findings and significance of the proposed
ork, the main contributions are summarized as follows:

1. In this study, an efficient ensemble network was proposed
to diagnose COVID19 pneumonia from a large-scale ra-
diographic database including both CT scans and X-ray
images. This is the first ensemble design (based on Mo-
bileNet, ShuffleNet, and FCNet) in medical domain (partic-
ularly for COVID19 diagnosis) that encompasses reduced
number of trainable parameters and outperforms various
existing models. In the comparative analysis, the perfor-
mances of various baseline methods (based on deep learn-
ing and handcrafted features) were evaluated using the
same experimental setup and datasets. Finally, the pro-
posed network exhibits promising results and outperforms
various state-of-the-art methods.

2. Additionally, a multilevel activation visualization (MLAV)
layer was introduced to visualize the progression of multi-

level discriminative patterns inside the network. The MLAV

2

layer visualizes the lesion patterns along with the final
diagnostic decision (either COVID19 positive or negative)
as multilevel class activation maps (ML-CAMs). Such addi-
tional output presents a visual insight into the CAD deci-
sion and may assist in correct validation by medical pro-
fessionals.

3. To perform the appropriate training of the proposed net-
work, a novel hierarchical training procedure was defined,
which executed the training up to the optimal number
of epochs based on the validation dataset. The optimal
number of epochs was determined based on convergence
criteria of Algorithm 1 in Section 3.2. The quantitative
results show the better performance of the defined method
over the end-to-end training procedure.

4. Finally, the proposed network and data splitting infor-
mation (including the indices of training, validation, and
testing dataset) was made publicly accessible through [28]
for further research and development.

The subsequent sections of this paper are organized in the follow-
ing order: Section 2 presents a short summary of state-of-the-art
studies related to the proposed work. A comprehensive expla-
nation of the proposed network and the complete experimental
setup (including dataset and performance evaluation metrics)
are provided in Sections 3 and 4, respectively. Subsequently,
Section 5 presents the experimental results of the proposed net-
work along with a detailed comparative analysis with existing
methods. Finally, a brief decision of the overall proposed work
and conclusion is presented in Sections 6 and 7, respectively.

2. Related works

In this pandemic era, AI-empowered CAD tools are being
evolved to significantly contribute to a reliable, cost-effective,
and automated diagnostic method for COVID19 pneumonia with
the help of radiological imaging modalities. Recently, several CAD
tools have been presented in the literature with the ultimate
objective of discerning COVID19 positive and negative patients
after processing their radiographic scans, such as CT or X-ray
images [6–15]. Most of these studies utilized the strength of
deep-learning-driven detection, segmentation, or classification
methods to make the decision. For example, Ghoshal et al. [6]
proposed a Bayesian CNN to classify a given X-ray image into one
of the following four classes: COVID19 positive, viral pneumonia,
bacterial pneumonia, and normal case. An existing deep resid-
ual network (ResNet) [29] was modified to enhance the overall
classification results. In the context of the limited COVID19 X-
ray dataset, Oh et al. [7] presented a patch-based deep features
extraction approach that included a small number of trainable
parameters. The overall pipeline included a fully connected-dense
network (FC-DenseNet) followed by ResNet18 to perform lung
segmentation and then patched-based deep feature extraction. A
similar data limitation problem was further explored by Singh
et al. [9] using the CT scan dataset. A multi-objective differen-
tial evolution (MODE) method was proposed to obtain a high
performance pre-trained CNN model. However, an existing deep
network was used with the ultimate objective of classifying the
COVID19 positive and negative cases.

Moreover, a computationally-efficient version of a standard
Inception network (InceptionNet) [30], namely truncated Incep-
tionNet, was proposed by Das et al. [8] to categorize a given
X-ray image into one of the four classes of COVID19 positive,
pneumonia, tuberculosis, and normal cases. Owing to the re-
duced number of inception modules, their proposed model was
computationally efficient compared with the original version. In
another study, Pereira et al. [10] investigated the significance of

conventional handcrafted feature descriptors in conjunction with
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Fig. 1. Overall workflow of the proposed framework visualizing the progression of both training and testing phases distinctly.
deep network. They proposed an ensemble of multiple tex-
ure descriptors and a pre-trained InceptionNet model to exploit
oth visual and hidden patterns in X-ray scans. Additionally, a
esampling method was proposed to resolve the class imbalance
roblem caused by the different number of data samples in each
lass. Finally, feature-level fusion was performed before and after
pplication of the resampling algorithm to exploit the overall
etwork performance as an ablation study. Later, Khan at al. [11]
roposed a deep network, namely CoroNet, to classify X-ray data
amples into four different categories, as in [6]. The proposed
odel was based on Xception [31], an existing pretrained deep
etwork, followed by additional dense blocks to exploit further
igh-level features.
In a comparative analysis study, Asnaouia et al. [12] investi-

ated the collective response of existing pre-trained CNN models
oward COVID19. The comparative results of seven CNN models
ere evaluated to classify X-ray images into three classes: bacte-
ial pneumonia, COVID19, and normal class. Further experimental
esults have proved the higher performance of the inception
esidual network (InceptionResNet) [32] compared with other
etworks. Later, Brunese et al. [13] performed a hierarchical
iagnostic of COVID19 pneumonia using cascade connectivity of
wo existing VGG16 [33] networks. In the first step, the given
-ray image was categorized as either normal or diseased, and
he second network further distinguished between COVID19 and
ther pneumonia. Furthermore, Mahmud et al. [15] presented a
eep CNN model, namely CovXNet, which utilized the strength
f depth-wise convolution (DW-conv) [34] with varying dilation
ates for extracting the more diversified features from a chest
-ray dataset. In a recent study, Han et al. [14] considered a
omplete 3D volume of CT-scan slices to make the diagnostic
ecision. An attention-based deep 3D multiple instance learning
AD3D-MIL) model was proposed to analyze all the CT-scan slices
f a patient to detect COVID19 pneumonia rather than using a
ingle CT-scan image.
These existing methods consider the limited COVID19 data

amples and make the end-to-end decision (i.e., either a patient
as COVID19 or not) without offering additional information that
ay assist radiologists in performing further subjective valida-

ion. Therefore, in this work, a large-scale COVID19 dataset was
onsidered (includes both CT scans and X-ray images) and a
ight-weighted ensemble network was proposed to achieve its
3

improved performance. Moreover, the proposed network pro-
vides additional information about the CAD decision in terms
of ML-CAMs, which are being used to make the ultimate deci-
sion. Finally, Table 1 briefly highlights the key differences among
the existing state-of-the-art methods along with the proposed
diagnostic network.

3. Proposed method

An abstract workflow of the proposed framework is shown in
Fig. 1. The development cycle of the proposed framework mainly
includes the following three steps: (1) implementing a deep
network architecture with the ultimate goal of achieving higher
performance regarding the accuracy and computational cost; (2)
performing a hierarchical training procedure to obtain the well-
trained parameters of the proposed network based on the training
and validation datasets; (3) testing the network performance and
visualizing the output in terms of the predicted label (either
COVID19 positive or negative) and ML-CAMs corresponding to
each radiographic image. The subsequent subsections provide
detailed explanations of these three steps.

3.1. Deep network architecture

The proposed network is based on the parallel connectivity
of mobile network (MobileNet) [34] and shuffle network (Shuf-
fleNet) [35], followed by a fully connected network (FCNet), as
shown in Fig. 2. This is the first ensemble design (based on Mo-
bileNet, ShuffleNet, and FCNet) in medical domain (particularly
for COVID19 diagnosis) that encompasses the reduced number
of trainable parameters and outperforms the various existing
models. The experimental results prove that the proposed net-
work outperforms the individual performances of both MobileNet
and ShuffleNet. Moreover, the addition of a third subnetwork
(FCNet) gives an additional performance gain over the simple
ensemble of MobileNet and ShuffleNet. In this way, the newly
included FCNet also makes the intended design different from
the simple ensemble of MobileNet and ShuffleNet. The main
reason for selecting MobileNet and ShuffleNet is their optimized
architectures regarding memory utilization and computing speed
at a minimum cost in terms of error [34]. Cost-effective memory

consumption is a desirable quality in the context of an ensemble
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omparative summary of the proposed and the existing state-of-the-art methods for automatic diagnosis of COVID19 pneumonia. (V.C: Varicella, S.T: Streptococcus,
.M: Pneumocystis, T.B: Tuberculosis, M.R: MERS, S.R: SARS, P.N: Pneumonia, B.P: Bacterial pneumonia, V.P: Viral pneumonia, ACC: Accuracy, F1: F1 score, AP: Average
recision, AR: Average recall, Spec: Specificity, Kap: Kappa statistics, Others: Combination of different diseased and normal classes beside COVID19).
Literature Method Class name (No. of

classes)
Dataset (No. of images) Imaging modality Result (%) Strength Limitation

COVID19+ COVID19−

Ghoshal et al. [6] Bayesian CNN COVID19/B.P/V.P/
Normal
(4)

68 5873 X-ray ACC: 89.82 Enhanced
detection
performance
compared to
Standard
ResNet

Limited
COVID19 data
samples

Oh et al. [7] FC-
DenseNet+ResNet18

COVID19/B.P/V.P/T.B/
Normal
(5)

180 322 X-ray ACC: 88.9, F1:
84.4, AP: 83.4,
AR: 85.9, Spec:
96.4

Provides
clinically
interpretable
saliency maps

- Limited
COVID19 data
samples
- Patch
processing
required high
computational
cost

Das et al. [8] Truncated
InceptionNet

COVID19/P.N/T.B/
Normal
(4)

162 6683 X-ray ACC: 98.7, F1:
97, AP: 99, AR:
95, Spec: 99,
AUC: 99

Enhanced
computational
performance
compared to
Standard
InceptionNet

Limited
COVID19 data
samples

Singh et al. [9] MODE-based CNN COVID19/Others
(2)

69 63 CT ACC: 93.5, F1:
89.9, AR: 90.75,
Spec: 90.8,
Kap: 90.5

Applicable in
real-time
screening

- Limited
dataset
- Lack of
ablation study

Pereira et al. [10] Texture Descriptors
and InceptionNet

COVID19/M.R/S.R/
V.C/S.T/P.M/Normal
(7)

180 2108 X-ray F1: 89 High COVID19
recognition rate

- Limited
COVID19 data
samples
- Required high
computational
power

Khan et al. [11] CoroNet COVID19/B.P/V.P/
Normal
(4)

284 967 X-ray ACC: 89.6, F1:
89.8, AP: 90,
AR: 89.92,
Spec: 96.4

High COVID19
detection rate
compared to
other classes

- Limited
COVID19 data
samples
- Lack of
ablation study

Asnaoui et al. [12] InceptionResNet COVID19/B.P/Normal
(3)

231 5856 X-ray F1: 92.08, AP:
92.38, AR:
92.11, Spec:
96.06

Detailed
performance
analysis under
the same
experimental
protocol

- Low COVID19
detection rate
compared to
other classes
- Limited
COVID19 data
samples

Brunese et al. [13] VGG16 COVID19/P.N/Normal
(3)

250 6273 X-ray ACC: 97 High COVID19
detection rate
compared to
other classes

- Lack of
ablation study
- Limited
COVID19 data
samples

Han et al. [14] AD3D-MIL COVID19/P.N/Normal
(3)

230 230 CT ACC: 94.3, F1:
92.3, AP: 95.9,
AR: 90.5, AUC:
98.8, Kap: 91.1

Provides
clinically
interpretable
saliency maps

- Required high
computational
power

Mahmud et al. [15] CovXNet COVID19/B.P/V.P/
Normal
(4)

305 915 X-ray ACC: 90.2, F1:
90.4, AP: 90.8,
AR: 89.9, Spec:
89.1, AUC: 91

Generate
clinically
interpretable
activation maps

- Limited
dataset
- Low COVID19
detection rate

Proposed Ensemble-Net COVID19/Others (2)

3296 4143 X-ray ACC: 95.83, F1:
95.94, AP:
95.68, AR:
96.20, AUC:
97.99

- Reduced
number of
trainable
parameters -
Visualize
clinically
interpretable
ML-CAMs

- Training
time is longer
than the
conventional
end-to-end
training
method

3254 2217 CT ACC: 94.72, F1:
94.60, AP:
95.22, AR:
94.00, AUC:
97.5
4
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Fig. 2. Architecture of the proposed ensemble network based on MobileNet, ShuffleNet, and FCNet. Both MobileNet and ShuffleNet are connected in parallel and
heir outputs are simultaneously cascade-connected to FCNet.
m
(

f networks, and the fast execution speed sufficiently reduces
he training as well as testing time. These characteristics are
riven by the use of DW-conv, which distinguishes them from
ther conventional convolution-based deep networks [29–33].
enerally, a standard convolutional layer [36] processes an input
ensor Fi (activation maps) of size wi × hi × di and performs a
onvolutional kernel K ∈ Rk×k×di×dj to generate an output tensor
Fj of size wi ×hi ×dj. A total computation cost of wi ·hi ·di ·dj ·k ·k
s required for performing this standard convolution operation.
owever, the DW-conv layer requires a total computation cost of
i · hi · di(k2 + dj) (sum of the depthwise and 1 × 1 pointwise

convolutions) to perform a similar operation. In this way, DW-
conv decreases the average computation cost by a factor of k2
compared to the standard convolution operation. In the proposed
network, both subnetworks use the convolutional kernel of size
3 × 3 (k = 3), so the total computation cost is 8–9 times lower
than that of the standard convolutional layer.

The general architecture of MobileNet mainly comprises the
serial connectivity of two basic structural units labeled as mobile
unit-A and mobile unit-B in Fig. 3a–b, respectively. These building
blocks mainly include a DW-conv layer and two additional 1 × 1
conventional layers to control the depth size. The main differ-
ence between mobile units A and B is the addition of shortcut
connectivity (Fig. 3a–b) and the use of different stride values
in the DW-conv layer (as given in Table 2). Primarily, mobile
unit-A is responsible for reducing the spatial dimension (from
wi × hi to wi/2 × hi/2) of the input tensor FMi using a stride
of 2 in the DW-conv layers. Meanwhile, mobile unit-B performs
feature extraction without reducing the spatial dimension of the
input tensor. There are a total of 16 mobile units (including
6 mobile unit-A and 10 mobile unit-B) and a few extra layers
(labeled as DW-conv, conv, and avg. pooling layers in Fig. 2)
that also contribute to the development of the complete network
architecture.

Similarly, ShuffleNet comprises the serialized connectivity of
two basic structural units, labeled as shuffle unit-A and shuffle
unit-B in Fig. 3c–d, respectively. The basic structural units of

both MobileNet and ShuffleNet (Fig. 3) utilize the same DW-conv t

5

operation to exploit the key features. However, two additional
layers (a group convolutional (G-conv) layer [35] followed by
a channel shuffle operation [35]) are included in both shuffle
units (Fig. 3c–d). The purpose of the G-conv layer is to reduce
the computational complexity of conventional 1 × 1 convolution
operations [36]. However, in the case of multiple G-conv layers,
the outputs from a specific channel are only obtained from a small
percentage of input channels. This characteristic halts the data
flow between channel groups and impairs the feature extraction
procedure. To overcome this problem, a channel shuffle operation
was included to allow cross-group data flow for multiple G-conv
layers. This additional operation allows the development of more
robust structures with multiple G-conv layers. Both shuffle units
comprise the same layer-wise configuration (G-conv, channel
shuffle operation, and DW-conv layers) with a few modifications.
Shuffle unit-A was devised from shuffle unit-B with the following
two modifications: (1) including a 3 × 3 average pooling layer
on the residual path; (2) replacing the point-wise addition with
a depth concatenation layer, which easily expands the channel
dimension with minimal computation cost. In shuffle unit-A, the
average pooling layer incorporates residual information while
reducing the spatial dimension (from wi × hi to wi/2 × hi/2) of
the input tensor FSi. By contrast, shuffle unit-B performs feature
extraction without reducing the spatial dimension of the input
tensor. The complete ShuffleNet architecture includes a total of
16 shuffle units (including 3 shuffle unit-A and 13 shuffle unit-B)
with some additional layers (labeled as max pooling, avg. pooling,
and conv layers in Fig. 2).

Comprehensive layer-wise configuration details of the pro-
posed network are given in Table 2. Initially, both subnetworks
(MobileNet and ShuffleNet) processed the input image in paral-
lel and transformed it from high-level semantics into low-level
features, as shown in Fig. 2. In the case of MobileNet, the first
convolutional layer (comprising 32 filters of size 3 × 3) processed
the input image F and generated the output tensor (activation
aps) of size 112 × 112 × 32. Subsequently, a DW-conv layer

comprising 32 filters of size 3 × 3) further explored the deep fea-

ures in the previous output and transformed into a new tensor



M. Owais, H.S. Yoon, T. Mahmood et al. Applied Soft Computing 108 (2021) 107490

A
m
d
o
t
a
p
e
(
a
p

Fig. 3. MobileNet and ShuffleNet basic building blocks: (a) Mobile Unit-A, (b) Mobile Unit-B, (c) Shuffle Unit-A, and (d) Shuffle Unit-B. (BN: Batch normalization,
ReLU: Rectified linear unit, CReLU: Clipped ReLU, Ch. Shuf. Opr: Channel shuffle operation).
Table 2
Layer-wise configuration details of the proposed network. (Itr.: Iterations, #Filt.: Number of filters, Str. Stride value, #Par.: Number of trainable parameters).
Subnetwork Layer name Itr. Input size Output size Filter size #Filt. Str. #Par.

(A) Mobile Net

Input – 224 × 224 × 3 n/a n/a n/a n/a n/a
Conv 1 224 × 224 × 3 112 × 112 × 32 (3 × 3) 32 2 960
DW-conv 1 112 × 112 × 32 112 × 112 × 32 (3 × 3) 32 1 384
Conv 1 112 × 112 × 32 112 × 112 × 16 (1 × 1) 16 1 560
Mobile Unit-A 1 112 × 112 × 16 56 × 56 × 24 (1 ×1, 3 × 3, 1× 1) 96, 96, 24 1, 2, 1 5352
Mobile Unit-B 1 56 × 56 × 24 56 × 56 × 24 (1 ×1, 3 × 3, 1× 1) 144, 144, 24 1, 1, 1 9144
Mobile Unit-A 1 56 × 56 × 24 28 × 28 × 32 (1 ×1, 3 × 3, 1× 1) 144, 144, 32 1, 2, 1 10,320
Mobile Unit-B 2 28 × 28 × 32 28 × 28 × 32 (1 ×1, 3 × 3, 1× 1) 192, 192, 32 1, 1, 1 30,528
Mobile Unit-A 1 28 × 28 × 32 14 × 14 × 64 (1 ×1, 3 × 3, 1× 1) 192, 192, 64 1, 2, 1 21,504
Mobile Unit-B 3 14 × 14 × 64 14 × 14 × 64 (1 ×1, 3 × 3, 1× 1) 384, 384, 64 1, 1, 1 165,312
Mobile Unit-A 1 14 × 14 × 64 14 × 14 × 96 (1 ×1, 3 × 3, 1× 1) 384, 384, 96 1, 1, 1 67,488
Mobile Unit-B 2 14 × 14 × 96 14 × 14 × 96 (1 ×1, 3 × 3, 1× 1) 576, 576, 96 1, 1, 1 239,040
Mobile Unit-A 1 14 × 14 × 96 7 × 7 × 160 (1 ×1, 3 × 3, 1× 1) 576, 576, 160 1, 2, 1 156,576
Mobile Unit-B 2 7 × 7 × 160 7 × 7 × 160 (1 ×1, 3 × 3, 1× 1) 960, 960, 160 1, 1, 1 644,160
Mobile Unit-A 1 7 × 7 × 160 7 × 7 × 320 (1 ×1, 3 × 3, 1× 1) 960, 960, 320 1, 1, 1 476,160
Conv 1 7 × 7 × 320 7 × 7 × 1280 (1 × 1) 1280 1 413,440
Avg Pooling 1 7 × 7 × 1280 1 × 1 × 1280 (7 × 7) 1 1 –

(B) Shuffle Net

Conv 1 224 × 224 × 3 112 × 112 × 24 (3 × 3) 24 2 720
Max Pooling 1 112 × 112 × 24 56 × 56 × 24 (3 × 3) 1 2 –
Shuffle Unit-A 1 56 × 56 × 24 28 × 28 × 136 (1 ×1, 3 × 3, 1× 1) (3 × 3)* 112, 112, 112 1 1, 2, 1 2 5824
Shuffle Unit-B 3 28 × 28 × 136 28 × 28 × 136 (1 ×1, 3 × 3, 1× 1) 136, 136, 136 1, 1, 1 35,088
Shuffle Unit-A 1 28 × 28 × 136 14 × 14 × 272 (1 ×1, 3 × 3, 1× 1) (3 × 3)* 136, 136, 136 1 1, 2, 1 2 11,696
Shuffle Unit-B 7 14 × 14 × 272 14 × 14 × 272 (1 ×1, 3 × 3, 1× 1) 272, 272, 272 1, 1, 1 293,216
Shuffle Unit-A 1 14 × 14 × 272 7 × 7 × 544 (1 ×1, 3 × 3, 1× 1) (3 × 3)* 272, 272, 272 1 1, 2, 1 2 41,888
Shuffle Unit-B 3 7 × 7 × 544 7 × 7 × 544 (1 ×1, 3 × 3, 1× 1) 544, 544, 544 1, 1, 1 473,280
Avg Pooling 1 7 × 7 × 544 1 × 1 × 544 (7 × 7) 1 1 –

(C) FCNet

Depth Concatenation 1 1 × 1 × 1280 1 × 1 × 544 1 × 1 × 1824 – 1
FC1 1 1 × 1 × 1824 1 × 1 × 32 – – – 58,400
FC2 1 1 × 1 × 32 1 × 1 × 2 – – – 66
SoftMax 1 1 × 1 × 2 1 × 1 × 2 – 1
Classification 1 – 1

Total learnable parameters: 3,161,106
a
o
n
s
s
t
i
l
1

of the same size 112 × 112 × 32. Subsequently, a pointwise-
conv layer (with a total of 16 filters of size 1 × 1) reduced its
depth size and transformed into a tensor of size 112 × 112 × 16.
fter these initial layers, a stack of 16 mobile units (including 6
obile unit-A and 10 mobile unit-B) continued to explore more
eep features sequentially, as shown in Fig. 2 and Table 2. The
utput of the third convolutional layer was processed through
he stack of these structural units and ultimately converted into
tensor of size 7 × 7 × 320. Each mobile unit processed the
receding output tensor and transformed it into a new one after
xploring deeper features. Finally, a low-dimension feature vector
labeled as fM in Fig. 2) of size 1 × 1 × 1280 was generated
fter processing the output of the last mobile unit through a
ointwise convolutional layer (with 1280 filters of size 1 × 1)
 (

6

and an average pooling layer of size 7 × 7. Similarly, in the
case of ShuffleNet, the input image F also passed through the
first convolutional layer (having 24 filters of size 3 × 3) and
converted into a tensor of size 112 × 112 × 24. Subsequently,
max pooling layer of size 3 × 3 further reduced its (output
f first convolutional layer) spatial dimension and generated a
ew tensor of size 56 × 56 × 24. Subsequently, a stack of 16
huffle units (including 3 shuffle unit-A and 13 shuffle unit-B, as
hown in Fig. 2) explored the additional features and converted
he intermediate tensor (obtained after the max pooling layer)
nto a new output tensor of size 7 × 7 × 544. Ultimately, a
ow-dimension feature vector (labeled as fS in Fig. 2) of size
× 1 × 544 was generated after processing this output tensor
obtained after the last shuffle unit) through an average pooling
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ayer of size 7 × 7. The dimensional details of all the intermediate
tensors (generated after each mobile unit, shuffle unit, and other
layers) are given in Table 2.

It can be observed that the depths of all the intermediate
tensors (in the case of both subnetworks) increased and the
spatial size decreased progressively after passing through dif-
ferent layers, as described in Table 2. Finally, low-level features
(fM and fS after MobileNet and ShuffleNet, respectively) were
obtained that incorporate the distinctive information to differ-
entiate COVID19 positive and negative cases. In the proposed
network, both low-level features jointly contributed to making
the diagnostic decision. Additionally, a FCNet was included after
MobileNet and ShuffleNet to further improve the discriminative
capability of these two features (fM and fS) and perform the
final classification. Initially, FCNet included a depth concatenation
layer that concatenates both fM and fS and generates a jointly
connected feature vector (labeled as fMS in Fig. 2) of size 1 × 1 ×

1824. Subsequently, the FC1 layer further explored the significant
features in fMS and converted into a low-dimensional feature
vector, f ′

MS , of size 1 × 1 × 32. This newly included layer showed
a significant performance gain in the proposed network and dif-
ferentiated it from the conventional ensemble networks. Finally,
a stack of the FC2, softmax, and the classification layers worked
as a classifier and further processed f ′

MS to calculate the final class
label for the input image. In this stack, the FC2 layer recognized
the larger patterns in f ′

MS by fusing all the feature values and
transformed into a binary feature vector, f , of size 1 × 1 × 2.
Subsequently, the next softmax layer transformed f (output of
FC2 layer) in terms of a probability vector, f ′, after using the
softmax function [37]. Eventually, the classification layer assigned
each input in f ′ (output of softmax layer) to one of the two
jointly exclusive classes (i.e., COVID19+ and COVID19−) using a
cross-entropy loss function [37].

3.2. Hierarchical training procedure

To perform sufficient training of the proposed network, a
hierarchical training procedure was adopted. Initially, indepen-
dent training of both pretrained MobileNet and ShuffleNet was
performed using p training data samples and q validation data
amples denoted as

⟨
[FT ]

p
i=1 , [lT ]

p
i=1

⟩
and

⟨
[FV ]

q
i=1 , [lV ]

q
i=1

⟩
in al-

gorithm 1, respectively. The main objective was to perform the
transfer learning of both MobileNet and ShuffleNet for the target
domain and obtain the initial fine-tuned weights w′

M and w′

S ,
respectively. These learned parameters were further utilized to
initialize the initial weights of MobileNet and ShuffleNet in the
proposed network rather than performing their training from
scratch. Fine-tuning a deep network through transfer learning is
much easier and faster than training it from scratch. Afterward,
the training of FCNet was only performed from scratch by freez-
ing all the weights in previous layers (i.e., keeping w′

M and w′

S
unchanged by initializing the learning rates in those layers to
zero). Finally, the learned parametersw′

FC of FCNet were obtained.
Thus, the freezing mechanism solves the overfitting problem,
particularly in the case of a small dataset and significantly fast
network training.

The main reason behind this training procedure was to per-
form appropriate training of the proposed network with a limited
dataset. In conventional transfer learning approach, a simple fine-
tuning of the complete ensemble network is performed in a single
step. In particular, different pretrained backbone networks are
combined in first step and then training is performed. Whereas,
in the selected training method, the independent training of
each backbone network was performed in first step, then these
learned weights were transferred to the intended ensemble net-
work and finally FCNet was trained in second step. In this aspect,
7

the adopted training procedure is different from the conven-
tional single-step end-to-end training method. The end-to-end
training of the proposed model was also performed, but the
overall performance was significantly lower than that of the
defined training procedure in this study. Additionally, conver-
gence criteria were defined based on the validation dataset to
stop the training procedure of each subnetwork (i.e., MobileNet,
ShuffleNet, and FCNet) rather than completing the training until
the maximum number of epochs, which may cause an overfit-
ting problem. In this criterion, the validation accuracy of each
subnetwork is calculated after completing the training for one
epoch. Subsequently, the validation accuracy for the current and
previous epochs is compared to evaluate the training conver-
gence. In the case of minimum difference (i.e., less than a certain
threshold), the network training is stopped for the subsequent
epochs.

In this way, sufficient training of each subnetwork is per-
formed using an independent validation dataset, which ultimately
results in a significant performance gain of the proposed network.
Additionally, Algorithm 1 presents a simple workflow of the
defined hierarchical training procedure as pseudo-code. Finally,
the total loss function of the proposed network can be interpreted
as:

total loss =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

arg min
w′
M

lossCE(ψM (wM , FT ), lT ), Step 1

arg min
w′
S

lossCE(ψS(wS, FT ), lT ), Step 2

arg min
w′
FC

lossCE(ψFC (
[
w′

M , w
′

S, wFC
]
, FT ), lT ), Step 3

(1)

where ψM , ψS , and ψFC represent MobileNet, ShuffleNet, and
FCNet in terms of a transfer function, respectively; FT and lT
represent the set of training data samples and their correspond-
ing class labels, respectively. To find their respective trained
weights, w′

M , w′

S , and, w
′

MS , the MobileNet, ShuffleNet, and FCNet
loss functions were sequentially minimized for available training
data

⟨
[FT ]

p
i=1 , [lT ]

p
i=1

⟩
. In Eq. (1), the cross-entropy loss is com-

puted as lossCE
(
l′, l

)
= −

∑2
i=1 liln

(
l′i
)
where l′ and l represent

the predicted and actual class labels, respectively. A well-known
backpropagation algorithm, stochastic gradient descent [38], was
used to perform the training of the proposed and other baseline
networks. The initial hyperparameters were as follows: learning
rate equal to 0.001, learning rate drop factor as 0.1, min-batch
size equal to 10 (i.e., passing 10 images per gradient update in
each iteration), L2-regularization equal to 0.0001, and a momen-
tum factor of 0.9. Additionally, an independent validation dataset⟨
[FV ]

q
i=1 , [lV ]

q
i=1

⟩
was also used in the training procedure to check

the convergence of each subnetwork, as mentioned in Algorithm
1.

3.3. ML-CAMs visualization

After completing the training procedure, the trained network
was employed to efficiently predict the class label (either
COVID19+ or COVID19−) based on the associated class predic-
tion probability for each testing data sample. In the new task
of COVID19 screening, it is advantageous to provide additional
information to the radiologists regarding the computer decision
together with the final predicted result. In most of the existing
studies [39–41], the conventional CAM visualization is based on
a single network and presents the intermediate features of each
subnetwork separately in case of an ensemble design.

Different from the existing studies [39–41], an additional
MLAV layer was introduced that visualizes the collective activa-
tion maps of both subnetworks (MobileNet and ShuffleNet) as
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a single CAM image from the corresponding layers (Fig. 2). The
MLAV layer can provide a common and collective visualization
of multiple backbone networks in case of an ensemble design. In
the proposed ensemble architecture, a total of five MLAV layers
(Fig. 2) were included that present the collective response of both
MobileNet and ShuffleNet as a stack of CAM images namely ML-
CAMs. These newly proposed ML-CAMs visualize the progression
of multilevel discriminative patterns (beginning from low-level
to high-level features) inside the network and give a visual clue
of the network prediction. Furthermore, such additional informa-
tion can assist radiologists in performing subjective analyses of
infectious areas in case of several medical conditions. Therefore,
the proposed diagnostic network, along with the mechanism of
ML-CAMs, has significant potential in clinical applications.

To generate these ML-CAMs, the defined MLAV layer per-
orms the following operations: (1) apply depth-wise averaging
o transform the input tensor Fi (activation maps) of size wi ×

hi × di into a single channel activation map Fj of size wi × hi as
Fj =

1
N

∑N
di=1 Fi(wi, hi, di); (2) resize Fj according to the input

mage size and present the resized activation map as a CAM
mage (with a pseudo color scheme) to visualize the key features
ore appropriately; (3) finally, overlay the original image with

he final CAM image to highlight the activated patterns inside
he image. In the defined network architecture, the given input
mage is gradually down-sampled into five spatial sizes (such as
12 × 112, 56 × 56, 28 × 28, 14 × 14, 7 × 7) after passing

through the multiple layers. Therefore, a total of five different
locations were selected inside the network to obtain multilevel
tensors of five spatial sizes. Following this, these tensors were
transformed into ML-CAMs with five MLAV layers in specified
locations of the proposed network, as shown in Fig. 2.

4. Datasets and experimental setup

A collection of six publicly available datasets was used to
validate the diagnostic capability of the proposed network. These
8

Table 3
Brief description of datasets selected in this study.
Modality Dataset COVID19+ COVID19−

#Images #Patients #Images #Patients

CT

BIMCV COVID19 [44] 2905 1311 – –
COVID-CT [45] 349 349 397 397
Cancer Archive [46] – – 1820 732
Total 3254 1660 2217 1129

X-ray

BIMCV COVID19 [44] 3296 1311 – –
Shenzhen [47] – – 662 662
Montgomery [47] – – 138 138
CoronaHack [48] – – 3343 3343
Total 3296 1311 4143 4143

datasets included both COVID19 positive and negative data sam-
ples, captured using CT and X-ray imaging modalities. Table 3
provides a summary of the total number of positive and neg-
ative cases (in terms of the number of images and number of
patients) included in each dataset. Additionally, Fig. 4 shows a few
sample images of both imaging modalities to highlight the visual
difference between COVID19 positive and negative data samples.
Generally, the COVID19 positive scans encompass a few distinc-
tive radiographic patterns, namely ground-glass opacity, consol-
idation, bilateral, peripheral, pleural effusion, and crazy-paving
pattern [42,43], in medical terminology.

Such radiographic patterns can provide key evidence to a deep
learning model to perform classification and severity assessment
of COVID19 pneumonia. As the main goal is to classify a given
radiographic image either as COVID19 positive or negative, all
data samples of each individual modality were divided into two
main classes according to their ground truth labels. All COVID19
positive images were considered as one class and the remaining
data samples (including normal as well as bacterial and viral
pneumonia cases in some datasets) as another class of each
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Fig. 4. Example images from the selected datasets to show the visual difference between COVID19 positive and negative cases: (a) CT scan images; (b) X-ray images.
Table 4
Summary of the total number of data samples included in the training,
validation, and testing datasets.
Dataset Data splitting COVID19+ COVID19−

#Images #Patients #Images #Patients

CT

Training 2278 1162 1552 790
Validation 325 166 222 113
Testing 651 332 443 226
Total 3254 1660 2217 1129

X-ray

Training 2307 918 2900 2900
Validation 330 131 414 414
Testing 659 262 829 829
Total 3296 1311 4143 4143

modality. In this way, two main datasets were obtained based on
the modality types. Each dataset included a sufficient number of
COVID19 positive and negative radiographic images. Finally, all
the data samples were resized to 224 × 224 according to the fix
ize of the input layer in the proposed model.
A deep learning toolbox [49] accessible in MATLAB R2019a

MathWorks, Inc., Natick, MA, USA) was used to implement and
imulate the proposed network. All the experiments were com-
leted on a desktop computer with the following specifications:
ntel Corei7-3770K CPU with 3.50 GHz clock speed, 16 GB RAM,
indows 10 operating system, and NVIDIA GeForce GTX 1070
PU. Additionally, five-fold cross-validation was completed in all
he experiments using 70% of patient data in training, 10% in
alidation, and finally 20% in testing. For a fair evaluation of the
roposed method in a real-world setting, different patient data
ere included in the training, validation, and testing datasets, as
escribed in Table 4. Finally, the testing results of the proposed
nd various baseline methods (including both deep learning and
onventional machine learning methods) were assessed based on
he following quantitative metrics: accuracy (ACC), F1 score (F1),
verage precision (AP), average recall (AR), and the area under
he curve (AUC) using receiver operating characteristic (ROC)
urves [50]. All these metrics calculate the overall performance
f a classification method from various perspectives.

. Results and analysis

This section describes the quantitative results of the pro-
osed network along with the individual performance of each
ubnetwork as an ablation study. Subsequently, a detailed com-
arative analysis was performed with various state-of-the-art
eep learning as well as conventional machine learning methods

o highlight the significance of the proposed solution.

9

5.1. Results with an ablation study

In the first experiment, the diagnostic performance of the pro-
posed network was measured for both datasets. Table 5 presents
the quantitative results of the proposed network along with the
individual performance of each subnetwork as an ablation study
that highlights the significance of each subnetwork in developing
the overall network architecture. In Table 5, it can be observed
that the ensemble of three subnetworks resulted in significant
performance gain (particularly in the case of the CT scan dataset)
compared with the individual results of each subnetwork. In
addition, an ensemble of MobileNet and ShuffleNet (named Mob-
ShufNet in Table 5) outperforms each subnetwork and is ranked
the second-best network. However, its performance gain is not
significantly high compared with the individual performances
of both MobileNet and ShuffleNet. Therefore, a third subnet-
work, namely FCNet, was assembled with MobShufNet to further
enhance its performance. In this way, the proposed network
outperforms MobShufNet (a second-best network) with average
gains of 1.19%, 1.18%, 0.87%, 1.45%, and 0.62% for the ACC, F1, AP,
AR, and AUC, respectively (in cases of both datasets). However,
the performance difference between the proposed method and
MobileNet is higher with average gains of 1.48%, 1.5%, 1.29%,
1.7%, and 0.74% for the ACC, F1, AP, AR, and AUC, respectively.
Similarly, the performance gains for the proposed network vs.
ShuffleNet were 1.97%, 1.99%, 1.7%, 2.25%, and 1.18% in ACC,
F1, AP, AR, and AUC, respectively. All these results present the
average performance gains of both datasets.

Fig. 5 represents the ROC curves of the proposed network
and each subnetwork. Each curve shows a tradeoff between the
different values of the true positive rate (TPR) and corresponding
false positive rate (FPR) results for a particular network. For
each network, different values of TPR and FPR were calculated
by varying the classification threshold from 0 to 1 with incre-
ments of 0.001. An equal error rate (EER) line is also included
in the ROC plot to present the high values of TPR and FPR
corresponding to each network. In Fig. 5, all the curves present
the average ROC performance of both datasets to envisage the
collective performance gain of both datasets for a particular net-
work. Additionally, the average AUCs of 96.57%, 97.01%, 97.13%,
and 97.74% were obtained in the cases of ShuffleNet, MobileNet,
MobShufNet, and the proposed network from these ROC plots,
respectively. The ROC plots further highlight the significance of
each subnetwork in developing the final architecture.

In addition, the predicted numbers of true positive (TP), true
negative (TN), false positive (FP), and false negative (FN) data
samples are also presented corresponding to each network. Fig. 6
summarizes these results as confusion matrices for ShuffleNet,
MobileNet, MobShufNet, and finally the proposed network. These
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Table 5
Quantitative results of the proposed network including the ablated performance of each subnetwork.
Dataset Network ACC ± std F1 ± std AP ± std AR ± std AUC ± std

CT

ShuffleNet 91.65 ± 6.14 91.52 ± 6.10 92.69 ± 4.41 90.40 ± 7.68 95.61 ± 5.61
MobileNet 92.95 ± 5.25 92.85 ± 5.27 93.81 ± 3.93 91.90 ± 6.57 96.51 ± 3.68
MobShufNet 93.11 ± 7.64 93.07 ± 7.46 94.25 ± 5.25 92.00 ± 9.43 96.57 ± 5.82
Proposed 94.72 ± 4.76 94.60 ± 4.75 95.22 ± 3.63 94.00 ± 5.82 97.50 ± 4.17

X-ray

ShuffleNet 94.97 ± 0.40 95.03 ± 0.46 94.81 ± 0.41 95.30 ± 0.51 97.53 ± 0.38
MobileNet 94.65 ± 1.49 94.68 ± 1.58 94.51 ± 1.42 94.90 ± 1.74 97.51 ± 0.46
MobShufNet 95.07 ± 1.39 95.10 ± 1.46 94.91 ± 1.35 95.30 ± 1.58 97.69 ± 0.42
Proposed 95.83 ± 0.25 95.94 ± 0.28 95.68 ± 0.26 96.20 ± 0.29 97.99 ± 0.14
Table 6
Comparative results of the adopted hierarchical training procedure vs. end-to-end training method.
Dataset Training procedure ACC ± std F1 ± std AP ± std AR ± std AUC ± std

CT end-to-end 91.23 ± 5.84 91.06 ± 5.88 92.48 ± 4.66 89.70 ± 7.02 95.73 ± 4.57
Hierarchical 94.72 ± 4.76 94.60 ± 4.75 95.22 ± 3.63 94.00 ± 5.82 97.50 ± 4.17

X-ray end-to-end 95.75 ± 0.37 95.83 ± 0.41 95.59 ± 0.38 96.10 ± 0.43 97.88 ± 0.17
Hierarchical 95.83 ± 0.25 95.94 ± 0.28 95.68 ± 0.26 96.20 ± 0.29 97.99 ± 0.14
Fig. 5. Receiver operating characteristic curves of ShuffleNet, MobileNet, Mob-
ShufNet, and proposed network. The true positive rate (TPR) is plotted against
the false positive rate (FPR) of each network at distinct thresholds from 0 to 1
in 0.001 increments.

confusion matrices present the collective number of TP, FP, TN,
and FN of both datasets after combining their individual results.
It can be observed that the total number of TP and TN of the
proposed network increased significantly from 1278 to 1,291
10
and 1141 to 1166 compared with the MobShufNet (second best
network), respectively. Meanwhile, FN and FP reduced from 32
to 19 and 131 to 106, respectively. These results highlight the
significance of FCNet (with an additional fully connected layer la-
beled as FC1 in Fig. 2) included after the feature concatenation of
MobileNet and ShuffleNet. Moreover, Table 6 provides the com-
parative results of the adopted hierarchical training procedure
(explained in Algorithm 1) compared to the end-to-end training
method. In the case of the CT scan dataset, the performance
gains (hierarchical training vs. end-to-end) were 3.49%, 3.54%,
2.74%, 4.3%, and 1.77% in ACC, F1, AP, AR, and AUC, respectively.
Meanwhile, for the X-ray dataset, the performance gains were
lower than those of the CT scan dataset (i.e., 0.08%, 0.11%, 0.09%,
0.1%, and 0.11% in ACC, F1, AP, AR, and AUC, respectively). The
average performance gains (hierarchical training vs. end-to-end)
of both datasets were 1.79%, 1.83%, 1.42%, 2.2%, and 0.94% in
ACC, F1, AP, AR, and AUC, respectively. In conclusion, the defined
training procedure performs appropriate training of the proposed
network and outperforms the end-to-end training method with
significant performance gain.

5.2. Comparative study

In this section, a comprehensive comparison of the proposed
method is made with existing state-of-the-art deep feature-based
CAD methods related to COVID19 diagnostics [13,16–25]. Most of
these methods used the existing pretrained networks and applied
the end-to-end transfer learning approach for the automated
diagnosis of COVID19 infection. Primarily, these studies aimed to
Fig. 6. Confusion matrices of the proposed network and each subnetwork. These results present the individual performance of each network in terms of the
ctual number of true positive (TP), true negative (TN), false positive (FP), and false negative (FN) data samples. (Note: In each confusion matrix, Top-left-box: TP,
op-right-box: FN, Bottom-left-box: FP, Bottom-right-box: TN).
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Fig. 7. Tradeoff between the number of parameters and accuracies of the
proposed and top five baseline networks.

perform the comparative analysis of existing pretrained models
and attained the best model based on its high performance.
However, these comparative studies used limited radiographic
datasets and different experimental protocols. For a fair compari-
son, the quantitative results of these baseline methods [13,16–25]
were assessed based on the selected datasets and experimental
protocol. In details, the pretrained backbones of the baseline
methods [13,16–25] were selected and fine-tuned with the se-
lected datasets. The training parameters were chosen with the
experimental data during the fine-tuning of backbones of the
baseline methods [13,16–25], and same method was adopted
for the proposed model. Additionally, the same experimental
protocol (including five-fold cross-validation) was adopted for
the performance comparisons of the baseline methods [13,16–25]
and the proposed model. Consequently, this comparative study
is more precise and detailed than those in [13,16–25]. Table 7
presents the comparative results of all related studies, along with
the proposed method.

The following interpretations can be inferred from these com-
parative results: (1) The methods of Tsiknakis et al. [21] and
Brunese et al. [13] show comparable results in the cases of the CT
scan and X-ray datasets, respectively. Although their quantitative
results are comparable, the number of learnable parameters of
the proposed network are significantly lower than in [13,21],
as mentioned in Table 7; (2) The networks proposed by Mi-
naee et al. [16], Apostolopoulos et al. [18], and Hu et al. [22]
incorporate a lower number of parameters than the proposed net-
work. However, the quantitative results (Table 7) of the proposed
network outperform these methods [16,18,49] with significant
performance gain in terms of all the performance metrics. Ad-
ditionally, Fig. 7 visualizes the tradeoff between the number of
learnable parameters and accuracies (as an average F1 result
of both datasets) of the top five baseline models along with
the proposed network. It can be observed that the proposed
network outperforms these state-of-the-art methods in terms of
both accuracy and computational complexity.

Before the advent of deep learning algorithms, handcrafted
feature-based methods were developed to perform different med-
ical image analysis tasks. Such conventional algorithms mainly
include a feature descriptor followed by a classification algorithm.
11
In this image classification pipeline, a feature descriptor exploits
the key features (such as points, edges, or texture information) in
the given data, and then a classifier performs the class prediction
using these features. In the literature, various well-known feature
descriptors and classification algorithms have been proposed
in general as well as the medical image analysis domain. In
this section, the performance of three known feature descrip-
tors, specifically: local binary pattern (LBP) [51], multilevel LBP
(MLBP) [52], and histogram of oriented gradients (HoG) [53] were
evaluated in combination with four classifiers: AdaBoostM2 [54],
support vector machine (SVM) [55], random forest (RF) [56], and
k-nearest neighbor (KNN) [57]. The main objective of this analysis
was to evaluate the response of conventional machine learning
methods toward the current COVID19 pneumonia. Therefore,
the quantitative performance of these three descriptors were
evaluated along with each classifier (as mentioned earlier) using
the same datasets and experimental protocol. In this way, the
performance of twelve handcrafted feature-based methods were
obtained, as presented in Table 8. Among these conventional
methods, the HoG feature extractor followed by the SVM classifier
exhibited the best performances, with AUCs of 94.24% and 96.94%
for the CT scan and X-ray datasets, respectively. In the case
of the CT-scan dataset, the performance of the MLBP feature
descriptor with the AB classifier (in terms of ACC, F1, AP, and
AR) is higher than that of HoG + SVM. It can be concluded that
oth the HoG + SVM and MLBP+ AB methods show promising
erformances toward COVID19 diagnosis in contrast to other
ethods. However, the overall performance differences between

hese (i.e., HoG + SVM and MLBP+ AB) and the proposed method
are significantly high, particularly in the case of the CT scan
dataset. In conclusion, the proposed network shows promising
results compared with conventional machine learning (Table 8)
as well as state-of-the-art deep learning (Table 7) methods.

6. Discussion

This section highlights the key aspects and the limitations of
the proposed method by considering state-of-the-art models. In
this study, an efficient deep architecture was initially proposed
to identify COVID19 infection from a large-scale radiographic
database including both CT-scan and X-ray images. In addition,
a hierarchical training procedure was implemented to perform
the appropriate training of the proposed network. The experi-
mental results (Table 6) demonstrate the improved performance
of the adopted training procedure compared with the end-to-
end training method. On average, performance gains (hierarchical
training vs. end-to-end) of 1.79%, 1.83%, 1.42%, 2.2%, and 0.94%
were obtained in terms of ACC, F1, AP, AR, and AUC, respec-
tively. Additionally, an MLAV layer was introduced to visualize
the progression of multilevel features (starting from low-level to
high-level features) inside the network as ML-CAMs. These ML-
CAMS provide a visual insight into the network decision and may
assist radiologists in further validating its subjectivity in case of
ambiguous prediction. To visualize such ML-CAMs, a total of five
MLAV layers were introduced in different parts of the network
(Fig. 2). Ultimately, for each input image, these layers generated
a total of five CAM images labeled FMS1, FMS2, FMS3, FMS4, and
MS5 (Fig. 2) with spatial sizes of 112 × 112, 56 × 56, 28 × 28,
14 × 14, and 7 × 7, respectively. Figs. 8 and 9 show the outputs
of these MLAV layers as ML-CAMs for the given data samples
(including both COVID19 positive and negative cases from each
dataset). These additional results (Figs. 8 and 9) can address the
following questions that remained unanswerable in most of the
previous methods: (1) how does a deep network converge toward
a final diagnostic decision (either COVID19+ or COVID19−) based
on key features (including diseased and normal patterns) in the
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Table 7
Quantitative performance comparison of proposed network with the state-of-the-art deep learning methods. (#Par: Total number of
parameters).
Study Method #Par (Million) Dataset 1: CT Dataset 2: X-ray

ACC F1 AP AR AUC ACC F1 AP AR AUC

Minaee et al. [16] SqueezeNet 1.24 89.84 89.48 89.91 89.06 93.86 93.51 93.56 93.43 93.70 97.03
Brunese et al. [13] VGG16 134.27 89.66 89.54 91.43 87.81 92.35 95.79 95.91 95.65 96.18 97.79
Khan et al. [17] VGG19 139.58 91.54 91.33 92.26 90.47 94.54 95.30 95.39 95.14 95.65 97.84
Martínez et al. [25] NASNet 4.27 93.68 93.49 94.19 92.82 96.67 94.06 94.06 93.89 94.23 97.07
Misra et al. [24] ResNet18 11.18 92.96 92.76 93.41 92.14 95.06 95.59 95.69 95.44 95.95 97.79
Farooq et al. [23] ResNet50 23.54 90.30 90.22 92.17 88.53 92.79 94.73 94.77 94.62 94.92 97.66
Ardakani et al. [20] ResNet101 42.56 90.30 90.26 92.17 88.64 95.71 94.53 94.58 94.44 94.72 97.19
Jaiswal et al. [19] DenseNet201 18.11 94.17 94.03 94.63 93.46 97.36 93.41 93.39 93.38 93.39 97.31
Hu et al. [22] ShuffleNet 0.86 91.65 91.52 92.69 90.44 95.61 94.97 95.03 94.81 95.25 97.53
Apostolopoulos et al. [18] MobileNetV2 2.24 92.95 92.85 93.81 91.94 96.51 94.65 94.68 94.51 94.85 97.51
Tsiknakis et al. [21] InceptionV3 21.81 94.57 94.41 94.89 93.94 97.93 95.44 95.53 95.29 95.78 97.52
Proposed Ensemble-Net 3.16 94.72 94.60 95.22 94.00 97.50 95.83 95.94 95.68 96.20 97.99
Table 8
Quantitative performance comparison of proposed network with the conventional handcrafted feature-based
methods.
Method Dataset 1: CT scan Dataset 2: X-ray

ACC F1 AP AR AUC ACC F1 AP AR AUC

LBP & SVM, 80.18 79.64 79.52 79.77 83.06 79.89 79.63 80.41 78.87 86.80
LBP & KNN, 82.71 81.97 82.60 81.37 81.37 88.76 88.62 88.62 88.63 88.63
LBP & RF, 83.40 82.75 83.78 81.81 90.35 88.95 88.91 88.80 89.03 94.82
LBP & AB, 85.73 85.20 86.00 84.46 89.73 88.88 88.79 88.73 88.84 94.15
MLBP & SVM, 83.49 83.16 82.93 83.39 88.30 86.82 86.71 87.13 86.30 92.61
MLBP & KNN, 84.15 83.51 83.98 83.06 83.06 90.15 90.04 90.02 90.06 90.06
MLBP & RF, 87.22 86.72 87.36 86.10 93.23 90.39 90.39 90.24 90.53 95.31
MLBP & AB, 89.05 88.65 89.23 88.09 92.01 92.26 92.25 92.09 92.42 95.60
HoG & SVM, 88.10 87.82 88.98 86.73 94.24 94.19 94.24 94.02 94.46 96.94
HoG & KNN, 84.63 83.99 85.24 82.88 82.88 93.17 93.12 93.00 93.25 93.25
HoG & RF, 87.81 87.53 89.27 85.94 92.65 92.23 92.34 92.10 92.58 96.79
HoG & AB, 86.82 86.68 88.88 84.73 87.57 93.92 93.99 93.75 94.22 96.25
Proposed 94.72 94.60 95.22 94.00 97.50 95.83 95.94 95.68 96.20 97.99
Fig. 8. Additional output of MLAV layers as ML-CAMs for the given CT scan images (including both COVID19 positive and negative data samples).
12
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Fig. 9. Additional output of MLAV layers as ML-CAMs for the given X-ray images (including both COVID19 positive and negative data samples).
iven data sample? (2) Which areas can be suspected of having
OVID19 pneumonia in case of positive prediction? (3) Does the
AD decision comply with that of medical experts? The answers
o these questions are essential and lead to the best possible
iagnostic decision that can be based on the mutual consent of
oth computers and medical experts.
The proposed network is based on an ensemble of three sub-

etworks, namely MobileNet, ShuffleNet, and FCNet, as shown
n Fig. 2. Therefore, a detailed ablation study (Table 5) was also
onducted to highlight the impact of each subnetwork in building
he overall network architecture. Table 5 shows that the proposed
odel achieved higher performance than all the subnetworks

ndividually. On average, the performance gains (proposed vs.
obShufNet) were 1.19%, 1.18%, 0.87%, 1.45%, and 0.61% in ACC,
1, AP, AR, and AUC, respectively. Additionally, a comprehensive
nalysis of various machine learning (Table 8) and deep learning
lgorithms (Table 7) was also performed to highlight the better
erformance of the proposed network compared with the exist-
ng state-of-the-art methods. For a fair one-to-one comparison,
he performance of these existing methods were assessed us-
ng same datasets. The number of trainable parameters of the
roposed network is about 86% lower than that of the second-
est method [21] (i.e., proposed: 3.16M and Tsiknakis et al. [21]:
1.81M). Moreover, the average inference time of the proposed
etwork was about 10.95 ms on a single image, whereas the
econd-best method [21] takes approximately 23.41 ms. The av-
rage inference time was calculated using a stand-alone desk-
op computer including Intel Core i7 CPU, 16 GB RAM, NVIDIA
eForce graphics processing unit (GPU) (GTX 1070), and Win-
ows 10 operating system. Finally, the proposed model and data
plitting information were made publicly available as part of this
tudy, which can be used as a benchmark for future trials.
Although the proposed network shows promising
erformance, there are a few limitations that may affect the

13
overall performance of the proposed network in a real-world clin-
ical setting. Due to the recent pandemic of COVID19 pneumonia,
publicly available datasets are limited and encompass a narrow
range of radiological imaging modalities. Therefore, the diversity
of these radiological imaging modalities may raise the issues
of the generalizability of this network. However, it is a data-
driven problem that can be resolved with the availability of more
diversified radiographic datasets related to COVID19 pneumonia.
Additionally, the ML-CAM output cannot perfectly segment out
the infectious regions but only highlight the likelihood of infected
areas in each data sample. Nevertheless, these semi-localized
activation maps provide initial clues regarding infectious regions
and further assist field specialists in making effective diagnostic
decisions.

7. Conclusion

This study aimed to provide an AI-based diagnostic solution to
distinguish COVID19 pneumonia from other types of community-
acquired pneumonia. Therefore, an efficient ensemble network
was developed to distinguish COVID19 positive and negative
cases from chest radiographic scans, including X-rays and CT
scans. In addition, the performances of various existing methods
(including a total of 12 handcrafted feature-based and 11 deep-
learning-based methods) were analyzed using the same dataset
and experimental protocol. The best diagnostic ACCs of 94.72%
and 95.83% with AUCs of 97.50% and 97.99% were obtained for the
CT scan and X-ray datasets, respectively. The detailed compara-
tive results demonstrate the higher performance of the proposed
network over the various state-of-the-art methods. Moreover, the
reduced size of the proposed network allows its implementation
in smart devices and provides a cost-effective solution, particu-
larly in real-time screening applications. Finally, the source code
of the proposed network and other data splitting information
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such as training and testing data indices) are publicly available
or other researchers.

Future work of this study includes the development of another
eep learning solution to localize and quantify infected regions
caused by COVID19) in radiographic scans. Moreover, the num-
er of infected cases will also be increased by exploring more
adiographic datasets to further enhance the generality of the
roposed network.
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